HELLENIC REPUBLIC

UNIVERSITY OF THE PELOPONNESE

FACULTY OF ECONOMY AND TECHNOLOGY

DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS
M.Sc. IN COMPUTER SCIENCE AND TECHNOLOGY

M.Sc. Thesis

Process and correlation between large data sets

THEODOROS GIANNAKOPOULOS
A.M.: 2022201602004

Supervisor:

Costas Vassilakis

Tripoli, October 2019

Theodoros Giannakopoulos

Contents
Contents 2
Table of figures 4
Abstract 5
MepiAnyn 6
Extetauévn nepiAnyn 7
1 Introduction 10
2 Technologies that were used 12
2.1 PHP 12
2.2 MVC 12
2.2.1 Whatis MVC? 12
2.2.2 Why use MVC? 12
2.3 Laravel 13
2.3.1 Why use Laravel? 14
2.3.1.1 Authentication 14
2.3.1.2 Blade Templating Engine 14
2.3.1.3 Support for multiple file systems 14
2.3.1.4 Caching 14
2.3.1.5 Method or Dependency Injection 15
2.3.1.6 Modularity or Multi-app 15
2.3.2 The “HTML” package of the Laravel Collective 15
2.3.3 Laravel Artisan Commands 15
2.4 MariaDB 16
2.5 ETL Pipeline 16
2.5.1 Why do we need ETL Pipeline 17
2.5.1.1 Data Extraction 17
2.5.1.2 Transform 17
2.5.1.3 Load 17
3 The application 18

Theodoros Giannakopoulos

3.1 Query the database from the Ul

3.2 Data Visualization

3.2.1 Procedure to be followed in order to visualize new datasets

3.3 Data upload & validation

3.3.1 Preprocessing of data

3.3.2 Data upload

3.3.3 Data validation

3.3.4 Deepdive on the process of data validation

3.3.5 Bypassing data validation

3.4 Deepdive on how the query from the Ul is working

3.4.1 SQL Injection

3.4.1.1 Common SQL injection cases

3.4.1.2 Handling basic cases of SQL injection

3.4.1.3 Limitations of the SQL handling methods

3.4.2 Pagination

3.4.2.1 Laravel’s Pagination

3.4.2.2 Displaying Paginated Results

4 System Administration Functionalities

4.1 User levels

4.1.1 Admin user

4.1.1.1 User creation

4.1.1.2 Database access rights

4.1.1.3 Check logs

5 Conclusion

6 References

18

20
23

24
24
24
25
26
27

29
29
30
30
31
32

32
33

35

35
35
35
36
37

39

40

Theodoros Giannakopoulos

Table of figures

Figure 1. Request processing under the MVC paradigm

Figure 2. User interface for queries

Figure 3. List of available data collections, as provided by the application

Figure 4. Instructions provided to the end-user regarding the query formulation syntax

Figure 5. Hierarchical visualization of a randomly selected item collection

Figure 6. Hierarchical visualization of the results of a user-provided query

Figure 7. User-provided query

Figure 8. A sample format of a JSON string to be passed to the D3 visualization library

Figure 9. User interface to upload a dataset

Figure 10. User interface for dataset validation

Figure 11. Schema of table artist_data

Figure 12. Schema of table artwork_data

Figure 13. Releasing data for public use, bypassing validation

Figure 14. Releasing data for public use, bypassing validation

Figure 15. Paged query results

Figure 16. User management

Figure 17. New user creation screen

Figure 18. Specifying database access permissions

Figure 19. Log examination by admin users

13
18
19
19
21
22
22
24
25
26
28
28
29
29
34
35
36
37
38

Theodoros Giannakopoulos

Abstract

The goal of this thesis is to implement an easy-to-use solution to the end
user, to query data from a given set of databases through a user interface. The
user interface would provide a graphical representation of given databases and
the ability to upload data and validate the data via a GUI. Hence, the solution
was implemented as a web-based application, and the Laravel framework was
used for the implementation.

A survey was conducted to identify similar tools and no applications
providing the aforementioned functionalities were identified. In order to be able
to query an information repository (a database, data warehouse, Google Cloud/
S3 buckets, Google Big Query tables, ...) specific access rights should been
given beforehand to the corresponding parties. Process-wise, this can be really
time consuming, and impractical since involves communication between
parties, requesting access, stating why they need access and then, if approved,
then they are able to query corresponding datasets. Furthermore, users should
familiarize themselves with diverse user interfaces.

Considering the above, the tool implemented in the context of this thesis
provides a manageable solution to provide access to users to multiple resources
under a unified process and from within a single, comprehensive user interface,

so the end user will be able to query multiple given datasets.

Theodoros Giannakopoulos

Mepidnym

O oTOX0C TNG napoucac epyaaiag €ival va ulonoinBei pia euxpnoTtn AUon
MPOKEIPEVOU 0 KABE XpNOoTNC va €xel Tn duvaToTNTa va unoBAAel EpwTNHATA O
€va aUvoho ano Baoeig dedopevwy 81 JEoou piag dienagnc xpnoTn. H dienagn
XpnoTn 6a npenel va napeExel dia ypagikn avanapdoraon Twv Baoswv
OedopEVWY Kal TN duvaToTNTA va PETAPOPTWVOVTAl NPOC TNV NAATPOPHA Kal
va enikupwvovtal Ta Oedopéva MECW MIac ypaikng dlenapng. Mpog Tnv
kaTteuBuvon auTn, OnuIoupynenke pia epappoyn 1otoUu (web-based
application), kai yia Tnv uAonoinon TnG Xpnolhonoinenke To NAaiolo avanTuéng
Laravel.

Apxika, OIEENXON €peuva yia TOV EVTOMIOMO €pyaAsiwv HE napopola
AEITOUPYIKOTNTA, WOTOOO NPOEKUWe OTI Oev unNApPYouv OIaBECINa OXETIKA
epyaleia. MMpokeigévou va eivar duvatov -oUPQWvVA WE Tnv TpEXouoda
KaTaoTaon- va npayparonoinfolv epwTNOEIC O va anoBeTnpio NAnpopopiag
(Baon dedopeEvwyv, anobnkn dedopevwy, CUAOYEC dedopevwy o€ popPn Google
Cloud/ S3 buckets, Google Big Query tables), o xpnoTnc npenei va Aapel ek Twv
NPOTEPWV TNV KATAANAN €€ouaioddtnon. e diadikaoTiko eninedo, auTo eival
XPOVOBOPO Kal Pn MpakTiko, kKabw¢ nepiAayBavel enikoivwvia PETAEU Twv
EMNAEKOMEVWV PEPWY, aiTnUa yia npoofaocn Pe npoadiopiono Tou AOyou yia
TOV onoio {nTeiTal kal -’ 0oov Napacyxedei n £ykpion- TOTE YOVOV O XPNoTNC
Exel TN duvaTtoTnTa va unoPaMel epwTtnuaTa. Emnpdobera, o xpnortng Oa
npenel va E0IKEIWOEi e DIaPOPETIKEG dIENAPEC XpAOTN.

