
Automated Source Pairing Intelligence

System: A system for CTI pairing,

enrichment, management, correlation and

sharing

Automated Source Pairing Intelligence System: A system for CTI pairing, enrichment,

management, correlation and sharing

Thanasis Chantzios

Master’s Thesis, Department of Informatics And Telecommunications

University of Peloponnese, April 2021

Copyright © 2021 University of Peloponnese. All Rights Reserved.

Automated Source Pairing Intelligence System: A

system for CTI pairing, enrichment, management,

correlation and sharing

Thanasis Chantzios

A thesis submitted in partial fulfillment

of the requirements for the MSc in

Computer Science

Committee

Professor, Spiros Skiadopoulos, Supervisor

Professor, Costas Vassilakis

Associate Professor, Christos Tryfonopoulos

University of the Peloponnese

2021

Περίληψη

Ω
ς Πληροφορίες ΚυβερνοΑπειλών (Cyber-Threat Intelligence – CTI), χαρακτηρί-

ζουμε οποιαδήποτε πληροφορία μπορεί να χρησιμοποιηθεί για να βοηθήσει έναν

οργανισμό να προσδιορίζει, αξιολογεί, παρακολουθεί και να ανταποκρίνεται σε απειλές

στον κυβερνοχώρο. Σχετίζεται με οποιοδήποτε μέρος ενός οργανισμού, το οποίο

είναι εκτεθειμένο στον κυβερνοχώρο (για παράδειγμα το δίκτυό του, υπολογιστικά

μηχανήματα και άλλα τεχνολογικά είδη). Τα τελευταία χρόνια, λόγω της ραγδαίας

αύξησης των απειλών στον κυβερνοχώρο, η διαδικασία της συλλογής και του διαμοιρα-

σμού τέτοιας πληροφορίας, δημιουργεί ολοένα και μεγαλύτερο ενδιαφέρον τόσο ερευ-

νητικά, όσο και ως προς την κατεύθυνση παροχής επιπρόσθετης κυβερνοασφάλειας

σε οργανισμούς. Επιπλέον, αυξάνεται η ανάγκη δημιουργίας ενός συστήματος, το

οποίο θα βοηθάει τους ειδικούς του κλάδου της ασφάλειας συστημάτων, να εκτιμούν

το επίπεδο του κινδύνου ενός οργανισμού, μέσω τέτοιων διαθέσιμων πληροφοριών.

Ωστόσο, αυτές οι πληροφορίες βρίσκονται διάχυτες στο διαδίκτυο, σε ευρεία ποικιλία

πηγών, και γι΄ αυτόν το λόγο, ο σχεδιασμός ενός τέτοιου συστήματος θα πρέπει να

εξασφαλίζει τη συγκεντρωτική αποθήκευση της πληροφορίας από αυτές τις πηγές,

και επίσης να διευκολύνει τη διαδικασία διαμοιρασμού της. Βέβαια, η επιλογή των

απαραίτητων εργαλείων για τη συλλογή και τον διαμοιρασμό της πληροφορίας αυτής, εί-

ναι μία δύσκολη διαδικασία, καθώς πρέπει να ληφθούν υπ΄ όψιν τόσο η χρηστικότητα των

εργαλείων, όσο και η πληρότητα της κάλυψης των απαιτούμενων διεργασιών. Σε αυτήν

τη διπλωματική εργασία, παρουσιάζεται το ASPIS, ένα σύστημα που παρακολουθεί και

συλλέγει συνεχόμενα, από διαφορετικές πηγές, τις πληροφορίες αυτές που σχετίζονται

με θέματα απειλών κυβερνοασφάλειας. Τέλος, τις αποθηκεύει συγκεντρωτικά και

δομημένα μέσα σε μία βάση δεδομένων, εμπλουτίζοντας καθ΄ αυτόν τον τρόπο το

περιεχόμενό της, παρέχοντας ταυτόχρονα τα κατάλληλα εργαλεία για τη συσχέτιση

και το διαμοιρασμό των Πληροφοριών ΚυβερνοΑπειλών.

Abstract

C
yber-threat intelligence (CTI) is any information that can help an organi-

zation identify, assess, monitor, and respond to cyber- threats. It relates to

all cyber components of an organization such as networks, computers, and other

types of information technology. In the recent years, due to the major increase of

cyber-threats, CTI gathering and CTI sharing are becoming increasingly important

both as a subject of research and as a concept of providing additional security

to organizations. Additionally, there is an increased need for creating a system

that aids security experts to assess the risks of an organization, with regard to the

CTI at hand. However, CTI is available throughout the web, by a wide variety of

sources and thus, the system design should promote the collective storing of CTI and

facilitate the sharing process. Furthermore, selecting the proper tools and platforms

for CTI gathering and sharing, is a challenging task, that pertains to a variety of

aspects, that regard both the usability of the tools and the coverability of the re-

quired tasks. This thesis presents ASPIS; a system that continuously monitors and

gathers CTI from different sources, storing it in a structured and clustered manner,

provides the tools for correlating the CTI at hand, and also facilitates the sharing

process.

Acknowledgements

I would like to thank Professors Spiros Skiadopoulos, Christos Tryfonopoulos,

Nicholas Kolokotronis and Costas Vasilakis for the valuable scientific guidance they

have provided me throughout the course of this thesis, as well as for the immediate

help they offered me whenever it was needed. In addition, I would like to thank

the professors of the Department of Informatics and Telecommunications, who have

given us the knowledge we need in order to become ourselves the ones who eventually

will try to evolve this scientific field.

Afterwards, I would like to thank the University of Peloponnese, the Department

of Informatics and Telecommunications and more specifically the Software and

Database Systems Laboratory for providing me the necessary equipment to accom-

plish this thesis.

Finally, I would like to thank my family and my friends for their support and

encouragement throughout all these years.

Contents

List of Tables vii

List of Figures x

List of Symbols xi

List of Abbreviations xv

1 Introduction 1

1.1 Problem Statement 1

1.1.1 Cyber-Threat Intelligence 1

1.1.1.1 Strategic CTI 1

1.1.1.2 Tactical CTI 2

1.1.2 Threat Information Types 2

1.1.3 CTI Sources 3

1.1.4 CTI Sharing Importance 4

1.1.5 The CTI life-cycle 5

1.2 Our Contribution 6

1.3 Thesis Organization 7

2 Related Work 9

2.1 Evaluation of CTI Sharing Standards and Platforms 10

2.2 Current State-of-the-Art CTI Sharing Solutions 12

2.2.1 CTI Sharing Tools and Platforms 12

2.2.1.1 MISP - Open Source Threat Intelligence & Open

Standards for CTI Sharing 12

2.2.1.2 OpenCTI - Open Cyber-Threat Intelligence Platform 14

2.2.1.3 GOSINT - The Open-Source Threat Intelligence Ga-

thering and Processing Framework 15

ii CONTENTS

2.2.1.4 YETI - Your Everyday Threat Intelligence. 15

2.2.1.5 OpenTAXII - a Python Implementation of TAXII

Services. 16

2.2.1.6 CIF - Collective Intelligence Framework. 16

2.2.2 CTI Services 17

2.2.3 CTI Platforms 17

2.3 Implementations of Frameworks, Tools and Platforms for Targeted

CTI Gathering and Sharing 19

3 MISP 23

3.1 The Data Model 23

3.1.1 MISP Database Overview for Storing CTI 24

3.1.2 Events Table 25

3.1.3 Objects Table 25

3.1.4 Attributes Table 25

3.1.5 Correlations Table 25

3.2 CTI Sharing Properties and Features 30

3.3 Additional Features 31

3.4 Current State of MISP 33

3.5 General MISP Layout 33

3.5.1 Simple User 33

3.5.2 Administrator 34

3.5.3 Events 35

3.5.3.1 Creating an Event 36

3.5.3.2 List of Events 37

3.5.3.3 Events View 37

3.5.3.4 Correlation Engine 40

4 The ASPIS System 41

4.1 System Overview 41

4.2 Technology Stack and Applied Tools 44

4.3 MISP in ASPIS 44

4.3.1 MISP Objects Employed 45

CONTENTS iii

4.3.1.1 The Vulnerability Object 45

4.3.1.2 The Weakness Object 46

4.3.1.3 The VulDB-Vulnerability Object 46

4.3.1.4 The ExpDB-PoC Object 46

4.3.2 MISP Correlations in ASPIS 48

4.3.2.1 MISP Correlation Engine Functionality 49

4.3.3 MISP Correlation Engine Alteration 52

4.3.3.1 Proposal for an Alternative MISP Correlation Engine 53

4.3.3.2 MISP Correlation Engine Table BCNF Decomposition 54

4.4 Monitored Sources 57

4.5 The Source Crawling and Parsing Phase 59

4.5.1 NVD Parsing 59

4.5.2 JVN Parsing 60

4.5.3 KB-Cert Crawling and Parsing 60

4.5.4 VulDB Crawling and Parsing 60

4.5.5 Exploit-DB Crawling and Parsing 61

4.6 The Object Structuring Phase 62

4.7 The Event Management Phase 62

4.7.1 Event Lookup 62

4.7.2 Event Creation 63

4.7.3 Event Modification 63

4.7.3.1 Event Enrichment with Complementary CTI from

Another Source 63

4.7.3.2 Event Update due to Updated CTI 64

4.7.3.3 Exploit-DB Entry Added a Reference to a CVE ID 64

4.7.4 Events’ Correlations 64

4.8 The CTI Sharing and Reviewing Phase 65

4.8.1 MISP REST API: RESTful Searches 65

4.8.1.1 List of RESTful Endpoints 65

4.8.1.2 Authorization 65

4.8.1.3 Headers 66

4.8.1.4 Search Constraints (Payload/Body) 66

iv CONTENTS

4.8.1.5 cURL Example 67

4.8.2 CTI Reviewing through MISP Sightings 67

4.9 ASPIS Usage 67

4.9.1 Login 67

4.9.2 Events Browsing and Filtering 68

4.9.3 Events Inspection 69

4.9.4 CTI Sharing: MISP REST API 71

4.10 System Installation 73

5 Experimental Evaluation 75

5.1 Experimental Setup 75

5.1.1 Data Set 75

5.1.2 Query Sets 76

5.1.3 Configuration Parameters and Metrics Employed 78

5.1.3.1 CTI Storing Space Requirements 78

5.1.3.2 CTI Storing and Processing Time 78

5.1.3.3 CTI Querying Response Time 78

5.1.4 Technical Configuration 79

5.2 Experiment Results 80

5.2.1 CTI Storing Space Requirements 80

5.2.2 CTI Storing and Processing Time 80

5.2.3 CTI Querying Response Time 83

6 Conclusions and Future Work 85

6.1 Summary and Conclusions 85

6.2 Future Work 86

A Examples of MISP Objects in JSON Format 87

A.1 NVD: Vulnerability Object 87

A.2 NVD: Weakness Object 88

A.3 JVN: Vulnerability Object 88

A.4 KB-Cert: Vulnerability Object 89

A.5 VulDB: Vuldb-Vulnerability Object 91

CONTENTS v

A.6 Exploit-DB: ExpDB-PoC Object 92

B MISP Versions Changelog 93

List of Tables

2.1 CTI sharing tools and platforms 13

2.2 CTI services comparison 17

2.3 Threat intelligence platforms 18

3.1 MISP events table 27

3.2 MISP objects table 28

3.3 MISP attributes table 29

3.4 MISP correlations table 30

4.1 The vulnerability MISP Object 45

4.2 The weakness MISP Object 46

4.3 The vuldb-vulnerability MISP Object 47

4.4 The expdb-poc MISP Object 47

4.5 The resulting correlations table of Example 1 49

4.6 The resulting correlations table of Example 2 49

4.7 The resulting correlations table of Example 1, with highlighted re-

dundancy 50

4.8 The resulting correlations table of Example 2, with highlighted re-

dundancy 50

5.1 Query sets’ average correlations per query 77

List of Figures

1.1 The CTI life-cycle 5

3.1 MISP database schema abstracted overview 24

3.2 MISP Sightings 33

3.3 MISP simple user’s top bar 34

3.4 MISP administrator’s top bar 34

3.5 Adding process of an Event in MISP 36

3.6 MISP layout in the List of Events 37

3.7 MISP Event View 38

3.8 MISP Event timeline 39

3.9 MISP Event Correlation graph 39

3.10 MISP Correlation Engine 40

4.1 ASPIS system architecture 42

4.2 ASPIS system dataflow example 43

4.3 The alternate equivalent (right) to the resulting correlations table of

Example 1 (Table 4.7) (left). 53

4.4 The alternate equivalent (right) to the resulting correlations table of

Example 2 (Table 4.8) (left). 53

4.5 ASPIS Login 68

4.6 ASPIS View Events List 68

4.7 ASPIS Filter Events 69

4.8 ASPIS Event Inspection 70

4.9 ASPIS Event Timeline Examination 70

4.10 ASPIS Event Correlations Graph Inspection 70

4.11 MISP Query Builder in Action 71

4.12 MISP REST API: cURL Querying & PyMISP Querying 72

x LIST OF FIGURES

4.13 ASPIS CTI for Wordpress Plugins Vulnerabilities of December 2020 72

5.1 Query sets’ average correlations per query proportionally to the stored

events 77

5.2 ASPISA and ASPISD CTI storing space requirements 81

5.3 Daily time elapsed for the CTI gathering and storing 82

5.4 Monthly average time elapsed for the CTI gathering and storing 82

5.5 ASPISD and ASPISA CTI querying average response times 83

List of Symbols

v value

V set of common values

AwV (v) number of attributes that contain the value v

ε MISP Event

εnAwV (v) number of attributes coexisting in the event εn, that

contain the value v

CTIQ(D) CTI querying time for dataset D

CTIS CTI storing task

List of Abbreviations

3NF 3rd Normal Form

5W3H What, Who, Why, When, Where, How, How much,

and How long

API Application Programming Interface

ASPIS Automated Source-Pairing Intelligence System

BCNF Boyce-Codd Normal Form

CCE Common Configuration Enumeration

CIDR Classless Inter-Domain Routing

CPE Common Platform Enumeration

CPS Cyber-Physical Systems

CRITs Collaborative Research Into Threats

CSIRT Computer Security Incident Response Team

CSV Comma-Separated Values

CTI Cyber-Threat Intelligence

CVE Common Vulnerability Enumeration

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

DB DataBase

DDoS Distributed Denial-of-Service

DNS Domain Name Server

xiv LIST OF ABBREVIATIONS

DoS Denial-of-Service

FQDN Fully Qualified Domain Name

GUI Graphical User Interface

HTML Hyper Text Markup Language

ID Identifier

IDMEF Intrusion Detection Message Exchange Format

IDS Intrusion Detection System

IoC Indicator of Compromise

IODEF Incident Object Description Exchange Format

IoT Internet of Things

IP Internet Protocol

IPS Intrusion Prevention Systems

ISACs Information Sharing and Analysis Centers

JSON JavaScript Object Notation

MDSEA Model Driven Service Engineering Architecture

NF Normal Form

NLP Natural Language Processing

PDF Portable Document Format

PoC Proof-of-Concept

RDF Resource Description Framework

REST REpresentational State Transfer

RSS Rich Site Summary

SaaS Software as a Service

SIEM Security Information and Event Management System

STIX Structured Threat Information eXpression

TAXII Trusted Automated eXchange of Indicator Information

LIST OF ABBREVIATIONS xv

TTPs Tactics, Techniques and Procedures

UI User Interface

URL Uniform Resource Locator

UUID Universally Unique IDentifier

VERIS Vocabulary for Event Recording and Incident Sharing

XML eXtensible Markup Language

YAML YAML Ain’t Markup Language

xvi LIST OF ABBREVIATIONS

Chapter 1

Introduction

This thesis presents ASPIS, a system for CTI gathering and sharing. ASPIS is

a multi-layered system aimed at collectively gathering CTI from various sources,

storing it in a structured manner. Through a variety of tools and a Graphical

User Interface (GUI), it provides the information in human and machine-readable

formats, to both aid security experts view, process and analyze it, and facilitate

the CTI sharing process. In this chapter we define the problem, discuss the current

state-of-the-art approaches, outline our solution and highlight our contributions.

1.1 Problem Statement

In the recent years, due to the increasing number of cyber-threats, CTI gathering

and CTI sharing is becoming increasingly important both as a subject of research

and as a concept of providing additional security to organizations.

1.1.1 Cyber-Threat Intelligence

CTI is information about threats relating to networks, computers, and any other

type of information technology. However, such intelligence is not just data. It is

information that has been observed, analyzed, and can be actionable. CTI is divided

in two main categories; strategic and tactical.

1.1.1.1 Strategic CTI

Strategic CTI is information that helps gaining an overview of threats that may

affect an organization. Specifically, it is information that can provide a high-level

understanding of the organization’s decisions’ impact, across imminent threats. The

majority of strategic CTI sources are open source, and they may include:

2 1.1 : Problem Statement

� Policy documents from nation-states or other groups of interest.

� Local and national media.

� Industry and subject specific publications.

� Comments, online activity and articles from individuals of interest.

� Free content produced by security organizations (e.g., white papers, research

reports)

1.1.1.2 Tactical CTI

Tactical CTI provides necessary information about the tactics, techniques, and pro-

cedures (TTPs) followed by threat actors so that they can achieve their goals (e.g.,

to compromise a network, exfiltrate data). It helps defenders gain a point of view

and understand how an organization in threat, is likely to be attacked, in order

to determine if appropriate detection and mitigation mechanisms exist or whether

they should be implemented. Tactical CTI sources are mainly based on reports

produced by security vendors. These reports focus on specific threat groups or

attack campaigns and provide key tactical information such as:

� Locations and industries targeted.

� Attack vectors employed (e.g., SQL injection, DDoS)

� Tools and technical infrastructure used (e.g., botnet)

Although these reports can be valuable, they are produced for a big audience,

making the majority of the CTI less relevant to any specific orgranization. A more

reliable stream of tactical CTI requires active gathering processes, which monitor:

open/deep/dark web, forums, marketplaces, malware analysis, social media, etc.

1.1.2 Threat Information Types

The types that are used in order to describe threat information, are distinguished

in:

Indicators. Observables or technical artifacts which suggest that an attack is

going to happen or that a system has already been compromised. Indicators

can be utilized in a system to build a defense against any potential threat.

Several examples of indicators are listed below:

� An IP address accompanying a suspicious command.

Chapter 1 : Introduction 3

� A distrustful DNS domain name.

� A URL which redirects to suspicious content.

� A file hash using a malicious executable.

� A malicious email message.

Tactics, Techniques and Procedures (TTPs). TTPs are used to describe the

behavior of an actor. Tactics describe the actor’s behavior, techniques describe

the tactics which might be followed by the actor, and finally procedures are

detailed descriptions in the context of a technique. To sum up, TTPs describe

the possibility of an actor to follow a specific attack pattern, using an attacking

tool, a malware variant, exploiting a vulnerability, etc.

Security Alerts. These are also known as advisories, and they are basically a brief

overview of security alerts, including human-readable notifications regarding

vulnerabilities, exploits or other security issues.

Threat Intelligence Reports. These include documents which describe TTPs,

system types, threat actors, target information, and any other information

which best describes an incident related to cyber threats, in order to provide

greater awareness to organizations.

Tool Configurations. These include recommendations for the installation and

the utilization of mechanisms and methodologies followed, in order to collect,

process, analyze and share CTI. Tool configuration information might include

instructions on how to customize a tool to build web filter configuration files,

firewall rules, etc.

1.1.3 CTI Sources

CTI is accessible through various sources, which can be categorized into three main

groups:

Internal Sources. In this group of sources, CTI is collected from an intra-

organization level. For example, such types of sources might be: Intrusion

Prevention Systems (IPS), firewalls, anti-virus. In addition, a significant

internal source of CTI derives from computer forensic analysis, providing in-

formation about application settings, running processes, services being used,

system events, etc., and it could indicate adversarial behavior as well.

Community Sources. These include CTI shared within a trusted relation-

ship circle of multiple members having common interests. This might be for

4 1.1 : Problem Statement

example an informal group, with the community members being organizations

which are in the same industrial sector. The Information Sharing and Analysis

Centers (ISACs) are such an example. They are non-profit organizations,

which provide a central hub for gathering CTI and allow two-way sharing

between the private and the public sector.

External Sources. This group contains CTI gathered from outside an organiza-

tion. There are three types of external sources:

Public. External sources, which are free of charges and publicly available.

Although public feeds are freely available, they are not always credible

since they might as well be based on volunteered data.

Private. These sources require payment. In order to gain access to them,

an organization can subscribe to a threat feed provided by the vendor,

having guaranteed data quality and credibility, based on a service level

agreement. These security services include some type of CTI update

mechanism that keeps the feed up-to-date.

Unindexed. These sources are sites and forums accessible only from the

deep or the dark web. In most cases, CTI is gathered from unindexed

chatrooms, forums, marketplaces, and so on. These sources might as well

have confined access, which makes them a challenging source of CTI.

In these sites, individuals exchange information which provides great

insights about security issues after being analyzed.

1.1.4 CTI Sharing Importance

As stated previously, the ever increasing amount of software vulnerabilities, in

addition to innovating attack techniques, increases the percentage of cyber-threat

victims. Thus, the gathering and sharing of CTI amongst communities, brings great

benefits to each individual member, such as:

Increased Awareness. By using shared resources, in addition to leveraging ca-

pabilities of partners, such as knowledge and experience, the security level is

enhanced in a proactive way.

Improved Security Posture. CTI sharing makes it easier for organizations

to identify an affected system, implement security measures for additional

protection, enhance detection methods in case incidents re-occur, and recover

from incidents.

Chapter 1 : Introduction 5

Figure 1.1: The CTI life-cycle

Knowledge Maturing. By sharing CTI, the knowledge base of security-related

information is enriched with enhanced and updated information. This is

achieved by enriching existing indicators, and by developing knowledge of

actors’ TTPs, which are associated with specific incidents, threats or threat

campaigns.

Increased Defensive Agility. In order to evade detection, security controls, and

to exploit new vulnerabilities, threat actors constantly adapt their TTPs. In

order to reduce the probabililty of successful exploitations, via CTI sharing

organizations are periodically informed about changing TTPs and can detect

and respond to imminent threats rapidly.

Summing up, in order to provide additional security to organizations, there is a

need for security experts to be provided with tools and systems, which aid them with

the procedures of CTI monitoring, analyzing and processing, developed to support

the context of the aforementioned.

1.1.5 The CTI life-cycle

The CTI cycle, as illustrated in Figure 1.1, is the process of generating and evaluating

CTI. The first step of this process is CTI source identification (or direction). It

pertains to the identification of threat information that needs to be collected from

monitoring devices, feeds, and security repositories to support decision-making and

raise cyber-security awareness. The next step, namely CTI gathering, is the collection

of the necessary data from the identified sources, along with the tools for extracting

a wide variety of information, like tactical information (infrastructure, malware, and

exploits) and strategic information (revealing attackers’ goals). This process requires

6 1.2 : Our Contribution

a series of steps starting from the collection of relevant IP addresses. Moreover, it is

not a one-time action, but it should be performed in a continuous manner. The main

goal at this stage is to collect as much information as possible and allow correlations

and further analysis. The third step is CTI analysis and is built upon the informa-

tion that has been collected; it includes both automated and human-driven analysis.

The fourth step is CTI sharing to the relevant stakeholders, i.e., the entities that

can utilize the generated intelligence, in a form that they find to be appropriate,

useful, and in many cases actionable. This makes sharing highly-dependent on the

audience (e.g., tactical, operational, and strategic level). CTI review (also referred

to as CTI feedback), which is the last step in the above process, constitutes the key

to the continuous improvement of the generated intelligence.

1.2 Our Contribution

There is a plethora of methods, tools and platforms that facilitate the flow of the

CTI life-cycle. In this thesis we present the ASPIS system, a combination of imple-

mented methods, and open-source tools and platforms, which is aimed at providing

a complete solution, with regard to the CTI life-cycle. ASPIS periodically gathers

CTI from different sources (i.e. NVD [33], JVN [24], KB-Cert [26], VulDB [61]

and Exploit-DB [12]). The CTI deriving from these sources is analyzed and pro-

vides information about vulnerabilities and exploits, along with a variety of other

metrics, such as exploitability, 0day exploit price, and so on. After gathering the

CTI from the aforementioned sources, ASPIS system then proceeds to store it in a

structured manner, using the MISP platform as the data storage, which simplifies

the procedures of CTI sharing and reviewing, as it provides all information in both

human and machine-readable format. Furthermore, it provides tools that support

the enrichment of CTI gathered through correlating processes, as well as it enables

security experts to review CTI through a user-friendly GUI.

The core functionality of ASPIS is implemented by utilizing MISP [28] - a free

and community-driven, open source platform, helping information sharing of threat

intelligence including cyber security indicators. ASPIS retrieves all CTI from the

monitored sources, via data feeds (XML/JSON) or web scrapping techniques, and

then stores it in MISP, in a nested manner, so that all CTI regarding a specific issue

will be enclosed in one cluster, eliminating duplicates. That functionality is imple-

mented through numerous scripts, written in Python, which drive the procedures of

retrieving the CTI, storing it in MISP in a nested manner, and applying possible

modifications (updates) in any previously stored CTI. The monitored sources can be

categorized in two main categories; sources that provide datafeeds and sources that

Chapter 1 : Introduction 7

expose the CTI on web-based interfaces, in a structured manner. The sources that

provide datafeeds, are parsed through standard XML/JSON parsing techniques, to

extract the desired information. For the rest, the parsing methodology is augmented

with crawling methods, to access all pages that may contain CTI exploit/vulnerability

notes. Finally, the scripts make use of the MISP functionalities and database ca-

pabilities, to store or update the retrieved information in a nested manner. These

processes are being executed periodically, every 24 hours, in order to keep ASPIS
synchronized with all sources at hand.

1.3 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2 we present the related

work of proposed CTI-related models, frameworks and systems, and discuss their

architecture and implementations. In Chapter 3 we provide a detailed overview

of MISP, regarding its data model, features/functionalities and UI. In Chapter 4

we present in detail the ASPIS system architecture, describe its functionality, and

finally present the technologies and principles upon which the system was designed

and built. Furthermore, in Chapter 4 we detailedfully describe an alteration of

the MISP implementation in our system. Moreover, we present the necessary steps

required in order to set-up the ASPIS system and provide a user guide. In Chapter 5

we present the experimental evaluation of our system, in comparison with the default

MISP implementation. Finally, in Chapter 6 we conclude this work, reviewing its

sustainability and proposing possible extensions of the developed system.

Chapter 2

Related Work

The need of assessment, detection and gathering of cyber-threat information escala-

ted over the years; this is also demonstrated by the ENISA threat landscape reports

of the previous years. Specifically, the surveys of ENISA [72–74, 76] indicate that

there’s a persistent increase in various cyber-threat types, such as: Malwares, Web-

based Attacks, Web-application Attacks, DoS, Botnets, Phishing, Data Breaches,

Information Leakage. Thus, it is prominent that there’s an increased need for

deploying efficient and automated proactive technologies, that are able to analyze

and share heterogenous CTI related to the present systems’ configurations, attacker’s

threats and tactics, indicators of ongoing incidents, and so on. Proactive detection

of incidents is defined as the process of discovery of malicious activity in a team’s

constituency through internal monitoring tools or external services that publish in-

formation about detected incidents, before the affected constituents become aware of

the problem. The type of tools most often evaluated as excellent, belong to systems

for aggregation, correlation and visualization of logs and other event data [77].

However, the efficiency and the automation of processes that facilitate the flow

of the CTI life-cycle (as shown in Figure 1.1) is a challenging task and requires

the standardization of CTI formatting, the proper selection of tools, platforms and

frameworks that are able to support CTI sharing, and the provision of appropriate

methodologies that enable CTI evaluation.

To counter these challenges, a lot of research has been conducted in an effort to

determine the most suitable CTI sharing standards, and to implement and deploy

convenient tools that enable the automation of CTI gathering and sharing. In the

following sections we will present related research, which showcases:

1. the evaluation of standards and platforms,

2. the current state-of-the-art CTI sharing solutions,

10 2.1 : Evaluation of CTI Sharing Standards and Platforms

3. the implementation of frameworks, tools and platforms, which facilitate, auto-

mate and enhance the process of targeted CTI gathering and sharing.

2.1 Evaluation of CTI Sharing Standards and

Platforms

To be able to automate the processes that enable CTI gathering and sharing, there’s

a wide variety of defined standards and formats, along with platforms that utilize

them.

In [70], the authors provide a methodology for the evaluation of the standards

and platforms of CTI. First, the research provides a review of the state-of-the-art

CTI ecosystem’s standards and platforms, by showcasing the main directions that

the theme has been following in the recent years. In reference, [90] provides a broad

overview of the CTI sharing dimensions, briefly mentioning some frameworks and

standards that support the CTI sharing task. Other works, like [75], [89], [93], focus

on both open-source and commercial CTI platforms and on the most common CTI

sharing standards, to provide an overview of the current CTI sharing landscape. An

extensive analysis on open-source and commercial CTI sharing tools, platforms and

services, is conducted in [83], where the authors present an overview of their provided

functionalities. Additionally, [70] presents the CTI practices that have been deployed

or have great potential of being deployed in the area. To do so, the authors gain

a complete overview of the CTI panorama, by searching in web research engines,

such as Google Scholar [16], Springer [48], IEEE Digital Library [21], and so on.

To find suitable results, the authors posed the following query: (Threat Intelligence

OR Cyber Threat Intelligence) AND (Platform OR Tools OR Standards). Then, a

selection strategy is developed, in order to limit and define which standards and plat-

forms they will analyze, due to the extensiveness of the threat intelligence scenario.

Through the selection strategy, the authors concluded that in order to evaluate the

most relevant standards and platforms in the CTI field, the results, found through

the searching process, were described in terms of popularity and license model.

As popularity the authors define the number of times the standard or platform

was mentioned in reliable works and sources, combined with collected statistics

about the percentage of utilization among organizations. As license model, they

include only free or open source solutions and initiatives. Finally, after eliminating

the CTI standards and platforms results, the authors propose several evaluation

criteria, infered through the 5W3H method, as well as the intelligence process flow

(Figure 1.1). Specifically, regarding the CTI standards, the authors inspect the

Chapter 2 : Related Work 11

data model architecture in terms of whether they adopt a holistic architecture that

includes parameters like threat, incident, threat actor, and defense. Additionally,

they examine the intelligence process in terms of collection (common formatting),

processing (structured format, low overhead, machine readability), analysis (unam-

biguous data model, relationship mechanisms), deployment (interoperability), and

dissemination (transport mechanism, practical application). With regard to the

CTI platforms, the authors inspect the data model architecture in the context of

whether they have a holistic architecture, to review the use case applicability, and

if they follow the 5W3H answering method to answer the platforms’ capability.

Furthermore, they examine the intelligence process in terms of collection (import

formats, automatic gathering), processing (export format, graphic visualization),

analysis (correlation, classification), deployment (integration with security systems),

and dissemination (sharing method). Finally, for the CTI platforms, the authors

also inspect the usability in respect of their documentation and license model. The

CTI standards’ evaluation concluded that STIX v2 [87, 88] & TAXII [68] is the most

consolidated standard in the threat intelligence context, mainly due to its holistic

approach. Concerning the CTI platforms’ evaluation, the authors concluded that

MISP [28] and OpenCTI [36] were considered as the most complete and flexible

platforms.

Similarly, in [66], the main goal of the work carried out is to survey related tools

and platforms, evaluate them and identify the most appropriate for the purposes

of CTI sharing, in terms of expressiveness, flexibility, automation, and structuring.

To do so, first, it provides a brief overview of a variety of CTI sharing aspects,

such as the types of threat information (indicators, TTPs, security alerts, threat

intelligence reports, and tool configurations), the main categories of CTI sources

(internal sources, community sources, and external sources), the CTI life-cycle

(Figure 1.1), and also the main CTI sharing challenges (trust establishment, achiev-

ing interoperability and automation, securing sensitive information, and enabling

information sharing). Then, it comes up with a set of high-level CTI sharing

mechanisms’ requirements, in order to construct the evaluation criteria. Particularly,

the sharing mechanism must allow CTI sharing between the platform and different

stakeholders (like service providers and certified authorities), as well as between the

platform and the end-users’ devices. Then, the sharing mechanism and platform

should be expressible, flexible, and scalable. Furthermore, the sharing mechanism

and platform should allow information to be both human and machine readable and

facilitate automation. Next, the sharing platform should allow storing information

about the source of CTI, and also support information filtering and alerting. Finally,

the sharing platform should be open source. Based on the features of the surveyed

12 2.2 : Current State-of-the-Art CTI Sharing Solutions

platforms (MISP [28], GOSINT [17], OpenTPX [38], YETI [62], OpenTAXII [37],

and CIF [5]). Then, the work proceeds to compare them in terms of organized

repository, organized community, helpful documentation, creativity, additional tools,

additional benefits, and drawbacks. Finally, after comparing the surveyed platforms,

it evaluates them in respect of interoperability, expressiveness, flexibility, extensibi-

lity, automation, and whether they provide intelligence in both human and machine-

readable formats. The evaluation is achieved through a scoring system, where ‘-’

means that the specified evaluation requirement is not supported, ‘1’ means that the

requirement is supported to a satisfying level, and ‘2’ means that the requirement

is supported to a high level. The evaluation concludes with MISP and GOSINT

taking the lead in the platforms’ race, when compared to the rest of the surveyed

platforms.

2.2 Current State-of-the-Art CTI Sharing

Solutions

This section reviews several solutions related to the discovery and management of

CTI, and presents their main features and characteristics, with respect to a number

of aspects, such as their architecture, offered services, standards’ adoption, and mode

of operation. Specifically, the following sections will review CTI sharing tools and

platforms, threat intelligence services and threat intelligence platforms.