AapBavovtag un’ oIV Ta avwTEPW, TO €PYAAEI0 NMou uAonoinBnke oTO
nAaiolo TNG napouoag SINAWKATIKAG, NAPEXEl Hia dlaxelpioiun NPooeyyion yia
TNV Napoxn oToug XpnoTes npdapaonc, o€ noAAanAouc nopouc KaTw ano pia
eviaia diadikacia kail d1d HEooU JIag povadikng SIENAPAG XpnoTn, ENITPENOVTAG
£TOI TNV UNOBOAR anod PEPOUG TWV XPNOTWV EPWTNHATWY O€ NOAAANAEC MNYEC
nAnpogopiag.

Theodoros Giannakopoulos

Extetauévn tepiAnym

O oTOX0C TNG Nnapoucac epyaaiag €ival va ulonoinBei pia euxpnoTtn AUon
MPOKEIMEVOU KABE XprnoTne va €xel Tn duvaToTNTa va UNoBAAEl EpwTNHATA O
€va aUvoho ano Baoceig dedopevwy 81 JEoou piag dienagnc xpnoTn. H dienagn
XpnoTn 6a npenel va napeExel Wia ypagikn avanapdoraon Twv Baoswv
dedopévwv kal Tn duvaToTNTa va PETAPOPTWVOVTAl NPOoC TNV NAATPOpUa Kal
va enikupwvovtal Ta Oedopéva MECW MIac ypagikng dlenapng. Mpog Tnv
kaTteuBuvon auTn, OnuIoupynenke pia epapupoyn 1otoUu (web-based
application), kai yia Tnv uAonoinon TnG Xpnoihonoinenke To NAaiolo avanTuéng
Laravel.

Apxika, OIEENXON €peuva yia TOV EVTOMIOMO €pyaAciov HE napopola
AEITOUPYIKOTNTA, WOTOOO NPOEkUWe OTI Oev unNApPYouv OIaBECINa OXETIKA
epyaleia. MMpokeigévou va eivar duvatov -oUPQWvVA KWE Tnv TpEXouoda
KaTaoTaon- va npayparonoinfolv epwTNOEIC O €va anoBeTnpio NAnpopopiag
(Baon dedopevwyv, anobnkn dedopevwy, CUAOYEC dedopevwy o€ popPn Google
Cloud/ S3 buckets, Google Big Query tables), o xpnoTnc npenel va Aapel ek Twv
NPOTEPWV TNV KATAANAN €€ouaioddtnon. e diadikaoTiko eninedo, auTo eival
XPOVOBOPO Kal Pn MpakTiko, kabw¢ nepiAayBavel enikoivwvia PETAEU Twv
EMNAEKOMEVWV HEPWY, aiTnua yia npoofaocn Pe npoadiopiopo Tou AOyou yia
TOV onoio {nTeiTal kal -’ 0oov Napacyxedei n £ykpion- TOTE YOVOV O XPNoTNC
Exel TN duvaToTnTa va unoPaliel epwTtnupaTa. Emnpdobera, o xpnortng Oa
npenel va E0IKEIWOEi e DIaPOPETIKEG dIENAPEC XpAOTN.

AapBavovtag un’ oIV Ta avwTEPW, TO €PYAAEi0 NMou uAonoinBnke oTO
nAaiolo TnG napouoag SINAWHATIKAG, NAPEXEl Hia dlaxelpioiun NPooeyyion yia
TNV Napoxrn oTouc XpnoTng npdoBaonc o€ noAAanAouc nopous KaTw ano pia
eviaia diadikacia kal d1d HEooU JIag povadikng SIENAPAG XpnoTn, ENITPENOVTAG
£TOI TNV UNOBOAR anod PEPOUG TWV XPNOTWV EPWTNHATWY O€ NOAAANAEC MNYEC
nAnpogopiac.

Ma Tnv MAOTIKA €papuoyn Kai enaiAnbsuon Twv AEITOUPYIWV TNG €pyaaiac,

xpnoiponoinénkav dedopeva anod TIG NAPAKATW MNYEC:

-7 -

Theodoros Giannakopoulos

e https://www.penn.museum/collections/objects/data.php

e https://qithub.com/tateqgallery/collection

KAl OUYKEKPIYEVA, Ta dedOUEVA MOU €ival O HOPPN CSV.

MapatnpniBnke n dopn Twv OedoPeEVWV Mag kalr dnuioupynoaye
avTioToIxeC BAoeic OeDOPEVWV, UE CUOXETIOEIC £TOI WOTE va undapxel ouvoeon
METAEU Twv OedopEvwv pac. AnAadn, yia Ta dedopeva PeE nNpoeAeucn ano
tategallery ®nUIOUPYNOAUE OUOCXETIOEIC HETAEU TwV £PYWV TEXVNG KAl TWV
KaAAITeExvwV, nou BaaileTal o< €va id kal yia Ta dedOPEVA NOU EXOUV NMPOEAEUGDN
ano To penn.museum JdnUIOUPYNOANE OUCXETIOEIC HETAEU TWV EPYWV TEXVNG
Kal TNG NPOEAEUONG AUTWV.

Ma Tnv avantuén TnG €@appoyng, Xpnoigonoinenkav OIapopEC
Texvohoyiec onw¢ PHP, MVC, Laravel, Laravel HTML Collectives, Laravel Artisan
Commands, MariaDB, ETL.

MEow TNG €PAPHOYNG 0 XPAOTNG, aPou EXEl dNUIOUPYNRCEI Aoyapiaouo
oTNV €QAppoyn, €xel Tn duvaToTNTa va KAaTabeoel EpwTNHHATA OTIC OIAPOPEC
Baoeig ddopevwv nou ival DIaBECIYEG EKEIVN TN XPOVIKNA OTIVHA.

Eniong, unapyel n duvaTtoTnTa va ONTIKOMOINCEI ANOTEAECUATA €ITE Ano
EPWTAKATA NMOU £XEl UNOPBAAEI 0 iBI0C €iTE anO NPOOYXNUATIOUEVA EPWTAKATA.