2.2.1 CTI Sharing Tools and Platforms

This section compares and evaluates six open-source platforms and tools, that

implement common sharing standards, to facilitate the CTI analysis, sharing and

reviewing. Specifically, it considers Open Source Threat Intelligence Platform &

Open Standards For Threat Information Sharing (MISP [28]), Open Cyber-Threat

Intelligence Platform (OpenCTI [36]), Open-Source Threat Intelligence Gathering

and Processing Framework (GOSINT [17]), Your Everyday Threat Intelligence (YETI

[62]), a Python implementation of TAXII Services (OpenTAXII [37]) and Collective

Intelligence Framework (CIF [5]). Finally, the comparison of the aforementioned

platforms is briefly presented in Table 2.1.

2.2.1.1 MISP - Open Source Threat Intelligence & Open Standards for

CTI Sharing

MISP [92] is one of the most widespread CTI sharing platforms. Following the

example of most CTI sharing platforms, MISP detects, stores and shares technical

Chapter 2 : Related Work 13

M
IS

P

O
p

e
n
C

T
I

G
O

S
IN

T

Y
E

T
I

C
IF

O
p

e
n

T
A

X
II

Human & machine readable ! ! ! ! ! !

API ! ! ! ! ! !

Tagging mechanism ! ! ! ! ! %

Correlation mechanism automatically manually % manually % %

Data formats

CSV, XML,

JSON,

OpenIOC,

STIX/TAXII,

and more

CSV, XML,

JSON,

OpenIOC,

STIX/TAXII,

and more

STIX/TAXII,

VERIS, IODEF,

IDMEF

JSON
JSON,

CSV
TAXII

Table 2.1: CTI sharing tools and platforms

and non-technical information about malware samples, incidents, attackers and

intelligence. Moreover, MISP supports data export in STIX and OpenIoC for use in

Intrusion Detection Systems (IDSs) or Security Information and Event Management

Systems (SIEMSs). Additionally, MISP has an automatic correlation mechanism

that is: (a) able to identify relationships between attributes/objects and indicators

from malware correlation engines and (b) capable of performing advanced corre-

lations such as fuzzy hashing (e.g., ssdeep) or CIDR block matching. Another

interesting characteristic of the MISP platform is that most of the supported data

models are created by MISP community. MISP stores data in a structured format (to

allow for the automated use of its database for various purposes), provides extensive

support of cyber-security (including fraud) indicators for different vertical sectors

(e.g., financial sectors), and supports CTI sharing for both human and machine

applications. Furthermore, it provides STIX support, allowing data export in STIX

1.0 and 2.0 (XML and JSON) format. More details about MISP functionalities

are described in [28]. Intelligence vocabularies (MISP galaxy) can be bundled with

existing threat actors, malware and ransomware or linked to events from MITRE

ATT&CK [30] knowledge base. MISP objects are used since the MISP version

(2.4.80) and can be also utilized by other information sharing tools. The creation of

these objects and their associated attributes is based on real cyber-security use-cases

and existing practices in information sharing, while object sharing is transparently

supported even for MISP instances that don’t have the object template. The MISP

objects derived from many categories depend on the threat type; the supported

attacks include: ail-leak (analysis information leak framework), ais-info (automated

indicator sharing), android permission, av-signature (antivirus detection signature),

bank account, cap-alert (common alerting protocol alert object), and others. Finally,

MISP provides a flexible free text import tool to facilitate the integration of un-

14 2.2 : Current State-of-the-Art CTI Sharing Solutions

structured reports into MISP and an adjustable taxonomy to classify and tag events

according to the users’ own classification schemes and taxonomies. The taxonomy

can be either local or shareable among different MISP instances, while MISP comes

with a default set of well-known taxonomies and standard classification schemes

adopted by many organizations.

2.2.1.2 OpenCTI - Open Cyber-Threat Intelligence Platform

The OpenCTI platform is an open-source solution, which allows organizations to

manage CTI knowledge and observables. Its main task is to structure, store, organize

and visualize both technical and non-technical artifacts about cyber-threats.

OpenCTI’s data structure follows a knowledge schema approach, which is based

on the STIX2 standards. To gather CTI, the platform can be integrated with other

tools and platforms like MISP, TheHive [52], MITRE ATT&CK and more. For

the CTI storage, OpenCTI integrates ElasticSearch [11]. Finally, the stored CTI

is centrally available to OpenCTI’s users and submodules through the integrated

GraphQL API [19]. Specifically, OpenCTI aims to be a tool, that allows users

to integrate technical information (e.g. TTPs, observables) and non-technical (i.e.

victimology, affected verical sectors, localization), while also linking each piece of

information to its primary source (like a CTI report, a MISP event). OpenCTI

makes use of connectors, which are standalone processes, executed independently of

the rest of the platform. The connectors use the RabbitMQ [41] message broker to

consume or push data to OpenCTI, through a dedicated queue for each connector

instance, that contacts the OpenCTI API. Basically, connectors define routes to the

platform’s API, that enable users to customize the importing of knowledge (like

enriching/updating from external or internal sources) and to export it in formats

like STIX2, PDF, CSV. To achieve that, it requires the use of workers that listen to

RabbitMQ, in order to call the API for the insertion or export of data. Moreover,

OpenCTI allows users to correlate knowledge (entities, TTPs, threat groups, etc.)

and match it with existing CTI reports. This is a task that can be achieved either

programmatically through an implemented Python client, or manually through the

provided UI. Specifically, during this procedure, users define relations over knowledge

artifacts and OpenCTI can infer additional relations, by utilizing a predefined rule-

based model, that is built upon the Grakn knowledge graph [18]. Thus, it is able

to enrich CTI reports with knowledge graphs. Finally, it provides customizable

dashboards that enable users to visualize entities, reports and knowledge relations to

entities, indicators and observables. To sum up, OpenCTI is able to act as a unified

CTI repository, for numerous tools and platforms (like MITRE CVE [6], MITRE

ATT&CK, MISP, TAXII2, TheHive, VirusTotal [57], and more), while allowing

Chapter 2 : Related Work 15

users to further analyze the collected CTI.

2.2.1.3 GOSINT - The Open-Source Threat Intelligence Gathering and

Processing Framework

GOSINT is another popular open-source platform that focuses on intelligence gathe-

ring and processing. It collects, processes and exports IoCs; in this way it controls

the data inclusion process in the platform and enriches it with high-quality meta-

data. GOSINT aggregates, validates, and sanitizes indicators for consumption by

other tools including CRITs and MISP, or directly into log management systems

and SIEMs, while also supporting STIX 2.0/1.x, TAXII and VERIS [67]. GOSINT

allows forensic experts to gather structured and unstructured data from incidents

occurring at third parties1. It is developed by Cisco CSIRT and can act as a powerful

aggregator of IoCs before they are passed to another analysis platform or a SIEM.

GOSINT additionally supports IODEF [69] and IDMEF [78] alongside STIX/ TAXII

and VERIS. GOSINT can support several actions to provide additional context to

indicators in the pre-processing phase; such actions may include the identification

of IoCs with systems like Cisco Umbrella, ThreatCrowd, and VirusTotal. The infor-

mation returned from these services can help analysts reach a verdict on the value of

the indicator, as well as tag the indicator with additional context that might be used

later in the analysis pipeline. The GOSINT functionalities are described in [17]; the

framework is written in Go with a JavaScript frontend. Drawbacks of the GOSINT

platform are mainly related to package management and include: package managers

that (a) provide out-of-date versions of the software and should be tested to ensure

compatibility and (b) name packages differently depending on the package managers

or OS release repository at hand.

2.2.1.4 YETI - Your Everyday Threat Intelligence.

Another open-source platform is Yeti; an open, distributed, machine- and analyst-

friendly threat intelligence repository. Yeti is a platform meant to organize observ-

ables, IoCs, TTPs, and threat intelligence in a single, unified repository. Moreover,

Yeti automatically enriches observables (e.g., by resolving domains and geolocating

IPs) on behalf of the user and provides a (Bootstrap-based) user interface for

humans and an API-based for machines so that to facilitate communication and

interoperability with other CTI tools. Finally, Yeti enables users to enrich the

investigations of the stored observables, by providing a user-friendly GUI for the

creation of relationships between them, presenting them with relationship graphs.

The Yeti functionalities are described in [62].

16 2.2 : Current State-of-the-Art CTI Sharing Solutions

2.2.1.5 OpenTAXII - a Python Implementation of TAXII Services.

It is an upgraded form of TAXII Services; its architecture follows the TAXII spe-

cifications with functional units for the TAXII Transfer Unit, the TAXII Message

Handler, and other back-end services. OpenTAXII is a robust Python implemen-

tation of TAXII Services that delivers a rich feature set. It provides extendable

persistence and authentication layers (both via a dedicated API) and provides a

collection of threat specifications. Furthermore, it provides an appropriate set

of services and message exchange functionality to facilitate CTI sharing between

parties. Some other characteristics of OpenTAXII include: customizable APIs,

authentication, flexible logging. Furthermore, it automatically handles the data

of the frameworks relied on, provides machine-readable threat intelligence, and

combines network security operations data with threat intelligence, analysis and

scoring data in an optimized manner. it is a large repository that consists of

(meta)data of intrusions; database handling typically occurs in the same query

context.

2.2.1.6 CIF - Collective Intelligence Framework.

It is a CTI management system and one of the platforms of choice of ENISA for CTI

sharing. CIF helps users to parse, normalize, store, post-process, query, share and

produce CTI data, while allowing them to combine known malicious threat infor-

mation from many sources and utilize that information for identification (incident

response), detection (IDS) and mitigation (null route). It also supports an auto-

mated form of the most common types of threat intelligence warehoused in CIF

which are IP addresses and URLs that are observed to be related to malicious

activity. The CIF framework aggregates various data-observations from different

sources. When a user query for CTI data, the system returns a series of chro-

nologically ordered messages; users are then able to make decisions by examining

the returned results (e.g., series of observations about a particular actor) in a way

similar to examining an email threat. The CIF Server consists of a few different

modules including csirtg-fm, cif-worker, cif-router, cif-enricher, and ElasticSearch.

The csirtg-fm module has two primary capabilities: To fetch files using http(s)

to/ from the local file system and to parse files using YAML to parse regex, JSON,

XML, CSV, RSS, HTML and plain text files. Moreover, the cif-worker module helps

the CIF extract additional intelligence from collected threat data, the cif-router

module provides a ZMQ [64] broker, the cif-enricher is responsible for enriching

incoming intelligence with additional information like geolocation or FQDN while

the ElasticSearch module is a data Warehouse for storing (meta)data for intrusions.

Chapter 2 : Related Work 17

Z
e
ro

F
o
x

C
T

A
C

S
e
a
rc

h
L

ig
h
t

In
te

l
4
7
1

S
e
cu

ri
ty

R
a
ti

n
g
s

F
la

sh
p

o
in

t

B
re

a
ch

A
le

rt

F
5

L
a
b

s

Vulnerabilities tracking ! ! ! ! ! ! % !

TTPs tracking ! ! % ! ! ! % !

Organisation assets’ tracking ! ! ! ! ! % ! %

Deep/dark web monitoring ! ! ! ! % ! ! !

Social media monitoring ! ! ! % ! % ! %

CTI reports ! ! ! ! ! ! ! !

API ! ! ! ! ! ! ! %

Alerting mechanism ! % ! ! ! ! ! %

Table 2.2: CTI services comparison

Finally, all stored CTI is accessible through CIF’s REST API, which is built upon

Swagger [50].

2.2.2 CTI Services

There is a plethora of threat intelligence services, that are able to support the CTI

sharing life-cycle, in various ways. This subsection presents and compares several

representative threat intelligence services; namely: ZeroFox [63], CTAC by Wapack

Labs [7], SearchLight by Digital Shadows [44], Intel 471 [22], Flashpoint Intelligence

Platform [14], Security Ratings by BitSight [2], BreachAlert by SKURIO [3] and

F5 Labs [13]. The comparison reviews the services’ capabilities with regard to the

following aspects: vulnerabilities, TTPs and organization assets’ tracking, deep /

dark web and social media monitoring, CTI reports provision, supported API and

alerting mechanism. The results of the comparison conducted are presented in

Table 2.2.

All of the presented threat intelligence services provide CTI reports, as concluded

by Table 2.2 results. The organisation assets’ tracking refers to the capabilities of

each threat intelligence service to monitor specific CTI, related to an organisation’s

assets. Finally, the Alerting mechanism indicates whether the threat intelligence

service is able to alert its users about events that may concern them.

2.2.3 CTI Platforms

Similarly to the CTI services presented previously, there are numerous CTI plat-

forms, which aim to organise and manage CTI in a centralized manner and also

integrate them with other security solutions. In this subsection we present numerous

18 2.2 : Current State-of-the-Art CTI Sharing Solutions

H
e
li

x

R
e
co

rd
e
d

F
u

tu
re

C
y
ja

x

E
cl

e
ct

ic
IQ

C
y
b

e
r

A
d

v
is

o
r

B
lo

x
O

n
e

T
h

re
a
tS

tr
e
a
m

T
h

re
a
tQ

S
o
lt

ra

T
h

re
a
tC

o
n

n
e
ct

V
D

M
R

M
A

N
T

IS

B
ri

g
h
tC

lo
u

d

Vulnerabilities
tracking

! ! ! ! ! ! ! ! ! % ! ! %

TTPs tracking ! ! ! ! ! ! ! ! ! ! % ! %

Organisation
assets’
tracking

! ! ! ! ! ! ! ! % ! ! % !

Threat
monitoring
(IoCs,
Malicious
IPs, etc.)

! ! ! ! ! ! ! ! % ! ! % !

CTI
intercorrelation

! ! ! ! % ! ! ! ! ! ! ! !

Deep/dark
web
monitoring

! ! ! ! ! % % % % % % % %

Social media
monitoring

! ! ! % ! % % % % % % % %

CTI reports ! ! ! ! ! ! ! ! ! ! ! ! !

Alerting
mechanism

! ! ! ! ! ! ! % % ! ! % !

Remediation
proposals

! ! % ! ! ! % ! ! ! ! % %

CTI sharing ! ! ! ! ! ! ! ! ! ! % ! %

Data formats

STIX/

TAXII,

XML,

JSON

STIX/

TAXII

STIX/

TAXII,

JSON

STIX/

TAXII,

OASIS

STIX/

TAXII,

JSON

STIX/

TAXII,

JSON,

CSV,

more

STIX/

TAXII,

JSON,

CSV,

more

STIX/

TAXII,

Open-

IOC,

Snort,

Suricata

STIX/

TAXII

STIX/

TAXII

JSON,

XML

STIX/

TAXII,

CybOX,

Open-

IOC,

IODEF,

JSON,

more

XML

On-premises % % % ! % ! ! ! ! ! ! ! !

SaaS ! ! ! ! ! ! ! ! ! ! ! % !

Table 2.3: Threat intelligence platforms

aspects of representative threat intelligence platforms; namely: Helix by FireEye [20],

Recorded Future [42], Cyjax [9], EclecticIQ [10], Cyber Advisor by SurfWatch

Labs [8], BloxOne by Infoblox [80], ThreatStream by Anomali [55], ThreatQ by

ThreatQuotient [54], Soltra by Celerium [47], ThreatConnect [53], VDMR by Qualys

[56], MANTIS by SIEMENS [51] and BrightCloud by Webroot [4].

All of the aforementioned CTI platforms provide an API and search capabilities

over their CTI. Table 2.3 presents the aspects of the threat intelligence platforms.

The CTI intercorrelation describes whether each platform is intercorrelating the

discovered CTI artifacts. Next, the Remediation proposals indicates the ability

of the platforms to propose remediation strategies and techniques over vulnerable

Chapter 2 : Related Work 19

configurations or breached assets. Finally, SaaS and On-premises present the type

of the platforms, whether they are available as a web-hosted service or executed

locally, respectively.

2.3 Implementations of Frameworks, Tools and

Platforms for Targeted CTI Gathering and

Sharing

In [81], the authors propose the employment of a cross-linked and correlated database

to collect, extract, filter and visualize vulnerability data, across multiple existing

repositories, whereby CPS vulnerability information is inferred. They highlight the

challenge of dealing with different vulnerabilities that might contribute to threats

of different levels of impact, through the variety of levels of losses in confidentiality,

integrity and availability. To counter such issues, the authors propose correlated

database management techniques in the vulnerability data processing, in order

to discover CTI concerning CPS vulnerabilities, to gain multi-level vulnerability

analysis from both component-perspective and asset-perspective, and to visualize

the connection between vulnerabilities, threats and attacks. In order to realize

these features, the authors propose a three-step agenda, which consists of:

1. the vulnerability database preparation,

2. the CPS asset database preparation, and

3. the correlation between asset-data and vulnerability-data.

First, the vulnerability database preparation requires the extraction of attributes

of vulnerabilities from a variety of repositories into one database. The proposed

methodology is to collect base reports of vulnerabilities, using the formal identifier of

CVE ID as index. These base reports include data such as associated vendor records,

preliminary analysis of reported vulnerability severity, using CVSS, and several other

pertinent metadata, such as the publication date. Next, the CPS asset database

preparation requires the extraction of information such as CPE, CCE, and CWE, via

information retrieval techniques, from sources such as CVE by MITRE [6], NVD by

NIST [33], Exploit-DB [12], and SecurityFocus [45], which are valuable resources for

security analysis data. Finally, knowledge-based reasoning approaches are applied

to automatically abstract vulnerability attributes for concept-modelling and infor-

mation intercorrelation. Thus, features of different vulnerabilities are abstracted

and updated, via up-to-date vulnerability repositories, which are then clustered

20 2.3 : Implementations of Frameworks, Tools and Platforms for Targeted CTI Gathering and

Sharing

into vulnerability instances and stored in a standardized vulnerability database. In

addition to that, features of components, such as component properties, version,

etc., are also abstracted and stored in an asset database. Consequently, informa-

tion from the two databases are queried and correlated, to generate an asset-based

vulnerability database. Similar works are carried out in [86] and [91], where the

authors propose similar approaches to implement IoT- and robotics-oriented vul-

nerability databases, respectively. Finally, in [82], the authors present VuWaDB, a

vulnerability workaround database, by gathering, extracting, analyzing and labeling

CTI from numerous certified vulnerability databases. The resulting workarounds

are then being organized in action-oriented categories, that provide information on

how each of the gathered vulnerabilities should be addressed.

The authors of [85] present an ontology-based cybersecurity framework, which

makes use of knowledge reasoning for IoT. The framework is composed of two

approaches; one at the design time, and one at the run time. At the design time,

the framework foresees the application of the model-driven methodology, in order

to build and adopt existing security services semi-automatically, by using the same

security service specifications, at a high-level of abstraction, in the development of

technological components. The design time layer follows a two-step implementa-

tion; service design and adaptation, and process and service deployment. In the

first step (service design and adaptation), the framework explores the model-driven

development, using the MDSEA [71] methodology, to optimize the service deve-

lopment. During this phase, any deployment aspects are still abstracted, to focus

only on the functionality. In the second step (process and service deployment),

the framework enables the implementation of the designed security services, within

the business process. The implemented services are then made available to the

knowledge base, via the integration of the IoTSec ontology [23, 85], for future

requests to address the same types of security issues. The IoTSec ontology stands at

the integration layer, which links the design-time layer, with the run-time. The run-

time layer of the proposed framework is responsible for identifying and classifying

known threats, from a knowledge base, to provide appropriate security service and

prevent future occurrences. This layer follows three main steps; monitoring, data

integration, and knowledge provisioning. During the first phase (monitoring), the

run-time layer analyzes business processes and technological assets, in order to

detect threats and vulnerabilities for the IoT system. It entails specific monitoring

tools to identify threats such as IP-tables/Netfilter [34], Snort [46], Prelude [39],

Suricata [49], and vulnerabilities such as the Retina Network Community [43]. Se-

curity alerts that are generated by the aforementioned monitoring tools, follow the

IDMEF standard. Raised alerts are used to classify threats and vulnerabilities

Chapter 2 : Related Work 21

from the IoTSec ontology. Then, the proposed framework uses SPARQL language,

to perform queries on the ontology, to gather suitable information from potential

threats in the IoT environment. In the second step (data integration), the framework

provides cybersecurity information from distinct data sources, using the Ontop

framework [65], which enables the instantiation of a knowledge base from IoTSec

ontology. The data population also uses Ontop, to support data access through

a conceptual layer, rewriting the SPARQL queries, over the virtual RDF graph,

to SQL queries. Finally, during the third step of the run-time layer, knowledge

provisioning derives from the IoTSec ontology, by using the SPARQL language to

perform queries and check all information in the knowledge base. Due to language

flexibility, correlations between ontology classes can be used to cross information

regarding the IoT environment.

In [84], the work carried out aims on the information gathering task of IoT-

related CTI and presents a novel architecture that is able to provide a crawling

infrastructure for a variety of CTI sources in the clear, social and dark web. The

approach followed employs a thematically focused crawler, for directing the crawl

towards websites of interest to the CTI gathering task. It is a combinatory approach,

which makes use of machine learning techniques for the open domain crawling, and

a regex-based link filtering for structured domains, such as forums. Any retrieved

content is then stored in a NoSQL datastore and then it is inspected, in order to

decide whether it is useful to the task. This is achieved by employing statistical

language modelling techniques, which allow the training of a language model, that

is able to:

1. capture and exploit the most salient words for the given task by building upon

user conversations,

2. compute the semantic relatedness between the crawled content and the task

at hand by leveraging the identified salient words, and

3. classify the crawled content according to its relevance/usefulness, based on its

semantic similarity to the CTI gathering task.

The architecture presented in this work is entirely designed and developed, using

open-source software. Namely, it uses ACHE Crawler [1] for the focused crawling,

gensim [15], which is an implementation of words embeddings for the latent topic

modeling, and the NoSQL database MongoDB [31], which acts as the storage of the

topic models and the crawled content. By utilizing NLP techniques for named entity

recognition, CTI can be extracted from the relevant harvested content. That CTI

can then be correlated with existing knowledge encompassed within a vulnerability

22 2.3 : Implementations of Frameworks, Tools and Platforms for Targeted CTI Gathering and

Sharing

database, in order to enrich its content.

Extending the work carried out in [84], the inTIME system presented in [83], aims

to combine the aforementioned crawling procedure, with social media monitoring

techniques and the utilization of MISP [28]. By doing so, the system provides

a zero-administration, open-source, integrated framework, that is able to support

security analysts to: deploy various data acquisition services, automatically rank the

collected content, identify and extract CTI artifacts with the use of NLP processes,

further investigate the identified CTI and finally, manage, share and collaborate

on the stored CTI, via open standards and intuitive tools. It fully supports the

complete CTI life cycle, providing a holistic CTI gathering and sharing approach.

Chapter 3

MISP

In Chapter 2 we have seen that MISP [28] takes the lead in the platforms’ race,

when compared to the rest of the surveyed platforms, for the purposes of the CTI

life-cycle support [66, 70]. Thus, it is the platform of choice for the CTI manage-

ment and sharing of our system. Specifically, ASPIS will use, extend, enhance and

modify MISP, in order to enrich and optimize its storing capabilities (as described

in Section 4.3). In the rest of this chapter, we will describe the essential details of

MISP that regard its (i) data model, (ii) CTI sharing properties and features, (iii)

additional features and (iv) UI layout design.

3.1 The Data Model

The data model of MISP follows a simple approach, while at the same time it enables

more complex functionalities. The main objective is to have a minimum viable data

format, which can be extended according to the needs of additional complexity,

instead of trying to capture all possible future requirements in advance.

A new entry in MISP is called an event object, which is defined by a set

of characteristics, along with all kinds of respective descriptions for indicators,

including attachments. These characteristics are called attributes in MISP, and

they provide all useful information to the event, such as an IoC date, threat level,

comments, organization that created it, and so on. Attributes are mainly described

by two fields; category and type. The main difference is that the category field

describes what the attribute represents, such as network activity, financial fraud,

etc., while the type field describes how the attribute represents the chosen category.

For example, an attribute type might be a checksum, a filename, a hostname, an

ip-address, and so on. The actual payload of the attribute is stored in the value

field.

24 3.1 : The Data Model

... ...

... ...

... ...

objects

PK id

FK event_id

... ...

attributes

PK id

FK event_id

FK object_id

events

PK id

... ...

... ...

*

*

*

1

1

correlations

PK id

FK 1_event_id

FK 1_attribute_id

FK event_id

FK attribute_id

... ...

1

*

*

*

*

1

Figure 3.1: MISP database schema abstracted overview

3.1.1 MISP Database Overview for Storing CTI

MISP provides an extensive database schema, which is capable of supporting a multi-

user environment, with complex data management, for a wide variety of vertical

sectors. This is achieved through the implemented MISP attribute categories and

types, objects, and taxonomies. ASPIS stores all CTI artifacts in clusters, in the

MISP platform. In this section we will mainly focus on the database structure of

MISP.

Any CTI artifact, such as a CVE ID of a vulnerability, is stored in the MISP

database in the form of attributes. Multiple attributes can be grouped to form

an object, which mainly consists a bigger CTI artifact, like a vulnerability report.

Both attributes and objects must be attached to events, which basically serve as the

records of the artifacts storage. Finally, MISP enables an event to be correlated with

other events, through matching techniques over their attributes. Each correlation

that may occur between events serves as a bond, which also indicates the matching

attribute. In Figure 3.1, we present an abstract overview of the database schema

part, which is used for storing the CTI. In the following subsections, we will also

provide an extended description of the presented tables and their columns.

Chapter 3 : MISP 25

3.1.2 Events Table

The events table is a meta-structure scheme, where attributes, objects and meta-

data are embedded to compose a sufficient set of indicators, that is able to describe

a specific case, like a vulnerability report. An event can be composed from an

incident, a security analysis report or a specific threat actor analysis. The meaning

of an event derives solely from the information embedded within it. In our case, one

event is a collection of objects that are used to describe the CTI artifacts. Table 3.1

presents a detailed description of the events table.

3.1.3 Objects Table

Objects serve as a contextual bond between a list of attributes within an event.

Their main purpose is to describe more complex structures than can be described

by a single attribute. Each object is created using an Object Template and carries

the meta-data of the template used for its creation within. Objects belong to a

meta-category and are defined by a name. The schema used is described by the

template uuid and template version fields. Table 3.2 provides a detailed description

of the objects table.

3.1.4 Attributes Table

Attributes are used to describe the indicators and contextual data of an event. The

main information contained in an attribute is formed by category-type-value triplets,

where the category and type give meaning and context to the value. Through the

various category-type combinations, a wide range of information can be conveyed.

Table 3.3 presents a detailed description of the attributes table.

3.1.5 Correlations Table

Correlations serve as a bonding system between the stored events. Their main

purpose is to describe any artifacts’ matching that may have occurred between

the events through the MISP Correlation Engine (which is briefly discussed in

Section 3.5.3.4). Table 3.4 provides a detailed description of the correlations table.

From the correlations table definition, as presented in Table 3.4, having the

following set of attributes: {id, value, 1 event id, 1 attribute id, event id,

attribute id, org id, distribution, a distribution, sharing group id,

a sharing group id, date, info}, we realize the following dependencies for the

correlations relation:

26 3.1 : The Data Model

FD1. id → value 1 event id 1 attribute id event id attribute id org id

distribution a distribution sharing group id a sharing group id

date info

FD2. 1 event id 1 attribute id event id attribute id org id → id

FD3. 1 event id 1 attribute id → value

FD4. event id attribute id → value

Particularly, from FD1, id is the unique identifier of the correlations relation,

and hence it is able to identify all attributes. Then, one organization of MISP

can generate only one correlation entry for two correlated events on a common

valued set of attributes. Thus, from FD2, 1 event id 1 attribute id event id

attribute id org id is able to provide the unique identifier of each correlation

entry. Finally, from FD3 and FD4, event id attribute id refers to a particular

correlated value, and hence that is dependent of the two IDs.

Chapter 3 : MISP 27

id

INT(11)

The human-readable identifier associated to the event for a specific MISP

instance.

uuid

VARCHAR(40)

The Universally Unique IDentifier (UUID) of the event. The uuid must be

preserved for any updates or transfer of the same event.

published

TINYINT(1)

The event publication state. If the event was published, the published value

is true (1). In any other publication state, the published value is false (0).

info

TEXT

It represents the information field of the event. It is a free-text value to

provide a human-readable summary of the event.

threat level id

INT(11)
The threat level. [4: Undefined, 3: Low, 2: Medium, 1: High].

analysis

TINYINT(4)
The analysis level. [0: Initial, 1: Ongoing, 2: Complete].

date

DATE

A reference date to the event in the YYYY-MM-DD format. This date

corresponds to the date that the event was generated.

timestamp

INT(11)

A reference time when the event was created or last updated/edited on the

instance. It is expressed in seconds since 1st of January 1970 (Unix

timestamp).

publish timestamp

INT(11)

A reference time when the event was published on the instance. It is

expressed in seconds since 1st of January 1970 (Unix timestamp). If the

event was never published, the published timestamp is set to 0. If it is

present but the published flag is set to false, then it represents the previous

publication timestamp.

org id1

INT(11)

A human-readable identifier referencing an Org object of the organisation

which generated the event.

orgc id1

INT(11)

A human-readable identifier referencing an Orgc object of the organisation

which created the event.

attribute count

UNSIGNED INT(11)
The number of attributes in the event.

distribution

TINYINT(4)

The basic distribution rules of the event. The system must adhere to the

distribution setting for access control and for dissemination of the event. [0:

Your Organization Only, 1: This Community Only, 2: Connected

Communities, 3: All Communities, 4: Sharing Group].

sharing group id

INT(11)

A human-readable identifier referencing a Sharing Group object that defines

the distribution of the event, if distribution level 4 is set. (Sharing Groups

can be defined in the MISP UI).

extends uuid

VARCHAR(40)

Which event is extended by this event. It is described as a Universally

Unique IDentifier (UUID), with the UUID of the extended event.

disable correlation

TINYINT(1)

A setting that allows an event’s attributes to be correlated with attributes

from other events.

Table 3.1: MISP events table

1MISP stores separately the org id from orgc id, to support syncing actions between different
instances. Thus, in such a case, the organization that generated an event in an instance, may have
synced it from another instance, so the creator should remain the same.

28 3.1 : The Data Model

id

INT(11)

The human-readable identifier associated to the attribute for a specific MISP

instance.

uuid

VARCHAR(40)

The Universally Unique IDentifier (UUID) of the object. The uuid must be

preserved for any updates or transfer of the same object.

name

VARCHAR(255)

The human-readable name of the object describing the intent of the object

package. (I.e. vulnerability, vuldb-vulnerability, weakness, and so on. The

MISP Objects employed are presented in Subsection 4.3.1).

meta-category

VARCHAR(255)

The sub-category of objects that the given object belongs to. meta-categories

are not tied to a fixed list of options but can be created on the fly. (I.e. a

vuldb-vulnerability object has a vulnerability meta-category, as we defined it

in MISP.)

description

TEXT

Human-readable description of the given object type, as derived from the

template used for creation.

template uuid

VARCHAR(40)

The Universally Unique IDentifier (UUID) of the template used to create the

object. It must remain the same during a transfer or an update, in order to

preserve the object’s association with the correct template used for creation.

template version

INT(11)

A numeric incrementing version of the template used to create the object. It

is used to associate the object to the correct version of the template and

together with the template uuid forms an association to the correct template

type and version.

event id

INT(11)

The human-readable identifier of the event that the object belongs to on a

specific MISP instance.

timestamp

INT(11)

A reference time when the object was created or last modified. It is expressed

in seconds since 1st of January 1970 (Unix timestamp).

distribution

TINYINT(4)

The basic distribution rules of the object. The system must adhere to the

distribution setting for access control and for dissemination of the object. [0:

Your Organization Only, 1: This Community Only, 2: Connected

Communities, 3: All Communities, 4: Sharing Group].

sharing group id

INT(11)

A human-readable identifier referencing a Sharing Group object that defines

the distribution of the object, if distribution level 4 is set. (Sharing Groups

can be defined in the MISP UI).

comment

TEXT
A contextual comment field.

deleted

TINYINT(1)

A setting that allows attributes, within the object, to be revoked. Revoked

attributes are not actionable and exist merely to inform other instances of a

revocation.

first seen

BIGINT(20)

A reference time when the object was first seen. It is expressed as a datetime

up to the micro-second with time zone support.

last seen

BIGINT(20)

A reference time when the object was last seen. It is expressed as a datetime

up to the micro-second with time zone support.

Table 3.2: MISP objects table

Chapter 3 : MISP 29

id

INT(11)

The human-readable identifier associated to the attribute for a specific MISP

instance.

uuid

VARCHAR(40)

The Universally Unique IDentifier (UUID) of the attribute. The uuid must

be preserved for any updates or transfer of the same attribute.

type

VARCHAR(100)

The means through which an attribute tries to describe the intent of the

attribute creator, using a list of pre-defined attribute types. (I.e. text, link,

datetime, float)

category

VARCHAR(255)

The intent of what the attribute is describing as selected by the attribute

creator, using a list of pre-defined attribute categories. (I.e. External

analysis, Network activity, Vulnerability)

to ids

TINYINT(1)

Whether the attribute is meant to be actionable. Actionable defined

attributes that can be used in automated processes as a pattern for detection

in Local or Network Intrusion Detection System, log analysis tools or even

filtering mechanisms.

event id

INT(11)

A human-readable identifier referencing the Event object that the attribute

belongs to.

object id

INT(11)

A human-readable identifier referencing the MISP Object that the attribute

belongs to.

object relation

VARCHAR(255)

The attribute of the MISP Object that the attribute describes. (The MISP

Object attributes employed are presented in Subsection 4.3.1).

distribution

TINYINT(4)

The basic distribution rules of the attribute. The system must adhere to the

distribution setting for access control and for dissemination of the attribute.