O xpnoTng pnopei va avePacel dedopéva yia eunAouTioel Ta dedopeva
™G Baong Oedouevwv tategallery. TUYKEKPIUEVA, OTAv aveRel €va apyeio,
ekkiveital pia Oiadikacia ETL kai Ta Oedopéva, anobnkevovtal O €vav
npoowpivd nivaka. ‘Eneira, o XpRoTng £xel Tn duvaTtdTnTa VA MIOTOMOINOEI
dedopéva nou BpiokovTal oTov NPOoowpIvo Mivaka kal JeTa and €va apiouo
OETIKWV EITE APVNTIKWOV WHQWV N AVTIOTOIXN E€yypagn €ite petapaivel omn
avTioToixn Baon dedopEvwy €iTe dlaypageTal.

H epappoyr) 01abTel £xel BUO EMNEDWV XPNOTWY, TOUG AnAOUC XProTEC,
Mou €xouV TIC dUvaTOTNTEG NOU NEPIYPAPNKAV OTIC Napandave napaypa@ouc kal
TOUC XPpNoTec-OlaxeIploTeC. O1 JlaxelpioTeC, £xouv T duvaroTnTa va
ONUIOUPYNOOUV XPNOTEG, VA AVAVEWOOUV NANPOPOPIEC XPNOTWV, OMNWG

KwOIKoUC, email kai aAAa oToixeia. MnopoUv akopn va JdlaxeipioTolv Ta

-8 -

https://www.penn.museum/collections/objects/data.php
https://github.com/tategallery/collection

Theodoros Giannakopoulos

dikaiwpaTa npoopaonc oTiG dIabEaIueC Baoeic dedopévmy, npoadiopiovTac
NPAKTIKA O€ NOIEC UNOPOUV 01 XPNOTEC Va UunoBAAAOUV EpWTAATA KAl OE MOIEG
Oxl.

TeNog, yia va npaypatonoinBei n uhonoinon TG €papuoyng SIAPOpPES
TeEXVoAoyieC €npene va epsuvnBoulyv, onwc Laravel, SQL injection, D3.js k.An.
AuTO €ixe W anoTeEAeopa va dnuioupyndei éva €UEAIKTO ypagiko nepIBAilov

yla To XpRoTn.

Theodoros Giannakopoulos

1 Introduction

The goal of this thesis is to implement an easy-to-use solution to the end
user, to query data from a given set of databases through a user interface. The
user interface would provide a graphical representation of given databases and
the ability to upload data and validate the data via a GUI. Hence, the solution
was implemented as a web-based application, and the Laravel framework was
used for the implementation.

A survey was conducted to identify similar tools and no applications
providing the aforementioned functionalities were identified. In order to be able
to query an information repository (a database, data warehouse, Google Cloud/
S3 buckets, Google Big Query tables, ...) specific access rights should been
given beforehand to the corresponding parties. Process-wise, this can be really
time consuming, and impractical since involves communication between
parties, requesting access, stating why they need access and then, if approved,
then they are able to query corresponding datasets. Furthermore, users should
familiarize themselves with diverse user interfaces.

Considering the above, the tool implemented in the context of this thesis
provides a manageable solution to provide access to users to multiple resources
under a unified process and from within a single, comprehensive user interface,
so the end user will be able to query multiple given datasets.

To validate our approach, data from two different sources were used. More
specifically, both our data sources originate from artwork museums, namely the
Tate Gallery and the Penn Museum; the data collections are publicly available
via the following links:

e https://www.penn.museum/collections/objects/data.php

e https://qithub.com/tateqgallery/collection

For the purpose of the thesis only the CSV format files were used.
We examined the different data structures from our sources and created
corresponding database structures in order to store our data; this includes the

creation of associations between the data, i.e. for the data that originate from

-10 -

https://www.penn.museum/collections/objects/data.php
https://github.com/tategallery/collection

Theodoros Giannakopoulos

the tategallery collection, we have created an association between the artist ids
and the corresponding artwork, and for the data that originate from the
penn.museum collection we have a created an association between the origin
of the artworks and the artworks.

-11 -

Theodoros Giannakopoulos

2 Technologies that were used

For the development of the project various technologies were used.
Technologies such as PHP, MVC, Laravel, Laravel HTML Collectives, Laravel
Artisan Commands, MariaDB, ETL.

2.1 PHP

PHP (PHP ,2019a) a recursive acronym for Hypertext Preprocessor. PHP is
a widely-used open source scripting language that is general-purpose
programming language originally designed for web development.

PHP code may be executed with a command line interface (CLI), embedded
into HTML code, or it can be used in combination with various web template
system, web content management systems and web frameworks. PHP code is
usually processed by a PHP interpreter implemented as a module in a web

server or as a Common Gateway Interface (CGI) executable.

2.2 MVC

2.2.1 What is MVC?

MVC (Leff and Rayfield, 2001; Majeed and Rauf, 2018) is a design pattern
and the “MVC” acronym stands for “Model View Controller”. With the MVC
pattern we look at the application structure with regards to how the data flow

of our application works.

2.2.2 Why use MVC?

When building PHP application, it may be ok to have files “flying” around in
very small projects. However, when the project starts to grow, having a
structure can drastically improve maintainability.

On a more technical note, when we use the MVC pattern we expect to see

the following

-12 -

Theodoros Giannakopoulos

e Controllers to handle the requests and retrieve data by leveraging
Models
e Models to interact with our database and retrieve information objects

e Views to renders pages

Additionally, routes can be used to map URLs to designated Controller
actions. To clarify the request processing scenario, we provide the following
example:

-, \\ e —

¥

- -. 4
‘ ROUTES ‘

l

- — -

‘ MODEL ‘-' 4‘ CONTROLLER }—-{ VIEW ‘
{ STORAGE }

Figure 1. Request processing under the MVC paradigm

e A request is made, say a user enters a URL associated with the
application or a program submits a relevant request.

e A route associated with that URL maps the URL to a Controller action

e The Controller leverages the necessary model(s) to retrieve information
objects from the storage and passes the data off to a View

e The View renders the final page.

2.3 Laravel

Laravel (Laravel, 2019a) is a web application framework with expressive,
elegant syntax. It lays the web application foundation, allowing the
programmer to focus on the application logic and functionality, without

devoting effort to the development of common and routine tasks.
- 13 -

Theodoros Giannakopoulos
2.3.1 Why use Laravel?

In the following paragraphs we outline the benefits of the Laravel
framework for application development, through the description of features

that the framework provides.
2.3.1.1 Authentication

A very important part of any web application is the authentication part. With
the latest Laravel designs, the validation/authentication is included. Laravel has
already been implemented in every software that uses controller in making
route declarations by the use of syntax. Security-wise, it employs hashed
passwords and does not save the password in plain text form; it has used the
Berypt hash algorithm in creating encrypted passwords, which is adequately
secure. Laravel also implements a simple method to escape user input, in order

to confront SQL injection attacks.
2.3.1.2 Blade Templating Engine

Blade (Laravel, 2019a, LaravelCollective) is a simple, yet powerful
templating engine provided with Laravel. Unlike controller layouts, Blade is

driven by template inheritance and sections.