[0: Your Organization Only, 1: This Community Only, 2: Connected

Communities, 3: All Communities, 4: Sharing Group, 5: Inherit Event].

timestamp

INT(11)

A reference time when the attribute was created or last modified. It is

expressed in seconds since 1st of January 1970 (Unix timestamp).

comment

TEXT
A contextual comment field.

sharing group id

INT(11)

A human-readable identifier referencing a Sharing Group object that defines

the distribution of the attribute, if distribution level 4 is set. (Sharing

Groups can be defined in the MISP UI).

deleted

TINYINT(1)

A setting that allows attributes to be revoked. Revoked attributes are not

actionable and exist merely to inform other instances of a revocation.

value

TEXT

The payload of an attribute. The format of the value is dependent on the

type of the attribute.

first seen

BIGINT(20)

A reference time when the attribute was first seen. It is expressed as a

datetime up to the micro-second with time zone support.

last seen

BIGINT(20)

A reference time when the attribute was last seen. It is expressed as a

datetime up to the micro-second with time zone support.

disable correlation

TINYINT(1)

A setting that allows an attribute of a specific object relation to be correlated

with attributes from other events with the same object relation.

Table 3.3: MISP attributes table

30 3.2 : CTI Sharing Properties and Features

id

INT(11)

It represents the human-readable identifier associated to the correlation for a

specific MISP instance.

value

TEXT

The payload of the correlated attribute. The format of the value is dependent

on the type of the attribute.

1 event id

INT(11)

The human-readable identifier of the event at hand that the correlation refers

to on a specific MISP instance.

1 attribute id

INT(11)

The human-readable identifier of the attribute at hand that the correlation

refers to on a specific MISP instance.

event id

INT(11)

The human-readable identifier of the correlating event to the one at hand

that the correlation refers to on a specific MISP instance.

attribute id

INT(11)

The human-readable identifier of the correlating attribute to the one at hand

that the correlation refers to on a specific MISP instance.

org id

INT(11)

A human-readable identifier referencing an Org object of the organisation

which generated the correlation.

distribution

TINYINT(4)

The basic distribution rules of the correlation. The system must adhere to

the distribution setting for access control and for dissemination of the event.

[0: Your Organization Only, 1: This Community Only, 2: Connected

Communities, 3: All Communities, 4: Sharing Group].

a distribution

TINYINT(4)

The basic distribution rules of the correlated attribute. The system must

adhere to the distribution setting for access control and for dissemination of

the event. [0: Your Organization Only, 1: This Community Only, 2:

Connected Communities, 3: All Communities, 4: Sharing Group]. This is

useful for attributes that may contain sensitive information.

sharing group id

INT(11)

A human-readable identifier referencing a Sharing Group object that defines

the distribution of the correlation, if distribution level 4 is set. (Sharing

Groups can be defined in the MISP UI).

a sharing group id

INT(11)

A human-readable identifier referencing a Sharing Group object that defines

the distribution of the correlated attribute, if distribution level 4 is set.

(Sharing Groups can be defined in the MISP UI). This is useful for attributes

that may contain sensitive information.

date

DATE

A reference date to the correlation in the YYYY-MM-DD format. This date

corresponds to the date that the correlation was generated.

info

TEXT

The information field of the correlated event at hand. It is a free-text value

to provide a human-readable summary of the event.

Table 3.4: MISP correlations table

3.2 CTI Sharing Properties and Features

There are two main aspects that regard the sharing model of MISP. First, MISP

enables its users to select the sharing level of the information stored in the platform.

For example, the sharer can disseminate the information at hand with a specific orga-

nization, a community of organizations, interconnected communities, all participants

of MISP, or even define a sharing group manually. The next main aspect of MISP, is

Chapter 3 : MISP 31

the proposals feature. While the modification of events is only permitted to member

of the creating organization, proposals allow users to make suggestions for changes

to an event, created by another organization. A proposal is reported back to the

original creator of the event, who may accept the change or discard it. Then, the

outcome of the creator’s decision will be propagated to all interconnected instances.

An example of this feature is the reporting of false positives to the event creator,

asking for an error correction.

3.3 Additional Features

Furthermore, MISP provides various features, including:

PyMISP: A Python Library for the Implementation of MISP API.

PyMISP provides users with fetching, adding, updating, deleting and searching

capabilities over the stored events/attributes or samples. A full documentation

of PyMISP is provided in [40].

The Free-Text Import Tool. It enables users to copy and paste raw data (in

free-text format) into a single data field, that through a heuristic algorithm

matches the attributes. The resulting attributes are then presented to the user

who proceeds to validate the findings.

MISP Tagging Mechanism. It enables users to define customizable tags, through

which they can later filter the events and classify the encompassed informa-

tion. Furthermore, the tags can also be exportable, hence allowing the reusing

of the same tags from other MISP instances.

MISP Taxonomies. A taxonomy is a triplet of tags, which is described by

a namespace, a predicate and a value. Through the utilization of taxono-

mies’ repository, organizations have a common format for describing incidents.

Furthermore, if the predefined taxonomies do not fit the description of an

event, users can define their own.

MISP Instances’ Syncing. MISP is provided with a synchronization protocol,

which supports four main features; pull, push, cherry-picking, and the feed

system. The pull feature allows a MISP instance to discover available and

accessible events on a connected instance and download any new or modified

events. The push mechanism allows a MISP instance to convert events to

a JSON format that is transferable to remote instances. The cherry-picking

feature is an alternative to the pull method, which allows users to decide which

32 3.3 : Additional Features

events should be pulled to the local instance. Finally, the feed mechanism

allows a MISP instance to generate a dump of JSON files, which derive from a

selection of events that an organization was to publish. Then, the output can

be served via a web server, through which other MISP instances can access

and retrieve the contents via the UI, similarly to the cherry-picking.

MISP Sightings. MISP provides a sighting system, which allows users to react

on attributes on an event. Originally, it was designed to provide an easy

method for users to verify a given attribute, hence raising its credibility.

Since the MISP version 2.4.66, sightings have been improved to provide a

method to signal false positives, but also to give an expiration date for some

attributes [29]. As stated previously, MISP Sightings are a way for users to

state that they have seen or noticed an attribute and also confirm its validity.

An attribute may be spotted several times by the same user, and thus a single

user can use sighting several times on a single attribute. Sometimes, some

attributes may be considered as false positives, and similarly to the previous

case, users can signal a single attribute as a false positive several times. There

is also the case of some attributes being valid for a certain period of time (for

instance, in case of a phishing campaign that is assumed to be up for only one

week). In this case, users can assign an expiration date to an attribute, but

this time, there can only be one valid expiration date per organization of the

MISP instance. Finally, as shown in Figure 3.2, a sighting is applied to every

attribute, under the column Sightings, identifiable by its colored numbers.

This column contains three icons and three values. The three values show

respectively:

� the number of true positives detected with the attribute, in green,

� the number of times the attribute has been marked as false positive, in

red, and

� the number of different expiration dates that have been affected on this

attribute.

Finally, concerning the three icons:

� the first (Thumb up) allows to add a sighting (true positive) on an

attribute,

� the second one (Thumb down) allows to mark the attribute as a false

positive, and

Chapter 3 : MISP 33

Figure 3.2: MISP Sightings

� the third one (Tool) opens a popup for advanced sightings, showing

sightings details and allowing different actions.

3.4 Current State of MISP

MISP is an active open-source platform, which is enhanced, fixed and introduced

with additional support, approximately on a monthly basis. During the timeframe

of the work carried out, as showcased in the thesis, we used the latest version of

MISP (2.4.132), which had been released on September 21, 2020.

Appendix B provides a brief summary of the most notable changes that fulfil

our expectations and illustrate additional MISP capabilities, as they were extracted

from its release page.

Generally, it is strongly suggested to keep MISP up to date in accordance with

the latest version published, in order to fully exploit the platform’s improvements

and fixes.

3.5 General MISP Layout

The MISP layout differentiates whether the end-user is a simple user or the admi-

nistrator of the instance.

3.5.1 Simple User

The top bar of a simple user’s interface (as shown in Figure 3.3) includes the tabs

described below.

Home tab guides the user to the initial profiling interface of the application.

Event Actions gives access to all users to functionalities that are related to

creation, modification, deletion, publishing, searching and listing of the events

and attributes.

Galaxies guide the user to the list of MISP Galaxies (supported vertical sectors’

groups of objects) on MISP.

Input Filters define the type of data that enter in each instance. The tab Input

filters has a drop-down list with various options. Import Regexp allows the

34 3.5 : General MISP Layout

Figure 3.3: MISP simple user’s top bar

Figure 3.4: MISP administrator’s top bar

admin of the system to view the Regular Expression rules which define the

data that entered into the system.

Global Actions allows the user to have access to information regarding MISP

and a specific instance, also has the capability to view and modify the profile,

receive a manual of MISP. Some options include information regarding the

latest MISP news, the sharing groups that the organisation communicate,

organisation role permissions etc. Also, administrator can view and manage

profiling details, can view organisations that exists on a specific instance as

well as the statics which are referred to the users and the data on this instance.

MISP tab provides a link that leads to the baseURL, which refers to the MISP

hostname.

User. In Figure 3.3 the simple user’s tab is the Steve tab, which is auto generated

from the user email address of current logged in user.

The Envelop Icon guides the user to the User Dashboard, which contains the

latest information of the account’s management such as, notifications, modifi-

cations of the account etc.

Log Out leads the user out of the system.

3.5.2 Administrator

The top bar of an administrator’s interface (as shown in Figure 3.4) includes the

tabs described below.

Home tab guides the administrator to the initial profiling interface of the appli-

cation.

Event Actions gives access to all functionalities related to creation, modification,

deletion, publishing, searching and listing of the events and attributes.

Galaxies guide the administrator to the list of MISP Galaxies and enables the

updating the galaxy as well.

Chapter 3 : MISP 35

Input Filters has a drop-down list with various options. Import Regexp allows

theadmin of the system to view the Regular Expression rules which define the

data that are inserted into the system. Therefore, a site administrator or a

user with regex permissions can edit the rules. Signature Whitelist includes the

kind of information that should be forbidden by the system, and the site admi-

nistrator can edit this list. List warninglists includes indicators for potential

false positives, errors or mistakes. The warning lists are integrated in MISP

to display an info/warning box at the event and attribute level.

Global Actions allows the administrator to have access to information regarding

MISP and a specific instance, also has the capability to view and modify the

profile, receive a manual of MISP. Some options include information regarding

the latest MISP news, the sharing groups that the organisation communicates,

organisation role permissions etc. Also, the administrator can view and manage

profiling details, can view organisations that exist on a specific instance as well

as the statistics, which are referred to the users and the data on this instance.

Sync Actions prerequires administrator’s access rights, then the admin can vi-

sualize the instances connections. Sync Actions includes List Servers and List

Feeds.

Audit needs permission to be accessible. The administrator can visualize organi-

zation logs (or for site admins for the entire system) and search targeted the

logs of a specific event.

MISP tab provides a link that leads to the baseURL.

Admin can handle user’s information. More specifically, view, modify, delete and

add users in the instance. For coordination issues or in case of any problem

in user’s accounts, the admin has the capability to contact the current and

future users and provide them temporary passwords. The admin has the same

capabilities as before, towards the organisations.

The Envelop Icon guides the user to the User Dashboard, which contains the

latest information of the account management such as notifications, modifica-

tions of the account etc.

Log Out leads you out of the system.

3.5.3 Events

As referred previously, Event Actions gives access to all users, to functionalities

that are related to the creation, modification, deletion, publishing, searching and

36 3.5 : General MISP Layout

Figure 3.5: Adding process of an Event in MISP

listing of the events and attributes. Some of the aforementioned functionalities are

presented below.

3.5.3.1 Creating an Event

In order to create an event, users need to make three actions:

Generation of the event itself (Figure 3.5). This means that the basic event will

be created without any actual attributes and will store general information,

such as the description, time, and risk level of the incident.

Populating the event with attributes and attachments by clicking on the tab

Add Event and completing the particular form.

Publishing the event.

Every user needs to complete the fields with the exact information. The user

should pay attention through the data completion, since they are consisting vital

elements of the incident’s description.

Date indicates the date of the incident.

Distribution is a setting control, that reveals who can see the event, once it

becomes published and eventually when it is pulled. Also, you can control

whether the event will be shared to other servers too or not.

Chapter 3 : MISP 37

Figure 3.6: MISP layout in the List of Events

Threat Level indicates the risk level of an event. Incidents can be classified into

three threat categories; namely low, medium and high. Also, this field can

remain unclarified.

Analysis specifies the event’s stage of the analysis; more specifically (a) Initial,

(b) Ongoing, (c) Completed.

Event Info gives information regarding the malware/incident, with a brief de-

scription starting with the internal reference.

3.5.3.2 List of Events

In this list, users are presented with information regarding the interface of MISP,

that allows the user to view, search for events and attributes of events, that are

already stored in the system in various ways (Figure 3.6). The menu, through the

tab “List events”, allows for the creation of a list with the 60 last events in the

instance, without presenting the attributes, and the pagination of the rest events

into lists of 60 events, with regard to the time they were created on the MISP

instance.

3.5.3.3 Events View

An event in the MISP UI is a tab that encompasses various characteristics of the

MISP event structure, along wtih its attributes and objects. Specifically, such

characteristics are indicated below:

ID shows the ID of the event.

UUID provided in order to avoid collisions between events and attributes. A

UUID is assigned to each one of them separately to uniquely identify them.

Org refers to the organization that has either generated the event (Creator org)

on this instance or created the event (Owner org). A string that represents

the organization is also shown next to it.

38 3.5 : General MISP Layout

Figure 3.7: MISP Event View

Tags shows a list of tags associated with the event. Clicking a tag will show a list

of events with the same tag attached. The little x next to each tag allows the

users to remove the tag from the event, whilst the + button allows them to

assign a tag. For the latter two options to be visible, the users should have

tagging permissions.

Date indicates the date of detection, set by the user that created the event. (Not

to be confused with the creation date of the event as provided in the First

recorded change).

Threat Level indicates the assigned threat level of the event.

Analysis provides the current status of the analysis.

Distribution shows the distribution rules applied to this event, controlling whether

only the authoring organization can see (Your organization only) it, or everyone

on the instance (This community only). The two remaining settings allow the

event to be propagated to organizations on remote connected instances.

Chapter 3 : MISP 39

Figure 3.8: MISP Event timeline

Figure 3.9: MISP Event Correlation graph

Info gives a short description of the event itself.

Published gives information on whether the event has been published or not.

Publishing allows the attributes of the event to be used for all eligible exports

and it notifies users that have subscribed to the event alerts. Also, a publication

initiates a push to all eligible instances.

Additionally, there is a list of related events. This list refers to the relations that

are shown on the right side of the general event information. Events can be related

by having one or more attributes that are exact matches. For example, if two events

both contain a source IP of 1.1.1.1, then they are related. The list of events that

are related to the one at hand, are listed under Related Events, as links (titled by

the event’s date and info) to the events themselves.

Finally, as shown in Figure 3.7, through the Event View, users are also provided

with the Event timeline (as shown in Figure 3.8) and the Correlation graph (as

shown in Figure 3.9); two useful functionalities for the purposes of the CTI reviewing

procedure.

40 3.5 : General MISP Layout

Figure 3.10: MISP Correlation Engine

3.5.3.4 Correlation Engine

The correlation engine of MISP encompasses all the correlations between attributes

and more advanced correlations like fuzzy hashing correlation (e.g., ssdeep) or CIDR

block matching. Correlations can be both enabled or disabled, for each event per

attribute. The value field of the attribute is the main payload of the attributes,

which is described by the category and type columns, and it is used by the correlation

engine to find relations between events.

Chapter 4

The ASPIS System

In this chapter we present ASPIS, a full-stack system that was developed, aiming

to provide a complete proactive methodology for the CTI gathering and sharing.

Particularly, ASPIS gathers CTI from different identified sources, which usually

store common information that needs to be parsed and consolidated. To this

end, ASPIS parses each identified CTI source, merging all parsed artifacts into

clusters. The resulting clustered information is then stored and managed through

the utilization of MISP (presented in Chapter 3). Furthermore, ASPIS uses MISP

to inter-correlate the CTI clusters, to find possible matches between the stored

artifacts. The system is able to present all gathered information in human-readable

formatting, through the MISP web-application, which enables users to further edit,

analyze, enrich, and share the stored CTI. To fully accommodate MISP to our needs,

we customize and extend its taxonomies, defining new objects, and also improve

its correlation engine storage requirements, altering the corresponding database’s

structures.

In the rest of this chapter we present the architecture of ASPIS and extendedly

describe all of the system’s functionalities, along with the utilization and customi-

zations of MISP.

4.1 System Overview

The ASPIS system provides a CTI life-cycle-complete solution. To this end, we

first need to identify various CTI sources (e.g., NVD [33], JVN [24], KB-Cert [26],

VulDB [61], and Exploit-DB [12]). Such sources may store vulnerability and exploit

data and contain analyzed CTI, in the form of vulnerability and exploit reports.

These reports embody a plethora of useful and actionable intelligence about the vul-

nerabilities and exploits, such as a description of the vulnerability at hand, an exploit

42 4.1 : System Overview

PyMISP	Library

Source	Monitoring

Data	Sources

Monitoring
Scheduler

HTML
Files

Json/
XML	Files

Feed	Monitoring
Web	Scraping

Data	Objectification

MISP
Objects

MISP
Events

Event
Structuring

Event
Management

Event	Modification

Event
Creation

Event
Lookup

Data	Parsers

Raw	DataParsed
Data

MySQL	DB

MISP
EventsMISP	REST	API

CakePHP

MISP	UI

Figure 4.1: ASPIS system architecture

proof-of-concept, a list of the affected products’ configurations (CPEs), metrics that

provide an impact factor for the affected product (CVSS), publication and modi-

fication dates, references to similar reports, and a unique identifier that has been

assigned to the vulnerability at hand (CVE ID). However, while the aforementioned

sources often provide reports about the same unique CVE ID, these reports tend to

differ. This happens due to the dynamicity of available information at the time of

the analysis. Thus, analyses that occurred at a different time, may provide different

metrics in the final reports. To overcome this issue, we gather all publicly available

reports from the monitored sources, we parse them, one-by-one, to extract the CTI

provided, and then we store the parsed CTI, in a clustered manner. The selected

platform for storing and disseminating the gathered CTI is MISP. These clusters are

called events in the MISP platform and the clustering of the reports occurs at the

event management phase. MISP provides the information stored in its database,

in both human and machine-readable formats, and allows users to access it either

through a GUI or via a REST API. Finally, MISP has implemented various tools,

available in the GUI, that enable UI users to review CTI gathered and eliminate

false positives or comment on the artifacts, and further analyze and enrich CTI

through correlation processes. Figure 4.1 presents an abstracted view of the ASPIS

Chapter 4 : The ASPIS System 43

NVD JVN KB-Cert VulDB Exploit-DB

Json feed XML feed HTML HTML HTML

Json Parser XML Parser HTML Parser HTML Parser HTML Parser

Parsed
CTI

vulnerability
object

vulnerability
object

vulnerability
object

vuldb-vulnerability
object

expdb-poc
object

P
y
M
I
S
P

L
i
b
r
a
r
y

Event
Management

Event
Lookup/Creation/Modification

UI Users

API Users

Source Crawling and Parsing

Object Structuring

CTI Sharing and Reviewing

weakness
object

Event Management

Figure 4.2: ASPIS system dataflow example

architecture.

In the following sections, we present the technology stack and the applied tools

that are used in ASPIS to support the implementation of MISP (Section 4.2). Next,

we present the extensions and customizations of MISP in ASPIS (Section 4.3). Then,

we provide a summary for each one of the monitored sources (Section 4.4). In

Figure 4.2, we provide an example of the dataflow of ASPIS. Each phase of the

system dataflow; namely the Source Crawling and Parsing, Object Structuring, Event

Management, and CTI Sharing and Reviewing phases are described in detail in

Sections 4.5, 4.6, 4.7, 4.8, respectively. Finally, we provide an overview of the usage

of the ASPIS system (Section 4.9).

44 4.2 : Technology Stack and Applied Tools

4.2 Technology Stack and Applied Tools

As mentioned in Section 3.4, we currently work with MISP v2.4.132, which is the

latest version of MISP published. MISP is built upon programming frameworks like

CakePHP and PHP for the UI, and MariaDB/MySQL for the data storage. ASPIS
uses the following technologies to support the implementation of MISP v2.4.132.

� CakePHP 2.10.19. CakePHP is an open-source web framework, which

follows the Model-View-Controller (MVC) approach and is written in PHP.

MISP is built upon CakePHP v2.10.19, which supports PHP 7.0+, and it also

makes use of the CakeResque plugin of CakePHP, which enables the creation

of background jobs that can be processed offline.

� PHP 7.2. ASPIS uses PHP version 7.2; CakePHP employs PHP to build the

MISP platform, and connect the web application with the data storage.

� MariaDB 10.1. MariaDB is a variation of MySQL and it acts as the data

storage of MISP in ASPIS.

Additionally, to support the gathering and sharing of CTI, ASPIS uses the

following technologies:

� PyMISP 2.4.132. PyMISP is a Python programming language library that

provides access to the MISP platform via its REST API. It enables users to

fetch, add, update, delete and search events/attributes or samples. Further-

more, it facilitates the creation of scripts that enable other components to

easily interact with MISP. Particularly, through the utilization of the PyMISP

library, we create and update events, each time we gather new CTI from our

monitored sources. PyMISP 2.4.132 is supported by Python 3.6+ versions.

� Python 3.6. ASPIS uses Python 3.6 to automate the process of collecting,

storing, and managing CTI from the monitored sources. Through the imple-

mented python scripts, ASPIS is able to gather and parse CTI from different

sources (like NVD, JVN, VulDB, KB-Cert, and Exploit-DB). All gathered CTI

is then structured into MISP objects (in JSON format), through the PyMISP

library, and finally inserted into MISP to become available for further proces-

sing by ASPIS.

4.3 MISP in ASPIS

As stated in Chapter 3, MISP is the platform of choice for the CTI management

and sharing of ASPIS. However, to fully accommodate MISP to our needs, we

Chapter 4 : The ASPIS System 45

Attribute Type Description

created datetime First time when the vulnerabililty was discovered.

credit text
Who reported/found the vulnerability such as an
organization, person or nickname.

cvss-score float Score of the CVSSv3.

cvss-string text String of the CVSSv3.

description text Description of the vulnerability.

id vulnerability Vulnerability ID (generally CVE, but not necessarely).

modified datetime Last modification date.

published datetime Initial publication date.k

references link External references.

state text

State of the vulnerability. A vulnerability can have
multiple states depending on the current actions
performed. [‘Published’, ‘Embargo’, ‘Reviewed’,
‘Vulnerability ID Assigned’, ‘Reported’, ‘Fixed’].

summary text Summary of the vulnerability.

vulnerable

configuration
text

The vulnerable configuration is described in the CPE
format.

Table 4.1: The vulnerability MISP Object

make use of the platform’s provided tools to define custom objects that are able

to fully encompass the CTI artifacts of the monitored sources (as presented in

Section 4.3.1). Furthermore, in this section we discuss in detail the MISP cor-

relation engine (Section 4.3.2) and propose an alternative correlation engine (in

Section 4.3.3), which improves the storage requirements.

4.3.1 MISP Objects Employed

To best describe the CTI artifacts parsed by ASPIS, we need to store them in

MISP in the most suitable objects; namely, the vulnerability, and weakness objects.

Additionally, MISP provides a method for creating custom MISP objects, which

we use to create two custom objects for ASPIS; namely, the vuldb-vulnerability and

expdb-poc objects, which enrich the attributes of vulnerability and exploit-poc objects

respectively. The aforementioned objects are described in the following sections in

detail.

4.3.1.1 The Vulnerability Object

Vulnerability objects describe CVEs, which refers to published, unpublished, or

under review vulnerabilities for software, equipment or hardware. An overview of

the vulnerability object is provided in Table 4.1. In our case, the vulnerability object

is used for three of the monitored sources; namely, NVD, JVN and KB-Cert, since

it is considered as the most suitable MISP object to describe the parsed CTI.

46 4.3 : MISP in ASPIS

Attribute Type Description

description text Description of the weakness.

id text Weakness ID (generally CWE).

name text Name of the weakness.

status text
Status of the weakness. [‘Incomplete’, ‘Deprecated’, ‘Draft’,
‘Usable’].

weakness-abs text Abstraction of the weakness. [‘Class’, ‘Base’, ‘Variant’].

Table 4.2: The weakness MISP Object

4.3.1.2 The Weakness Object

Weakness objects describe CWEs which refer to usable, incomplete, draft or depre-

cated weaknesses for software, equipment of hardware. CWE serves as a common

language, a measuring technique for security tools, and as a baseline for weakness

identification, mitigation, and prevention efforts. An overview of the weakness object

is provided in Table 4.2. Finally, although CWE can be obtained from both NVD

and JVN, we use it only for CTI parsed from NVD, since it is considered to be the

most credible source, to avoid storing duplicate objects within the same event.

4.3.1.3 The VulDB-Vulnerability Object

The vuldb-vulnerability object is an enriched version of the vulnerability object,

describing a CVE which can describe published, unpublished, under review or

embargo vulnerability for software, equipments or hardware. Additionally, it pro-

vides all proper attributes to store supplementary CTI parsed, such as the price

estimations, CVSS strings from external sources, exploitability/remediation status,

and so on. A more detailed overview of the vuldb-vulnerability object is presented

in Table 4.3. In our case, this object is used to store CTI parsed from VulDB.

4.3.1.4 The ExpDB-PoC Object

The expdb-poc object is a differentiated version of the exploit-poc object, describing

a proof-of-concept or exploit of a vulnerability. This object has often a relationship

with a vulnerability object. In Table 4.4 we present the additional attribute of the

expdb-poc object, which differentiates it from exploit-poc. In our case, Exploit-DB

does not provide CTI that regard CPE, and thus we do not use the vulnerable confi-

guration attribute. Furthermore, instead of downloading and storing all exploit

proof-of-concepts, we point towards the link of the Exploit-DB raw code PoC,

through references, and hence the poc attribute is not used by ASPIS. Finally,

since all MISP Objects that were used in our system, have a credit field, we make

use of it for storing the source of the parsed CTI.

Chapter 4 : The ASPIS System 47

Attribute Type Description

id text Vulnerability ID (generally CVE, but not necessarely).

summary text Summary of the vulnerability.

description text Description of the vulnerability.

published text Initial publication date.

status text
Status of the vulnerability aproval. (Typical VulDB
verification of a reported vulnerability)

cvss-score float

Score of the CVSSv3. This is a Meta score, calculated by
VulDB. The calculation method is described in the
attribute’s comment. [e.g., CVSSof(vuldb+nvd)/2].

cvss-string-VDB text String of the CVSSv3 of VulDB security analysts.

cvss-string-NVD text String of the CVSSv3 of NVD security analysts.

cvss-string-Vend text String of the CVSSv3 of the Vendor’s security analysts.

cvss-string-Res text
String of the CVSSv3 of a researcher who analyzed it for
VulDB.

vuldb-link link The link to the VulDB report.

zeroday-price text

Vuldb analysts are monitoring exploit markets and are in
contact with vulnerability brokers. The range indicates
the observed or calculated exploit price to be seen on
exploit markets. A good indicator to understand the
monetary effort required for and the popularity of an
attack. This is the price range of the exploit for the 0day
exploitation of the vulnerability. (e.g., $0-$5k)

current-price text

Similarly to the zeroday-price. This is the current
estimation of the price range for the exploitation of the
vulnerability.

exploitability text
The status of an exploit for the vulnerability. (e.g.,
‘Functional’, ‘Proof-of-Concept’)

remediation text

A status of whether there is a remediation for this
vulnerability. (e.g., ‘Workaround (Alternative)’, ‘Official
Fix (Upgrade)’)

credit text
Who reported/found the vulnerability such as an
organisation, person or nickname.

Table 4.3: The vuldb-vulnerability MISP Object

Attribute Type Description

description text Description of the exploit - proof of concept.

poc attachment
Proof of Concept or exploit (as a script, binary or
described process).

references link External references.

vulnerable

configuration
text

The vulnerable configuration described in CPE format
where the exploit/proof of concept is valid.

author text Author of the exploit - proof of concept.

credit text Source of the exploit - proof of concept. (e.g., expdb)

Table 4.4: The expdb-poc MISP Object

Specifically, the credit attribute of the aforementioned objects used in our case,

may contain one of the following values: nvd, jvn, kb-cert, vuldb, expdb. Any re-

ference to an actor that has been involved in discovering, conducting or reporting

a vulnerability/exploit is provided in the description attribute of vulnerability and

vuldb-vulnerability, and in the author attribute of expdb-poc.

48 4.3 : MISP in ASPIS

4.3.2 MISP Correlations in ASPIS

As described in Section 3.5.3.4, MISP provides a correlation mechanism, which

is able to generate correlations between different MISP Events, with regard to

their encompassed attributes. Specifically, after each event creation, the correla-

tion engine of MISP, scans through the database for exact matches of the event’s

correlatable attributes’ value, within the rest of the events, with regard to the

attributes’ category and type. By default, the MISP correlation engine generates

correlations solely between different events. For each exact match, MISP proceeds

to store two correlation entries in the database; one that points from the recently

inserted event, to the previously stored and one that points to the recently inserted

event, from the previously stored, through their unique IDs (εj, εi), along with their

corresponding attributes’ unique IDs (αj, αi) and the matched value v. The MISP

correlation engine utilizes the correlations relation (presented in Table 3.4) to store

the generated correlations’ information. Particularly, from correlations, it utilizes

1 event id and event id to store the corresponding event IDs, 1 attribute id

and attribute id to store the corresponding attribute IDs, and value to store the

matched value. So, for example, to store a correlation between εj and εi, MISP

correlation engine will store two rows in the correlations table, like:

1 event id 1 attribute id event id attribute id value

εj αj εi αi v

εi αi εj αj v

where, in the first row, εj points to εi, through their corresponding αj and αi

attributes’ common value v, and vice-versa in the second row.

ASPIS uses that mechanism, to further enrich the stored CTI, with correlati-

ons that concern the affected products, through the vulnerable configuration

attribute of the events’ objects. Thus, the system is able to realize which vulnerabi-

lities and exploits affect a specific product. With this information at hand, security

experts gain a better overview of the products’ threat landscape.

Currently, the way that correlations’ information is stored in the MISP database

is very space demanding. To illustrate an example, in a setting that stored ∼83K

events, that encompassed ∼5M attributes, the correlations’ information consists

of ∼1.2B records that occupied over 315GB of hard disk storage. To counter

that, the correlations’ table of the MISP database, has to be restructured, by also

implementing that alteration in the MISP correlation engine’s internal code. The

proposed solution is extendedly presented in Section 4.3.3.

Chapter 4 : The ASPIS System 49

1 event id 1 attribute id event id attribute id value

ε1 α1 ε2 α2 v1

ε1 α1 ε3 α3 v1

ε1 β1 ε2 β2 v2

ε2 α2 ε1 α1 v1

ε2 α2 ε3 α3 v1

ε2 β2 ε1 β1 v2

ε3 α3 ε1 α1 v1

ε3 α3 ε2 α2 v1

Table 4.5: The resulting correlations table of Example 1

1 event id 1 attribute id event id attribute id value

ε1 α1 ε2 α2 v1

ε1 β1 ε2 α2 v1

ε2 α2 ε1 α1 v1

ε2 α2 ε1 β1 v1

Table 4.6: The resulting correlations table of Example 2

4.3.2.1 MISP Correlation Engine Functionality

To describe the MISP correlation engine functionality, we consider the following

examples.

Example 1. Let us consider 3 events:

event ε1, with attributes: α1, β1,

event ε2, with attributes: α2, β2 and

event ε3, with attribute: α3.

Let us also assume that the attributes α1, α2, and α3 store the value v1, while β1

and β2 store the value v2, in field value respectively. When the MISP correlation

engine considers the events ε1, ε2, and ε3, it produces the correlation table presented

in Table 4.5.

Example 2. Let us consider 2 events:

event ε1, with attributes: α1, β1 and

event ε2, with attribute: α2,

Let us also assume that the attributes α1, β1, and α2 store the value v1 in field

value. When the MISP correlation engine considers the events ε1 and ε2, it produces

the correlation table presented in Table 4.6.

Both Table 4.5 and Table 4.6 store redundant information. To provide a better

view, in Table 4.7 and Table 4.8 we highlight the redundant information of Table 4.5

and Table 4.6 respectively. It is important to note that the numbers displayed at

50 4.3 : MISP in ASPIS

1 event id 1 attribute id event id attribute id value

1 ε1 α1 ε2 α2 v1

2 ε1 α1 ε3 α3 v1

3 ε1 β1 ε2 β2 v2

4 ε2 α2 ε1 α1 v1

5 ε2 α2 ε3 α3 v1

6 ε2 β2 ε1 β1 v2

7 ε3 α3 ε1 α1 v1

8 ε3 α3 ε2 α2 v1

Table 4.7: The resulting correlations table of Example 1, with highlighted redundancy

1 event id 1 attribute id event id attribute id value

1 ε1 α1 ε2 α2 v1

2 ε1 β1 ε2 α2 v1

3 ε2 α2 ε1 α1 v1

4 ε2 α2 ε1 β1 v1

Table 4.8: The resulting correlations table of Example 2, with highlighted redundancy

the beginning of each row of Table 4.7 and Table 4.8 are only used for reference and

they are not stored in the tables.