2.3.1.3 Support for multiple file systems

Laravel provides the native support for multiple file systems. Laravel uses
third party package Flysystem to provide multiple file support. You can use any
of Local or Cloud based storage by providing simple configuration. Someone is
also capable to bypass the file system facade in the application and work
directly with the disk facade.

2.3.1.4 Caching

Caching is a temporary data storage used to store data for a while and can
be retrieved quickly. It is often used to reduce the times we need to access

database or other remote services. Caching keeps your application fast and

-14 -

Theodoros Giannakopoulos

responsive. For more details on the Laravel caching implementation, the

interested reader is referred to the relevant documentation (Laravel, 2019a).

2.3.1.5 Method or Dependency Injection

In Laravel Inversion of control (IoC) (Laravel, 2019a, Container) container
is a powerful tool for managing class dependencies. Dependency injection is a
method of removing hard-coded class dependencies. Laravel’s IoC container is

one of the most used Laravel features.

2.3.1.6 Modularity or Multi-app

Modularity is the degree to which a system’s components may be separated
and recombined. You split of the business logic into different parts, which
belongs together. If you're into Domain Driven Design, you can consider a

module an aggregate.

2.3.2 The "HTML” package of the Laravel Collective

When we are working with resources (i.e. different types of objects) in
Laravel, it's very common to create forms to create/update those objects in
your database.

And the most refined way to do this is using form model binding. Form
model binding allows you to associate a form with one of your application’s
models, and automatically:

e Matches inputs hamed after model fields

e Populates the form’s fields with an existing model object’s data

e Repopulates the form with session data

2.3.3 Laravel Artisan Commands

Artisan is the command line interface, frequently used in Laravel and it
included a set of helpful commands for developing an application.

Below, some examples of the utility commands that Artisan provides are listed:

- 15 -

Theodoros Giannakopoulos

php artisan serve

Starts the development server with the default options.

php artisan serve --host=host.app --port=8080

Changes the server address and server port

php artisan route:cache
When the command is called, an instance of
Illuminate/Routing/RouteCollection is build. After being encoded,
the serialized output is written to bootstrap/cache/routes.php.
Application requests will always load this cache file if it exists. This speeds up
our application performance.

In addition to the commands listed in Artisan, a user can also create custom

commands which can be used in the application.

2.4 MariaDB

MariaDB (MariaDB, 2019a) server is one of the most popular database
servers. It is made by the original developers of MySQL and guaranteed to stay
open source.

MariaDB turns data into structured information in a wide array of
application, ranging from banking to websites. It is an enhanced, drop-in
replacement of MySQL. MariaDB is used because it is fast, scalable and robust,
with rich ecosystem of storage engines, plugins and many other tools make it
very versatile for a wide variety of use cases. The latest versions of MariaDB
also include GIS and JSON features.

2.5 ETL Pipeline

The ETL (Qin H., Jin X. and Zhang X., 2013; Martins M., Abbasi M. and
Furtado P., 2016) acronym stands for extract, transform, load. ETL is the
general procedure of copying data from one or more sources into a destination

system which represents the data differently from various sources.

-16 -

Theodoros Giannakopoulos
2.5.1 Why do we need ETL Pipeline

It is essential to properly format and prepare data in an order to load it a
destination system. The ETL pipeline provides crucial function that many times
combined into a single application or a suite of tool that help in the following
areas:

e Allows verification of data transformation, aggregation and calculation
rules

¢ Allows sample data comparison between source and target system

A basic ETL process can be categorized in the following steps:
e Data Extraction
e Transformation & Data Cleansing

e Load to a target system

2.5.1.1 Data Extraction

The first part of an ETL process involves extracting the data from the source
system(s). In most of cases, this step represents the most important aspect of
ETL, since extracting data correctly sets the stage for success for the next

processes.
2.5.1.2 Transform

In the data transformation stage, a series of rules are applied to the
extracted data in order to prepare it for loading to the end target system.

Most important step is the data cleansing, which aims to pass only “proper

data to the target system.
2.5.1.3 Load

The load phase loads the data into the final target source such as a data

warehouse, Google Big Query, MySQL database etc.

-17 -

Theodoros Giannakopoulos

3 The application

3.1 Query the database from the UI

The user is able to query different available databases from the interface.

The interface is constructed as the following picture indicates

rows: 70048) Quer\/ Database Tips to structure a valid query

able rows: 364181) Enter query

SELECT table table_ro
FROM database_namefable

[suom | WHERE table table.row - some. val
C er LIMIT wher t

Figure 2. User interface for queries

The user is able to see the structure of the available databases from the
available dropdown located on the left of the screen. The dropdown contains

information regarding the structure of the databases and number of the entries

that they contain.

-18 -

Theodoros Giannakopoulos

Available Databases
- tategallery (table rows: 70048)
Tables
- artist_data
Rows
-id
- name
- gender
- dates
- yearOfBirth
- yearOfDeath
- placeOfBirth
- placeCfDeath
-url
« artwork_data
Rows
-id
- accession_number
- artistRole
- artistld
- title
- dateText
- medium
- creditLing
- year

- acquisitionYear

Figure 3. List of available data collections, as provided by the application

The user must submit queries in a specific format in order to pass the

validation. The valid format is displayed on the interface and it is the following

Tips to structure a valid query

You must always specify the database. database table
and table row

SELECT fabletable_row
FROM database_name table

WHERE fable table_row = some_value

Consider using LIMIT when the database has more
than 100k entries.

Figure 4. Instructions provided to the end-user regarding the query formulation syntax

-19 -

Theodoros Giannakopoulos

3.2 Data Visualization

To visualize our data, we used a JavaScript library that is known as D3.js.
D3.js (D3js, 2019a) is a JavaScript library for manipulating documents based
on data. D3 helps you bring data to life using HTML, SVG, and CSS. D3’s
emphasis on web standards gives you the full capabilities of modern browsers
without tying yourself to a proprietary framework, combining powerful
visualization components and a data-driven approach to DOM manipulation.

We took into consideration the impact that has the screen clutter on the
user experience when the presented screen is overload with information. In
that regard we are presenting only eight random data entries from the selected
data source from the user. However, the user is also has the possibility to
submit its own queries and so the result will be visualized, but due to the fact
that, there is no limitations applied by default at these kind of queries, the user
should consider to limit the end result so the screen will not be cluttered with
information.

To present our data we have used a dendrogram. A dendrogram is a
diagram that shows the hierarchical relationship between objects. It is most
commonly created as an output from hierarchical clustering. The main use of a
dendrogram is to work out the best way to allocate objects to clusters.

From the screenshots that follow, we able to recognize pretty easily the
hierarchical connection between the presented objects despite if the origin of
the random data selection (Figure 5) or a submitted query (Figure 6); the query

used to retrieve the dataset depicted in Figure 6 is shown in Figure 7.

-20 -

Theodoros Giannakopoulos

O Object_rame:: Bawl

0 Object_Mumber. 61-14-2098

O Malive Mame:

O Culture:

) Provenience: kmreel| Beth Shemesh
O Malerial: Ceramic

Q) Peviod:

O Dabe_made:

O Dabe_made_esarky:

D 3555
O Dabe_made |abe:
s BT
QO Acce=sion_credil_line: Purchased rom Haverford Callege, 1961
s LR
Q) Crealor:
O 1BE2RE
pennmuseurm O O Manulecture_localioriocus:
E5107T
O Cullure_area:
D 122058
O Technigue:
9 201988
O lconography:
D DE40EE

O Measunement_height

O Measunement_lkength

O Meamunement_width:

O Measurement_outside:_diameter:

O Measunement_tickness:

O Measunemend_unit:

Q) Othes_number=

1O UIRL: hittpefwwve pasnnmisssumicollsclions/object | B398

Figure 5. Hierarchical visualization of a randomly selected item collection

-21 -

Theodoros Giannakopoulos
O accession_number: TOT300
QO artistRole: artist
O artistld: 2002
Otitle: Landscape, Blasted Tree
O dateText- 1956

© medium: Qil paint on canvas

Qid: 3
Q creditLine: Bequeathed by David Sylvester in honour of Sir Nicholas Serota 2001
Qid: 4
Qyear: 1956
@id: 5
© acquisitionYear: 2001
Qid: 6
O dimensions: support: 85 x 510 x 19 mm
Qid:7
responseDataQy Q width: 685
Qid: 8
QO height: 510
Qid: 9
QO depih: 19
@id: 10
© units: mm
it 1
Qinscription:
@id: 12

© thumbnailCopyright:

O thumbnailUrl:

Figure 6. Hierarchical visualization of the results of a user-provided query

Get 8 Random Data from tategallery Get 8 Random Data from pennmuseum

Or write your own query
Enter query

select * from tategallervartwork_data limit 10

Figure 7. User-provided query

-22 -

Theodoros Giannakopoulos

3.2.1 Procedure to be followed in order to visualize new datasets

In the following, we report on the prescribed procedure to be followed

in order to define the visualization of a new dataset. The realization of the

visualization of a new dataset entails the following steps:

Study of the structure of the new dataset, to gain insight on the most
effective way to present the information to the users.

Design of how to form correctly a formatted string, so the D3 library
can render the visualization.

Creation of an appropriate function in the visualization controller to
handle the corresponding request from the user interface. In this step,
the existing visualizations can be consulted, reused and tailored as
needed.

Introduce appropriate controls at user interface level, which will allow
the visualization implementation to be called.

add entry to the routes table to map the corresponding controller

function and the user interface.

A sample format of a JSON string to be passed to the D3 visualization library,

in order for a hierarchical visualization to be rendered is shown in Figure 8.

{"name" :"parentNode",

"children": [{

"name" :"childNode",
"children": [{
"name" :"childl",
"children": [{

"name" :"string"

"name" :"child2",

"children": [

{

-23 -

Theodoros Giannakopoulos

"name" :"child3",

"children": [

{

"name":"string"

FIYIF1HT)

Figure 8. A sample format of a JSON string to be passed to the D3 visualization library

3.3 Data upload & validation

3.3.1 Preprocessing of data

Before populating the databases with the corresponding data, we performed
the following steps
- removed redundant spaces from the entries
- replaced non utf-8 characters with the corresponding correct ones
o characters such “A©" will be replaced with “é”

- replaced all single quotes with double quotes

3.3.2 Data upload

When a file is uploaded an ETL process is triggered that extracts the data
from the given CSV file, transforms the data and then uploading the data to the
correct database table.

The only limitations that the user has are

o the file size needs to be less than 2 MB (configurable through server

settings)

e the only accepted file format is csv

-24 -

Theodoros Giannakopoulos

Upload a file

tategallery_artist_data
tategallery_artwork_data

No file chosen
Upload File

Figure 9. User interface to upload a dataset

3.3.3 Data validation

The data that the users upload does not end up to the actual database, but
to a temporary one. The reasoning behind this, is because we are not able to
determine in an automatic way, if the actual data that the users upload make
sense or not. That is because, also, due to the nature of the data, artist names
and artwork titles, we are not able to define if the provided input is actually
valid or not.

In that regard we leave the data validation part to the users. We have
created a panel that returns random entries, either from actual database either
from the temporary one, and the users vote if the data that is presented to
them make sense or not. The votes are taken into consideration only for data
that originate from the temporary table. Depending on the number of negative
or positive votes the corresponding entry is either removed from the temporary
database or moved to the actual database.

The data is presented at the interface as is shown below

-25 -

Theodoros Giannakopoulos

Entry Validation

id 044

name Corker. Douglas

gender Male

dates 1939 - 2012
yearOfBirth 1939
yearOfDeath 2012
placeOfBirth London. United Kingdom
placeOfDeath

url 1ttp ww.tate org uk/art/artists/douglas-corker-g944

Figure 10. User interface for dataset validation

3.3.4 Deepdlive on the process of data validation

In order to let users, upload their own data to the {ategallery database, we
have created corresponding replicas of the database tables, that have the exact
same schema with the only difference being one column that is responsible to
count the validation votes from the users.

User submits a csv with the entries that wishes to end-up to the
corresponding database table. When the user uploads the csv file, an ETL
process is triggered which is handling the following

- the corresponding model of the table, that was chosen from the user, is

used to validate the headers of the file

- corresponding entries are getting sanitized before ending up to the

temporary database
After the successful upload of the data, users are able to go to corresponding
validation screen within the UI and vote for the presented entries. The entry
that is presented is randomly selected either from the main database or the
temporary one which user entries are stored. After the user votes, if the
corresponding displayed entry seems correct or not, and the entry is actually is
- 26 -

Theodoros Giannakopoulos

stored in the temporary database, then a corresponding counter within the
table is adjusted accordingly depending if the vote is either positive or negative.
After a certain number of votes, the corresponding entry is either discarded
from the corresponding table due to negative votes or moved to the main

database due to positive votes.

3.3.5 Bypassing data validation

All data are uploaded to the platform via the procedure described in section
3.3.2; once the data have been uploaded, they are not released for public use
until they are validated as described in section 3.3.3.