The redundancy of the generated correlation tables of Example 1 and Example 2

is further discussed in the following observations.

Observation 1. Reviewing Table 4.7, we realize that half of the rows stored

(highlighted in dark gray) are redundant, since the same information is already

captured by other rows of the table. For instance, the first and the fourth row

represent the same information, because they both define the correlation between ε1

and ε2 through their attributes α1 and α2, on their common value v1. Furthermore,

we observe that cells of information (highlighted in light gray) already exist in the

correlations table as well. For example, in the first row of Table 4.7, we observe

that ε1 is correlated with ε2 on their corresponding attributes α1 and α2 that have

the value v1. Thus, the database already contains the knowledge that α1 of ε1 is

correlated with another attribute, on the value v1. So, the highlighted cells of the

second row of Table 4.7 can be inferred from the information of the first row, since

1 event id, 1 attribute id, and value columns’ data of both rows, are the same

(ε1, α1, and v1). Similarly, in the fifth row, 1 event id, 1 attribute id, and value

columns’ data (ε2, α2, and v1) are already stored in event id, attribute id, and

value of the first row. Additionally, in the fifth row, event id, attribute id, and

value columns’ data (ε3, α3, and v1) are the same with the corresponding columns’

data of the second row.

Chapter 4 : The ASPIS System 51

Observation 2. In Example 2, we notice that although attributes α1 and β1 of

event ε1 contain the same value, they are not intercorrelated by the MISP correlation

engine, and hence no information regarding such correlations is stored in Table 4.6.

As described in Section 4.3.2, the correlation engine of MISP only produces correla-

tions between different events. Finally, as described in Observation 1, in Table 4.8

half of the rows stored (highlighted in dark gray) are redundant and the cells of

information highlighted in light gray can be inferred.

Observing the tables generated by the MISP correlation engine for Example 1

(Table 4.5) and Example 2 (Table 4.6), we infer the following lemma.

Lemma 1. LetA be the set of stored attributes and V be the set of common values,

so that ∀(i 6=j) αi, αj ∈ A, with αi.v = αj.v, then v ∈ V . Additionally, let AwV (v)

be the number of attributes having value v. Then, the size of the correlations table

(SCORR), computed by the MISP correlation engine, is bounded by the following

expression:

SCORR ≤ Σv∈V
(
AwV (v) · (AwV (v)− 1)

)
.

Example 3. Let us apply Lemma 1 to the events of Example 1. We have a set V
of two common values; v1 and v2. So, from Lemma 1, SCORR would be:

SCORR ≤ Σv∈V
(
AwV (v)·(AwV (v)−1)

)
, where: AwV (v1) = 3 and AwV (v2) = 2.

Thus,

SCORR ≤ Σv∈V
(
AwV (v) · (AwV (v)− 1)

)
=

= AwV (v1) · (AwV (v1)− 1) + AwV (v2) · (AwV (v2)− 1) =

= 3 · (3−1)+2 · (2−1) = 3 ·2+2 ·1 = 6+2 = 8 rows (as presented in Table 4.5).

As realized, Example 3 is able to validate the equality of the calculated sum with

the SCORR provided by Lemma 1. However, that sum consists an upper-bound of the

correlations table size. This happens because it does not take under consideration

the attributes that are not intercorrelated, due to the fact that MISP correlations

occur solely between different events. To better understand that, we provide the

following example.

Example 4. Let us apply Lemma 1 to the events of Example 2. We have a set V
of one common value; v1. So, from Lemma 1, SCORR would be:

SCORR ≤ Σv∈V
(
AwV (v) · (AwV (v)− 1)

)
, where: AwV (v1) = 3.

Thus,

SCORR ≤ Σv∈V
(
AwV (v) · (AwV (v)− 1)

)
=

52 4.3 : MISP in ASPIS

= AwV (v1) · (AwV (v1)− 1) = 3 · (3− 1) = 3 · 2 = 6 rows (which is larger than

the rows presented in Table 4.6, that are actually 4).

Therefore, to calculate the exact value of SCORR, correlations resulting from

different attributes that coexist within one event and contain the same value, should

be excluded from the calculated sum. That leads to the following lemma.

Lemma 2. Let A be the set of stored attributes and V be the set of common

values, so that ∀(i6=j) αi, αj ∈ A, with αi.v = αj.v, then v ∈ V . Additionally, let

AwV (v) be the number of attributes having value v. Next, let E be the set of stored

events, and εnAwV (v) be the number of attributes of event εn, that have the value v,

where εn ∈ E and n ≤ |E|, n ∈ Z+. Then, the size of the correlations table (SCORR),

computed by the MISP correlation engine, would be:

SCORR =

= Σv∈V
(
AwV (v) · (AwV (v)− 1)

)
−Σ

|E|
n=1

(
Σv∈V

(
εnAwV (v) · (εnAwV (v)− 1)

))
.

Example 5. Let us apply Lemma 1 to the events of Example 2, we have a set V
of one common value; v1. Additionally, there are 2 attributes that exist in the event

ε1; α1 and β1, both containing value v1. So, from Lemma 2, SCORR would be:

SCORR =

= Σv∈V
(
AwV (v) · (AwV (v) − 1)

)
− Σ

|E|
n=1

(
Σv∈V

(
εnAwV (v) · (εnAwV (v) − 1)

))
,

where: AwV (v1) = 3, |E| = 2, ε1AwV (v1) = 2, and ε2AwV (v1) = 0.

Thus,

Σv∈V
(
AwV (v) · (AwV (v)− 1)

)
− Σ2

n=1

(
Σv∈V

(
εnAwV (v) · (εnAwV (v)− 1)

))
=

= AwV (v1) · (AwV (v1)− 1)− ε1AwV (v1) · (ε1AwV (v1)− 1) =

= 3 ·(3−1)−2 ·(2−1) = 3 ·2−2 ·1 = 6−2 = 4 rows (as presented in Table 4.6).

As realized, Example 5 is able to validate the equality of the calculated sum with

SCORR provided by Lemma 2. The same analysis as above can also be conducted for

Example 1, to validate the correlations table size calculation expressed in Lemma 2.

However that would be redundant, since Example 1 does not contain any duplicate

attribute values within the same event, and that would lead to the SCORR calculation

of Lemma 1, as analyzed in Example 3.

4.3.3 MISP Correlation Engine Alteration

In this section we propose an alternative MISP correlation engine, to eliminate the

redundancy indicated by Observation 1 and Observation 2. Then, we check the

validity of the proposed alteration, based on the standard BCNF decomposition

algorithm.

Chapter 4 : The ASPIS System 53

1 event id 1 attribute id event id attribute id value

ε1 α1 ε2 α2 v1

ε1 α1 ε3 α3 v1

ε1 β1 ε2 β2 v2

ε2 α2 ε1 α1 v1

ε2 α2 ε3 α3 v1

ε2 β2 ε1 β1 v2

ε3 α3 ε1 α1 v1

ε3 α3 ε2 α2 v1

↔

event id attribute id value

ε1 α1 v1

ε1 β1 v2

ε2 α2 v1

ε2 β2 v2

ε3 α3 v1

Figure 4.3: The alternate equivalent (right) to the resulting correlations table of
Example 1 (Table 4.7) (left).

1 event id 1 attribute id event id attribute id value

ε1 α1 ε2 α2 v1

ε1 β1 ε2 α2 v1

ε2 α2 ε1 α1 v1

ε2 α2 ε1 β1 v1

↔

event id attribute id value

ε1 α1 v1

ε1 β1 v1

ε2 α2 v1

Figure 4.4: The alternate equivalent (right) to the resulting correlations table of
Example 2 (Table 4.8) (left).

4.3.3.1 Proposal for an Alternative MISP Correlation Engine

Based on the redundancy observed in Observation 1 and Observation 2, we propose

to alter the correlations table in such a manner, that it only contains information

which is not redundant.

Specifically, in Figure 4.3 we present how the correlations table of Example 1

(Table 4.7) can be altered to uniquely store the correlations’ knowledge. Specifically,

in both tables of Figure 4.3 we uniquely highlight each cell of information (that is not

considered as redundant by Observations 1 and 2), to illustrate how the alternate

equivalent correlations table derives from Table 4.7. Similarly, in Figure 4.4 we

present how the correlations table of Example 2 (Table 4.8) can be altered to remove

redundancy.

Additionally, we notice that Table 4.7 and Table 4.8 can also be produced by

their alternate equivalent if we perform a join operation (on) over their common

values, on different event ids. Particularly, to reproduce the default correlations

table from its alternate equivalent (correlationsNF):

Let correlationsNF (event id, attribute id, value).

Then,

correlations=

=ρ(1 event id, 1 attribute id, value)(correlationsNF)on1 event id 6=event idcorrelationsNF.

From the alternate equivalent tables presented in Figure 4.3 and Figure 4.4, we

infer the following lemma.

54 4.3 : MISP in ASPIS

Lemma 3. Let A be the set of stored attributes and V be the set of common

values, so that ∀(i6=j) αi, αj ∈ A, with αi.v = αj.v, then v ∈ V . Additionally, let

AwV (v) be the number of attributes having value v. Then, the size (SCORRNF) of

the proposed alternate correlations table would be:

SCORRNF = Σv∈V
(
AwV (v)

)
.

Example 6. Let us apply Lemma 3 to the events of Example 1. We have a set V
of two common values; v1 and v2. So, from Lemma 3, SCORRNF would be:

SCORRNF = Σv∈V
(
AwV (v)

)
, where: AwV (v1) = 3 and AwV (v2) = 2.

Thus,

Σv∈V
(
AwV (v)

)
= AwV (v1) + AwV (v2) = 3 + 2 = 5 rows (as presented in

Figure 4.3).

As realized, Example 6 is able to validate the equality of the calculated sum

with SCORRNF provided by Lemma 3. Moreover, as we will present in Example 7,

the SCORRNF of Lemma 3 is unaffected by attributes that may contain the same

value, coexisting in the same event, and hence it consists a precise calculation of the

correlations table size, for the proposed alteration.

Example 7. Let us apply Lemma 3 to the events of Example 2. We have a set V
of one common value; v1. So, from Lemma 3, SCORRNF would be:

SCORRNF = Σv∈V
(
AwV (v)

)
, where: AwV (v1) = 3.

Thus, Σv∈V
(
AwV (v)

)
= AwV (v1) = 3 rows (as presented in Figure 4.4).

4.3.3.2 MISP Correlation Engine Table BCNF Decomposition

From the observations and the cases presented in Section 4.3.2.1 and Section 4.3.3.1,

we realize the redundancy of the correlations relation produced by the MISP correla-

tion engine. The most common type of redundancy in relational databases is based

on the functional dependencies. A relational schema avoids functional dependency

based redundancy, when it is in Boyce-Codd Normal Form (BCNF) or in 3rd Normal

Form (3NF). These forms are defined in Definition 1 and Definition 2 respectively.

Definition 1. A relational schema R is in BCNF iff for every one of its depen-

dencies X → Y, at least one of the following conditions hold:

� X → Y is a trivial functional dependency (Y ⊆ X),

� X is a superkey for schema R.

Chapter 4 : The ASPIS System 55

Definition 2. A relational schema R is in 3NF iff for every one of its dependencies

X → Y, at least one of the following conditions hold:

� X → Y is a trivial functional dependency (Y ⊆ X),

� X is a superkey for schema R,

� Y is part of a candidate key.

As expressed in Section 3.1.5, the functional dependencies of the correlations

relation are:

FD1. id → value 1 event id 1 attribute id event id attribute id org id

distribution a distribution sharing group id a sharing group id

date info

FD2. 1 event id 1 attribute id event id attribute id org id → id

FD3. 1 event id 1 attribute id → value

FD4. event id attribute id → value

From the above functional dependencies, the candidate keys deriving from the

correlations relation are:

� id

� 1 event id 1 attribute id event id attribute id org id

Thus, correlations is not in BCNF, since the left set of FD3 and FD4 functional

dependencies are not superkeys. Specifically, the functional dependency FD3,

event id attribute id → value

is not trivial and the attributes event id, attribute id do not consist a superkey.

As a result, a pair of attributes’ IDs, that provide the same value, along with their

corresponding event IDs, create duplicate entries in the correlations relation. That

occurs during the correlation engine’s procedure, which will produce a correlation

entry each time it encounters a matching pair of attributes’ values, within different

events. To counter that, we need to restructure the correlations table, while also

altering the MISP correlation engine to implement this alteration.

Furthermore, the correlations relation is neither in BCNF nor in 3rd Normal

Form (3NF), since the left set of FD3 and FD4 functional dependencies are not

superkeys and value (on the right set of FD3 and FD4) is not part of a candidate

key. Since the correlation relation employed by MISP is not in BCNF or 3NF, to

reduce redundancy, we apply the decomposition algorithm [79].

56 4.3 : MISP in ASPIS

The decomposition algorithm considers in turn all functional dependencies that

violate the BCNF and 3NF conditions. The first such dependency is FD3.

Let A={1 event id, 1 attribute id} and B={value}. According to the decom-

position algorithm, the correlations relation is decomposed into relations R1 and R2

as follows:

Relation Attributes Functional Dependencies

R1
A+={1 event id,

1 attribute id, value} 1 event id 1 attribute id → value

R2

correlations-(A+-B)=
={id, value, event id,

attribute id, org id,

distribution,

a distribution,

sharing group id,

a sharing group id,

date, info}

id → value, event id, attribute id, org id,

distribution, a distribution, sharing group id,

a sharing group id, date, info

event id attribute id → value

Following the same procedure for FD4, we are resulted with:

Relation Attributes Functional Dependencies

R3
A+={event id,

attribute id, value} event id attribute id → value

R4

correlations-(A+-B)=
={id, value, 1 event id,

1 attribute id, org id,

distribution,

a distribution,

sharing group id,

a sharing group id,

date, info}

id → value, 1 event id, 1 attribute id, org id,

distribution, a distribution, sharing group id,

a sharing group id, date, info

1 event id 1 attribute id → value

Summing up, we are resulted with R1, R2, R3, and R4, where R1 and R3 provide

the same information, thus we may discard one of them. Similarly, R2 and R4 provide

the same information, thus we may discard one of them too. From that, we have:

R2: {id, value, event id, attribute id, org id, distribution,

a distribution, sharing group id, a sharing group id, date, info}, with

functional dependencies:

• id → value, event id, attribute id, org id, distribution,

a distribution, sharing group id, a sharing group id, date, info

• event id attribute id → value

R3: {event id, attribute id, value}, with functional dependencies:

• event id attribute id → value

Finally, R3 consists only a subset of R2, and thus it may be discarded as well,

leading to one final relationship:

Chapter 4 : The ASPIS System 57

R2: {id, value, event id, attribute id, org id, distribution,

a distribution, sharing group id, a sharing group id, date, info}, which

is the BCNF equivalent of correlations. We will refer to this relation by correlationsNF.

To implement that alteration in the MISP correlation engine of ASPIS, the table

correlationsNF is created in the MISP database, as follows:

CREATE TABLE correlationsNF AS

SELECT DISTINCT value , event_id , attribute_id , org_id , distribution ,

a_distribution , sharing_group_id , a_sharing_group_id , date , info

FROM correlations;

Next, after removing the correlations table, a view is created, in order to support

the engine’s functionality. The view is created in the following manner:

CREATE VIEW misp.correlations AS SELECT c1.value AS value , c2.event_id AS

1_event_id , c2.attribute_id AS 1_attribute_id , c1.event_id AS event_id ,

c1.attribute_id AS attribute_id , c1.org_id AS org_id , c1.distribution AS

distribution , c1.a_distribution AS a_distribution , c1.sharing_group_id AS

sharing_group_id , c1.a_sharing_group_id AS a_sharing_group_id , c1.date AS

date , c1.info AS info

FROM correlationsNF c1, correlationsNF c2

WHERE c1.value = c2.value AND c1.event_id != c2.event_id;

Then, we add the required indices in the correlationsNF table:

ALTER TABLE correlationsNF ADD INDEX (value (255), event_id , attribute_id , org_id ,

sharing_group_id);

Finally, these changes are implemented in the internal code of the MISP corre-

lation engine as well.

4.4 Monitored Sources

As mentioned in Section 4.1, we have identified five certified CTI sources, which are

either vulnerability or exploit databases and contain analyzed CTI, in the form of

vulnerability and exploit reports. In this section, we present the example sources

that are being monitored by ASPIS, along with the CTI they provide.

NVD is the U.S. government repository of standards-based vulnerability mana-

gement data represented using the Security Content Automation Protocol (SCAP).

This data enables automation of vulnerability management, security measurement,

and compliance. The NVD includes databases of security checklist references, securi-

ty-related software flaws, misconfigurations, product names, and impact metrics.