However, the following scenario may occur: a platofrm administrator
uploads the data from a trusted source and wants to release the data for
immediate use, bypassing the data validation step. This scenario is supported
by the platform, albeit at database level only, i.e. without the support of a user
interface. More specifically, the procedure is as follows:

1. When a new dataset is uploaded to the platform, a new dataset-
specific database is created to host the validated data, while
additionally appropriate tables are created in the base system
database (the base system database is named bigdata by default),
to host the data that are in need of validation before they are publicly
released. The structure of these tables is identical to the ones created
in the dataset-specific database, except the fact that they contain
one one extra column named “faulty”.

2. The system administrator may issue an SQL command that copies
the data from the tables are created in the base system database
tables into the tables in the dataset-specific database, followed by an
SQL command to delete the data from the base system database
tables.

To exemplify this procedure, let us consider the case of the Tate Gallery
dataset. When this dataset is uploaded to the platform, a database

tategallery is created, which hosts the tables artist data and

-27 -

Theodoros Giannakopoulos

artwork data, the schema of which is depicted in Figure 11 and Figure 12,

respectively.

o —— o - +———— o - +

| Field | Type | Null | Key | Default | Extra |
o o - == o - +

| id | int (11) | NO | PRI | NULL |

| name | varchar (255) | NO | | NULL |

| gender | varchar (6) | YES | | NULL |

| dates | varchar (255) | YES | | NULL |

| yearOfBirth | int (4) | YES | | NULL |

| yearOfDeath | int (4) | YES | | NULL |

| placeOfBirth | varchar (255) | YES | | NULL |

| placeOfDeath | varchar (255) | YES | | NULL |

| url | varchar (255) | YES | | NULL |
o —— o - t———— o ————— t—————— +
Figure 11. Schema of table artist_data

o - +———— o - +
| Field Type | Null | Key | Default | Extra |
o - - o - +
| id int (11) | NO | PRI | NULL |

| accession number varchar (11) | NO | | NULL |

| artistRole varchar (255) | YES | | NULL |

| artistId int (11) | NO | MUL | NULL |

| title text | YES | | NULL |

| dateText varchar (255) | YES | | NULL |

| medium varchar (255) | YES | | NULL |

| creditLine text | YES | | NULL |

| year varchar (8) | YES | | NULL |

| acquisitionYear int (4) | YES | | NULL |

| dimensions varchar (255) | YES | | NULL |

| width varchar (12) | YES | | NULL |

| height varchar (10) | YES | | NULL |

| depth int (4) | YES | | NULL |

| units tinytext | YES | | NULL | |
| inscription varchar (255) | YES | | NULL |

| thumbnailCopyright text | YES | | NULL | |
| thumbnailUrl varchar (255) | YES | | NULL |

| url varchar (255) | YES | | NULL |
o o - - +———— o - +

Figure 12. Schema of table artwork_data

Correspondingly, in the bigdata

created,

named

tategallery artist datas

database, two matching tables are

and

tategallery artwork datas, which have identical schemas to the ones

presented in Figure 11 and Figure 12, respectively, with the exception of an

additional column named faulty, whose type is int (11) . Now, if the

administrator wants to bypass the validation stage for the data in the

-28 -

Theodoros Giannakopoulos

bigdata.tategallery artist datas table, s/he may issue the following
SQL command:
insert into tategallery.artist data(id, name, gender,
dates, yearOfBirth, yearOfDeath, placeOfBirth,
placeOfDeath, url)
select id, name, gender,
dates, yearOfBirth, yearOfDeath, placeOfBirth,
placeOfDeath, url
from bigdata.tategallery artist datas;

Figure 13. Releasing data for public use, bypassing validation

Finally, the system administrator should remove the data from the
bigdata.tategallery artist datas table, since this data has already

been released; to this end, s/he may issue the following SQL command:
Delete from bigdata.tategallery artist datas;

Figure 14. Releasing data for public use, bypassing validation

3.4 Deepdive on how the query from the UI is working

On this section we will expand on in need topics that were used and
investigated in order to make this functionality possible. More specifically, we

discuss the issues of SQL injection handling and pagination.

3.4.1 SQL Injection

SQL Injection (Devi, Venkatesan, Koteeswaran, 2016; Sadegh Sajjadi and
Pour, 2013) is a code injection technique, used to attack data-driven
applications, in which SQL statements are inserted into an entry field for
execution. SQL injection must exploit a security vulnerability in an application’s
software, for example, when user input is either incorrectly filtered for string
literal escape characters embedded in SQL statements or user input is not
strongly typed and unexpectedly executed.

SQL injection attacks allow attackers to spoof identities, tamper with

existing data and databases, cause repudiation issues such as voiding

-29 -

Theodoros Giannakopoulos

transactions or changing balances, destroy the data, install backdoors to the

database etc.

3.4.1.1 Common SQL injection cases

Always true statements

This injection method occurs when the input is not filtered for escape

W,

characters (characters such as ;") and is then passed into a SQL statement.

For example, let's assume we have the following SQL statement

SELECT * FROM table users WHERE user name = '" + name + "';

However, the designed query is poorly designed and the SQL statement may
do more than the author intended. For instance, the following two examples

effectively list all the entries from the table

SELECT * FROM table users WHERE user name = "" OR TRUE;

SELECT * FROM table users WHERE user name = "" OR 1=1;

and here is a more malicious way, the SQL-injected query deletes the

corresponding table

SELECT * FROM table users WHERE user name = ""; DROP table users;

3.4.1.2 Handling basic cases of SQL injection

In order to handle the basic SQL injections cases, some regular expressions
are employed to validate the input queries from the users. A regular expression,

is a sequence of characters that define a search pattern. Regular expressions

-30 -

Theodoros Giannakopoulos

are usually used by string searching algorithms to identify or identify and
replace operations on string, or input validation. Effectively, the regular
expressions correspond to textual patterns in query texts which typically
indicate an SQL injection attack. If the query text matches any of the regular
expressions, the query is not executed and a relevant error message is
displayed to the user.

The following regular expression checks for statements such as INSERT
INTO, CREATE DATABASE and CREATE TABLE

-/ ([dD] [rR] [00] [pP] (\s) [tT] [aA] [bB] [1L] [eE]) | ([dD] [rR] [0O] [pP] (\
s) [dD] [Aa] [tT] [aA] [bB] [aA] [sS] [eE]) | ([tT] [rR] [uU] [nN] [cC] [aA] [t
T] [eE] (\s) [tT] [aA] [bB] [1L] [eE])/

Checking for statements such as where true, or true, where 1, or 1,

“string” is not null, null is null

- /([1iI]1[nN][sS][eE][rR]I[tTI\s[1iI][nN][tT][00]) | ([cC][rR][eE] [aA]
[tT] [eE]\s[dD] [aA] [tT] [aA] [bB] [aA] [sS][eE]) | ([cC] [rR] [eE] [aA] [t
T][eE]\s[tT] [aA] [bB] [1L] [eE])/

The following regular expression is checking for always true WHERE clauses
between strings in statements.
- /(\b\Ss+)\s*[\=]{1}\s*\1\b/

To provide more context on this matter, the described expression is able to

handle cases such as

- select * from table where 1=1

- select * from table where a=a

3.4.1.3 Limitations of the SQL handling methods

The described methods, are able to handle the basic SQL injection cases

but there are also limited in their functionality. More specifically, we are able to

-31-

Theodoros Giannakopoulos

track always true statements where the two parts of a where clause are exact

same. So, we are able to detect cases like

- select * from table where 1=1
but the developed functionality is not able to detect semantically identical cases.

Hence, the system is not able to detect cases like

- select * from table where 20 = 5*4
Some false positives may also be flagged, e.g. when the “drop table” or “drop
database” literal occurs within a quoted string; such cases however are

expected to be rare.

3.4.2 Pagination

Pagination, also known as paging, is the process of dividing digital content
into discrete pages. Pagination, is a mechanism which provides users with
additional navigation options for browsing through single parts of the digital
content.

In the most cases, pagination refers to the automated process of adding

consecutive numbers to identify the sequential order of pages.
3.4.2.1 Laravel’s Pagination

Laravel’s paginator (Laravel, 2019a Pagination) is integrated with the query
builder and Eloquent ORM and provides convenient pagination of the database
results out of the box.

There are several ways to paginate items. The simplest way is by using the
paginate method on the query builder or an Eloquent Query. The paginate
method automatically takes care of setting the proper limit and offset based on
the current page being viewed by the user. By default, the current page is
detected by the value of the page query string argument on the HTTP request.

In order to serve our needs, we have created a pagination instance
manually, and to be exact a LengthAwarePaginator, that we pass an array of
items. The LengthAwarePaginator constructor requires the following

parameters in order to be initialized properly

-32 -

Theodoros Giannakopoulos

e an array of elements

e the number of elements within the array

e the items per page that we want to present

e an array of items that contain the URL and query parameters (this is
the most essential parameter if we do not want to lose data when we

will be navigating from the page to page of the paginated items)
3.4.2.2 Displaying Paginated Results

Due to the fact that the application does not limit the user to query certain
datasets, our View display should be able to present the result set to the end
user in a structured manner, regardless of the number of selected columns.

In that regard our View, iterates over the returned paginated data and
creates an html table with the corresponding data and data headers. Also, the
View provides helpful information such as the number of elements showing
from the result set, the number of the active page etc. Last but not least, the
user is able to change the number of items that is displayed and also extract
the result to CSV file format.

-33 -

Theodoros Giannakopoulos

To illustrate the above, let us check the following results from a submitted

query:

Consider using LIMIT when the database has more
Export results to CSV file format than 100k entries.

Show 10 v entries
Results
id name gender dates yearOfBirth = yearOfDeath placeOfBirth placeOfDeath url
0 Abbey. Edwin Austin Male 1852 1911 Philadelphia. United States London. United Kingdom http: 4w,
1 | Abbott. Lemuel Francis Male 1760-1803 1760 1803 Leicestershire, United Kingdo London, United Kingdom http: //wanw tate org uk/art/a
2 Agasse Jacques Laurent Male 1767-1849 1767 1849 Genéve. Schweiz London. United Kingdom http:/wanw tate.or
3 | Alken. Henry Thomas Male 1785-1851 1785 1851 London. United Kingdom London. United Kingdom http:/#/wanw
4 Allan, Sir William Male 1782-1850 1782 1850 Edinburgh. United Kingdom | Edinburgh. United Kingdom | http: /4w
5 | Allen. Joseph William Male 1803-1852 1803 1852 Lambeth, United Kingdom London. United Kingdom http:/#wwnw ta
6 | Alma-Tadema, Sir Lawrence Male 1836-1912 1836 1912 Dronrijp, Nederland Wiesbaden. Deutschland http://waneta
7 | Amiconi. Giacomo Male 1682-1752 1682 1752 Napoli. ltalia Madrid. Espafia http:/# wwnw ta
8 Anderton. Henry Male c1630-1665 1630 1665 http:/#/wanwta
9 | Angellis. Peter Male 1685-1734 1685 1734 Dunkerque, France Rennes, France http: /7w

Showing 1 to 10 of 3532 entries

Figure 15. Paged query results

We can observe that the user is able to spot pretty easily the amount of data

that is returned and the number of the page that currently is getting displayed.

-34 -

Theodoros Giannakopoulos

4 System Administration Functionalities

4.1 User levels

The application has two different user levels
e admin user level

e basic user level

Both user levels have the ability submit queries to the available databases,
upload data to the one of the databases, see a visualization dendrogram of the

two available databases.

4.1.1 Admin user

The Admin user class has more options available within the application in

comparison with the default users

4.1.1.1 User creation

The admin users are able to view list with all the users that are registered
to the application; more specifically, admin users are provided with
functionalities to create users, update users’ passwords, emails, change user

level.

G Create User

ailable Databases Show 10 v entries

Platform Users

Id Name Email Group Created at Updated at Comman d
: T
=iy iy ® (@ Update Password

Figure 16. User management

-35 -

Theodoros Giannakopoulos
Create New User

Name

E-mail Address

random-testiz

Password
Confirm Password

Group

Figure 17. New user creation screen
4.1.1.2 Database access rights

The admin is able to specify which databases users are able to query. Admin

is able to add or remove the database availability.

-36 -

Theodoros Giannakopoulos

Move to Public
Private Databases
Database Name
camegie_museum
clustes
eattract

information_schema

music_site

mydb

mysgl

performance_schema

phpmyadmin
test
testdb
Move to Private
Public Databases
Database Name

pennmuseum

tategallery

Figure 18. Specifying database access permissions

4.1.1.3 Check logs

Admins have the option to check the logs of the submitted queries from all

users. Malicious and suspicious queries are marked in red

-37 -

Theodoros Giannakopoulos

Time

[2018-10-28 16:29:10] log ERROR: Invalid Query
[2018-10-28 16:32:03] log ERRCR: Invalid Query
[2018-10-28 16:36:54] log ERROR: Invalid Query
[2018-10-28 16:48:46] log ERROR: Invalicl Query
[2018-10-28 16:48:46] log ERROR: Invalid Query
[2018-10-28 16:48:46] log ERROR: Invalid Query
[2018-10-28 16:48:46] log ERROR: Invalic Query
[2018-10-28 16:48:46] log ERROR: Invalid Query
[2018-10-28 16:48:46] log ERROR: Invalid Query
[2018-10-28 16:48:46] log ERROR: Invalic Query

[2018-10-28 16:48:46] log ERROR: Invalid Query

Figure 19. Log examination by admin users

Info

["Query™’
["Query™
["Query™*
{"Query™
["Query™*
["Query™
['Guery™"
["Query™
["Query™*
['Guery™

["Query™*

- 38 -

select ”

"select

select

select ”

select

"select

select

"select

select

"select

select *

Logs

from tategallery™’
from tategallery"”
from tategallery"”
from tategallery™’
from tategallery"”
from tategallery"”
from tategallery"”
from tategallery"”
from tategallery"”
from tategallery””

from tategallery"”

User”.

User

User™*

User™”

User™*

User™*

User™*

User™*

User”

User™*

User”

"[object] (App\\U:

“‘lobject] (App\\U:

root’'Email” fooE
root”'Email” " foo
root”'Email™ " fooE
root’'Email”"fooE
root” 'Email™"foog

root”'Email™ " fooE

“root’’Email™"fooE

root” 'Email™"foog

“root”'Email®"fooz

Theodoros Giannakopoulos

5 Conclusion

In order to achieve the outcome of the application, different technologies and
concepts had to be investigated in order to make the different aspects of the
application such as Laravel, SQL injection, D3.js and such. Thus, a flexible user
interface was created to present a visualization of the two databases, Tate
Gallery and Penn Museum, and also dynamic solutions were provided so the
application user would be able to query the available databases from the
interface and the data validation part.

We note here that there were no correlations between our two data sources
due to the high degree of dissimilarity between them. In that regard no

meaningful statistics could be extracted.

-39 -

Theodoros Giannakopoulos

6 References

Devi, R. Venkatesan, R. Koteeswaran, R. (2016). A study on SQL injection
techniques. International Journal of Pharmacy and Technology 8(4).

D3js (2019a). Available at https://d3js.org (accessed 2019-09-14)

Laravel (2019a). Available at https://laravel.com/docs/6.x (accessed at 2019-
09-15)

Laravel (2019a). Blade. Available at https://laravel.com/docs/5.8/blade
(accessed at 2019-09-15)

Laravel (2019a). Cache. Available at https://laravel.com/docs/5.8/cache
(accessed 2019-09-12)

Laravel (2019a). Cache. Available at https://laravel.com/docs/5.8/cache
(accessed 2019-09-12)

Laravel (2019a). LaravelCollective. Available at

https://laravelcollective.com/docs/6.0/html
(accessed 2019-09-15)
Laravel (2019a). Pagination. Available at

https://laravel.com/docs/5.8/pagination
(accessed 2019-09-15)
Leff A. and Rayfield J. T. (2001). Web-application development using the

Model/View/Controller design pattern. Proceedings Fifth IEEE
International Enterprise Distributed Object Computing Conference,
Seattle, WA, USA, 2001, pp. 118-127. doi: 10.1109/EDOC.2001.950428

MariaDB (2019a). Available at
https://mariadb.com/kb/en/library/documentation/ (accessed 2019-09-
15)

Martins M., Abbasi M. and Furtado P. (2016): ELASTIC PERFORMANCE FOR
ETL+Q PROCESSING. Available at
https://www.academia.edu/22964397/ELASTIC PERFORMANCE FOR E
TL Q PROCESSING (accessed at 2019-09-14)

-40 -

https://d3js.org/
https://laravel.com/docs/6.x
https://laravel.com/docs/5.8/blade
https://laravel.com/docs/5.8/cache
https://laravel.com/docs/5.8/cache
https://laravelcollective.com/docs/6.0/html
https://laravel.com/docs/5.8/pagination
https://mariadb.com/kb/en/library/documentation/
https://www.academia.edu/22964397/ELASTIC_PERFORMANCE_FOR_ETL_Q_PROCESSING
https://www.academia.edu/22964397/ELASTIC_PERFORMANCE_FOR_ETL_Q_PROCESSING

Theodoros Giannakopoulos

Majeed A. and Rauf, I. (2018) MVC Architecture: A Detailed Insight to the

Modern Web Applications Development. Peer Review Journal of Solar &

Photoenergy Systems. Available at
https://crimsonpublishers.com/prsp/pdf/PRSP.000505. pdf (accessed
2019-09-12)

https://ieeexplore.ieee.org/document/6406933 (accessed 2019-09-14)
PHP (2019a). Available at https://www.php.net/ (accessed 2019-09-15)
Sadegh Sajjadi S.M. and Pour B.T. (2013). Study of SQL Injection Attacks and

Countermeasures, International Journal of Computer and Communication

Engineering, Vol. 2, No. 5, September 2013
Qin H., Jin X. and Zhang X. (2013). Research on Extract, Transform and Load

(ETL) in Land and Resources Star Schema Data Warehouse. Available at

-41 -

https://crimsonpublishers.com/prsp/pdf/PRSP.000505.pdf
https://ieeexplore.ieee.org/document/6406933
https://www.php.net/

	Contents
	Table of figures
	Abstract
	Περίληψη
	Εκτεταμένη περίληψη
	1 Introduction
	2 Technologies that were used
	2.1 PHP
	2.2 MVC
	2.2.1 What is MVC?
	2.2.2 Why use MVC?

	2.3 Laravel
	2.3.1 Why use Laravel?
	2.3.1.1 Authentication
	2.3.1.2 Blade Templating Engine
	2.3.1.3 Support for multiple file systems
	2.3.1.4 Caching
	2.3.1.5 Method or Dependency Injection
	2.3.1.6 Modularity or Multi-app

	2.3.2 The “HTML” package of the Laravel Collective
	2.3.3 Laravel Artisan Commands

	2.4 MariaDB
	2.5 ETL Pipeline
	2.5.1 Why do we need ETL Pipeline
	2.5.1.1 Data Extraction
	2.5.1.2 Transform
	2.5.1.3 Load

	3 The application
	3.1 Query the database from the UI
	3.2 Data Visualization
	3.2.1 Procedure to be followed in order to visualize new datasets

	3.3 Data upload & validation
	3.3.1 Preprocessing of data
	3.3.2 Data upload
	3.3.3 Data validation
	3.3.4 Deepdive on the process of data validation
	3.3.5 Bypassing data validation

	3.4 Deepdive on how the query from the UI is working
	3.4.1 SQL Injection
	3.4.1.1 Common SQL injection cases
	3.4.1.2 Handling basic cases of SQL injection
	3.4.1.3 Limitations of the SQL handling methods

	3.4.2 Pagination
	3.4.2.1 Laravel’s Pagination
	3.4.2.2 Displaying Paginated Results

	4 System Administration Functionalities
	4.1 User levels
	4.1.1 Admin user
	4.1.1.1 User creation
	4.1.1.2 Database access rights
	4.1.1.3 Check logs

	5 Conclusion
	6 References