NVD provides CTI information about vulnerabilities and their corresponding weak-

nesses, in the CVE and CWE formats. Specifically, NVD shares CTI like CVE

IDs, CPEs, vulnerability entries’ publication and modification dates, CVSS base

58 4.4 : Monitored Sources

metrics, external references and vulnerability entries’ descriptions, along with the

corresponding CWE IDs, CWE names and CWE descriptions.

JVN stands for the Japan Vulnerability Notes, and it is a vulnerability infor-

mation portal site designed to help ensure internet security by providing vulner-

ability information and their solutions for software products used in Japan. JVN

iPedia is the database of vulnerability countermeasure information published on

JVN, in Japan and abroad. JVN provides CTI information about vulnerabilities, in

the CVE format. Specifically, JVN shares CTI like CVE IDs, CPEs, vulnerability

entries’ publication and modification dates, CVSS base metrics, external references

and vulnerability entries’ descriptions.

KB-Cert vulnerability notes database is run by the CERT Division, which is

part of the Software Engineering Institute, a federally funded research and develop-

ment center operated by Carnegie Mellon University. It provides information about

software vulnerabilities, such as summaries, technical details, remediation informa-

tion, and lists of affected vendors. KB-Cert provides CTI information about vulnera-

bilities, in the CVE format. Specifically, KB-Cert shares CTI like CVE IDs, vulnera-

bility entries’ publication and modification dates, CVSS base/temporal/environmen-

tal metrics, external references and vulnerability entries’ descriptions.

VulDB is a community-driven vulnerability database, which is consisted of a

variety of teams (for analyzing reported threats, conducting the reports, moderating

reports that may contain wrong or inaccurate data gathered from other sources,

etc.), and it documents all security vulnerabilities that got published in a plethora of

sources. Such examples may be vendor sites, mailing lists, vulnerability contributors,

vulnerability databases, code repositories, news sites and blogs, social networks,

marketplaces, darknet, as well as internal testing (through white-hat exploiting

techniques). VulDB provides CTI information and meta-data about vulnerabili-

ties, enriching the standard CVE format. Specifically, it shares CTI like CVE

IDs, CPEs, vulnerability entries’ publication and modification dates, CVSS base

metrics, external references, vulnerability entries’ summaries, zero day and current

exploitation price range estimations, exploitability levels and remediation levels.

Exploit-DB is maintained by Offensive Security (OffSec), an information se-

curity training company that provides various information security certifications as

well as high end penetration testing services. However, Exploit-DB is a non-profit

project that is provided as a public service by the company. It is a CVE-compliant

archive of public exploits and the corresponding vulnerable software, developed

for use by penetration testers and vulnerability researchers. Exploit-DB provides

exploits gathered through direct submissions, mailing lists, and other public sources.

Chapter 4 : The ASPIS System 59

It serves as a repository for exploits and proof-of-concepts. Exploit-DB provides CTI

information about exploits. Specifically, it shares CTI like CVE IDs, Exploit-DB

IDs (for the yet not discovered CVEs), exploits’ descriptions, exploits’ authors’ alias

and the raw scripts for each exploit stored.

4.5 The Source Crawling and Parsing Phase

During this phase, ASPIS downloads and starts parsing, one-by-one, the required

files from the aforementioned sources, in order to extract only the encompassed CTI.

To achieve that, we have coded five Shell and Python scripts, accordingly tailored for

each one of the five sources at hand, which are executed daily to update the ASPIS
indexed content. In the following sections we will describe in detail the parsing

process followed for each source. The first two sources, NVD and JVN, provide data

feeds of their entries, in JSON and XML respectively, which are updated daily. The

last three sources, KB-Cert, VulDB and Exploit-DB, do not provide data feeds, and

hence we created scrapping processes to extract the CTI of new entries, which are

specifically tailored for each source and will be textually described in the following

sections.

4.5.1 NVD Parsing

NVD provides public access to a plethora of data feeds of its contents [35]; vulnerabi-

lity data feeds using the JSON format, CPE match data feed using the JSON format,

RSS vulnerability feeds, and official vendor comments on existing vulnerabilities.

The vulnerability data feeds contain both feeds grouped by the year of the CVE

ID, like nvdcve-1.1-2020.json, and the most recent entries (nvdcve-1.1-recent.json),

along with the most recent modifications of past entries (nvdcve-1.1-modified.json).

During this phase, ASPIS downloads the two latter aforementioned data feeds,

which regard only the recent and recently modified entries of NVD. Then, through

a custom-built Python JSON parser, we extract the CTI of each entry of the JSON

files. Specifically, from these entries we extract the following: CVE ID, CPEs,

publication and modification dates of the report, base CVSS metrics (strings and

scores), references to other advisories (along with the type of the reference, e.g.,

Vendor - for an official announcement of the affected product’s vendor), description

of the vulnerability, CWE ID, CWE name and CWE description.

60 4.5 : The Source Crawling and Parsing Phase

4.5.2 JVN Parsing

JVN provides public access to various data feeds of the JVN iPedia contents [25],

using the XML format; vulnerability data feeds, CPE match data feed, and a Vendor

name (product developer) list. The vulnerability data feeds contain both feeds

grouped by the year of the CVE ID (i.e., jvndb detail 2020.rdf), and the most

recent entries (jvndb new.rdf), along with the most recent modifications of past

entries (jvndb.rdf).

During this phase, ASPIS downloads the two latter data feeds, which regard

recent entries and the modifications of the past entries of JVN. Then, similarly to

the NVD Parsing, through a custom-built Python XML parser, we extract the CTI

of each entry of the XML files. Namely, from the XML entries, we extract the

following: CVE ID, CPEs, publication and modification dates of the report, base

CVSS metrics (strings and scores), references to other advisories, and description of

the vulnerability.

4.5.3 KB-Cert Crawling and Parsing

KB-Cert provides a publicly available list of their notes [27]. During this phase,

ASPIS first crawls all the links of this list, and stores them internally in a list

structure in the Python script implemented. After it has finished crawling the vul-

nerability notes’ links, it proceeds to parse them one-by-one as an HTML file. For

the purposes of this task, we have built a tailored HTML parser in Python, which

targets specific fields of the HTML file, that contain the useful CTI. The fields

parsed contain information, such as: an overview of the vulnerability, a description

of the vulnerability, a description of the impact of this vulnerability on the affected

products, a description of the solution to mitigate the issues caused by the vulnera-

bility, acknowledgements to the reporter of the vulnerability and the note conductor,

base, temporal and environmental CVSS metrics (strings and scores), references to

other advisories, CVE ID, and a publication and modification date of the note at

hand.

4.5.4 VulDB Crawling and Parsing

VulDB provides a limited access to its data. However, most data are accessible on

the public website (via [58–60]), providing up to 50 entries per day. The publicly

available CTI in VulDB is presented concisely in tables. To daily parse all available

CTI from VulDB, we have employed a custom-built Python script, which acts

as an HTML parser for three separate pages of VulDB. First, it visits the recent

Chapter 4 : The ASPIS System 61

page of VulDB with regard to the current date, like https://vuldb.com/?recent.

20200909, for the daily entries at hand. From the recent page, we parse the following

CTI, row-by-row from the provided table: publication date of the vulnerability

report, summary of the vulnerability, base meta-CVSS score, zero day and current

price range estimations (which derive from marketplaces’ monitoring), exploitability

label (i.e., an available exploit proof-of-concept), remediation level (i.e., an official-

fix proposal, like upgrading), and CVE ID. By following this approach, we are able

to crawl for more information or for entries that were above the limit of 50 in recent,

and are encompassed in the cvssv3 and exploits pages. To do so, for each entry of the

recent page, there is a set of url links that are parsed and stored in Python lists, to

be visited after parsing recent. This set is provided by two attributes of each entry;

the CVSS base score, and the price range estimations, which are accompanied by

a hyperref respectively, that lead to the aforementioned pages (i.e., https://vuldb.

com/?cvssv3.20200915 and https://vuldb.com/?exploits.20200915). Similarly

to recent, we then proceed to parse the cvssv3 page; row-by-row we extract the

following CTI: base meta-CVSS score (which occurs as a result of the average score

of all other available CVSS strings and scores), base VulDB CVSS string and score,

base NVD CVSS string and score, base Vendor CVSS string and score (as resulted

by the Vendor’s analysis), and base Researcher CVSS string and score (as provided

by a researcher to the VulDB), summary of the vulnerability, and CVE ID. Finally,

the same procedure is followed for the exploits page. The employed script parses

the provided table row-by-row, extracting the following CTI: publication date of

the vulnerability report, zeroday and current day price range estimations (as they

derive from marketplaces’ monitoring), summary of the vulnerability, exploitability

label, a link to the source of the vulnerability’s exploit, and CVE ID.

4.5.5 Exploit-DB Crawling and Parsing

Exploit-DB provides a publicly available list of their exploits and proof-of-concepts [12].

However, the contents of the list load dynamically and do not exist in the HTML

file. Thus, in order to parse the available CTI, we have created a Shell script, that

starts parsing each page of the exploits of Exploit-DB. So, the first time it executes,

it would start by https://www.exploit-db.com/exploits/1, and while it reaches

the final entry, it keeps the first (unstored) Exploit-DB ID which hadn’t a CVE

ID assigned, in a file locally, in order to avoid parsing the same entries repeatedly.

The fields parsed from these pages contain information as: Exploit-DB ID, CVE ID,

description of the exploit, author alias, and finally the raw script of the exploit.

https://vuldb.com/?recent.20200909
https://vuldb.com/?recent.20200909
https://vuldb.com/?cvssv3.20200915
https://vuldb.com/?cvssv3.20200915
https://vuldb.com/?exploits.20200915
https://www.exploit-db.com/exploits/1

62 4.6 : The Object Structuring Phase

4.6 The Object Structuring Phase

After extracting all actionable CTI from the parsing procedure described in the

previous section, ASPIS proceeds to structure it in the format of the suitable MISP

objects, in accordance to the objects and attributes described in Section 4.3.1, with

the use of the PyMISP library, as presented in Figure 4.2. To achieve that, the

system generates the MISP objects in JSON format, as sets of attributes’ <field,

value, comment>, with the values extracted from the parsing phase. The comment

field is used to store enriching information to the value. In example, declaring the

source of a reference, whether it is from the affected vendor, or an other vulnerability

notes’ source. Examples of the occurring format, are presented in Appendix A, for

each source.

4.7 The Event Management Phase

The event management phase executes in parallel to the source crawling and parsing

phase as described in the previous section. What actually happens during this phase,

is either the creation of new events, each time new CTI arrives to the ASPIS system,

or the modification of previously stored events, due to updated CTI artifacts. This

is also, the phase during which the clustering of the gathered CTI occurs. In the

following sections, we describe the process followed in order to achieve that.

4.7.1 Event Lookup

First of all, in order to determine whether the CTI which arrived, is uncatalogued by

the system or not, ASPIS queries the MISP instance, with the CTI’s unique identifier

at hand, which may be either a CVE ID, or an Exploit-DB ID, as described in

Section 4.5. So, through the use of PyMISP, ASPIS queries MISP, for any event that

regards the currently parsed CTI’s unique ID, by looking into the events’ info field,

which is used by the system for storing such identifiers. The result of the query can

lead to two possible outcomes; (a) the parsed CTI ID doesn’t exist within the ASPIS
database, and therefore a new event should be created (see Section 4.7.2), or (b) the

parsed CTI ID exists, and therefore one or more existing events should be modified

(see Section 4.7.3). For the second case, the system returns the corresponding

MISP Event in JSON format, through PyMISP, and it also temporarily stores the

corresponding MISP Event ID, as it is stored in the MISP instance.

Chapter 4 : The ASPIS System 63

4.7.2 Event Creation

If the parsed CTI is unindexed by ASPIS, then through PyMISP, the system follows

a three-step approach, to catalogue it.

Step 1. It generates a new event in the MISP instance, with the following predefined

event characteristics (as presented in Section 3.5.3.3): Distribution - Your

organisation only, Threat Level - Undefined, Analysis - Completed. Addi-

tionally, it sets the event’s info field, to match the parsed CVE ID, or the

Exploit-DB ID (in case a CVE ID is not defined in the Exploit-DB entry at

hand).

Step 2. It generates the required MISP Objects (with regard to the specifications

of each monitored source), from the constructed JSON structures of the object

structuring phase (as described in Section 4.6). Additionally, the generated

objects’ validity is checked both locally, through the PyMISP library’s objects’

definitions, and externally, through a PyMISP request of the MISP instance

objects’ definitions. Both definitions must be the same for this step to succeed,

and they are expressed in the form of JSON files, in the PyMISP library’s files

and the MISP instance’s files.

Step 3. It attaches the generated MISP Objects to the event that was generated

in the first step, on the MISP instance.

4.7.3 Event Modification

An event modification may occur in three cases; the system parsed CTI which is (a)

unstored by the system, but it regards an existing CVE ID entry (which happens

due to overlapping CTI from different sources), (b) an updated version of previously

stored CTI, (c) an updated version of previously stored CTI from Exploit-DB, where

the old entry did not contain a reference to a CVE ID, and the new one does. Any

modification that occurs during this phase, makes use of the previously stored MISP

Event, which derives from the Event Lookup phase (Section 4.7.1), through its ID,

that points on the MISP instance, through PyMISP, the event that is going to be

modified. In the following sections, we describe the process followed for each one of

the aforementioned cases.

4.7.3.1 Event Enrichment with Complementary CTI from Another Source

In this case, the system encountered unstored CTI deriving from the parsing phase,

which regards an existing event on the MISP instance. ASPIS proceeds to generate

the required MISP Objects, as described in the second step of Section 4.7.2, and

64 4.7 : The Event Management Phase

then it attaches them to the existing event. To achieve that, the system checks the

credit field of each object within the event at hand. If there is no match, the system

proceeds with the process described.

4.7.3.2 Event Update due to Updated CTI

In this case, the system encountered previously stored CTI deriving from the parsing

phase, which regards an existing outdated entry on the MISP instance. Similarly

to the previous case, to achieve that, the system generates the corresponding MISP

Objects and checks the credit field of each object within the event at hand. If there is

a match, the system proceeds to check the modified attribute of the matching object,

which regards the modification date of the CTI encompassed. Iff the modification

date of the newly parsed CTI is more recent than the previously stored one, the

system deletes the stored object, and proceeds to attach the newly generated object,

to the MISP Event at hand.

4.7.3.3 Exploit-DB Entry Added a Reference to a CVE ID

Exploit-DB is an exceptional source, since it specifically regards exploit CTI (not

vulnerability CTI, as the rest of the sources do). Thus, it is possible to encounter

CTI in Exploit-DB, which does not encompass a reference to a CVE ID. In this case,

it is stored in the ASPIS database, with the Exploit-DB ID at the event’s info field,

as mentioned in the first step of the event creation phase (Section 4.7.2). However,

there is a chance that an Exploit-DB entry is updated, and it then encompasses a

reference to a CVE ID. In this case, the system proceeds to check if the returned

matching event of the event lookup phase, does not contain a CVE ID in its info

field. Thus, if the parsed CTI of Exploit-DB contains a reference to a CVE ID,

and the aforementioned event that does not regard a CVE ID, but encompasses the

aforementioned CTI, the system proceeds to (a) delete the existing event, and then

(b) attach the generated MISP Object to the corresponding MISP Event (of the

referenced CVE ID, found in the parsed CTI).

4.7.4 Events’ Correlations

Finally, it is important to note that, after each event creation/modification, ASPIS
proceeds to recalculate the correlations, through the MISP Correlation Engine, since

there is a possibility that the newly stored CTI may regard the same affected

products, as other events (as described in Section 4.3.2). After this process, the

event at hand points to all related events, as depicted in Figures 3.7, 3.10.

Chapter 4 : The ASPIS System 65

4.8 The CTI Sharing and Reviewing Phase

After gathering all publicly available CTI from the monitored sources, ASPIS is

then able to proceed to the CTI sharing and reviewing phase. The sharing of the

encompassed CTI may occur in two ways. The first, is to share CTI through the

sharing features of MISP, as described in Section 3.2. The second method, is to query

ASPIS through the provided MISP REST API, using the required authorization

credentials. In the following section, we provide a detailed overview of how this may

be achieved.

4.8.1 MISP REST API: RESTful Searches

As mentioned earlier, MISP provides the option to search its embedded database,

via the provided REST API. In this section, we focus on RESTful searches over

the stored CTI of the ASPIS database. As mentioned in Section 3.4, MISP is able

to export CTI in various CTI sharing standards such as JSON, XML, OpenIOC,

Suricata, Snort, STIX, and more. Thus, it is possible to query the MISP REST API,

for information regarding a specific entry, and receive a response in the requested

format. For these purposes, there are two REST endpoints; one that regards in-

formation on event level, and one for the attribute level. In the first case, a user

may retrieve all related CTI to the posed query, while in the second case, the user

may retrieve all related attributes of the stored CTI, which match the posed query

(e.g., a vulnerability’s description). Both of these endpoints use the POST HTTP

method to query the MISP REST API. In the following sections, we break down the

structure of the POST request (endpoint, headers, payload/body), that is required

to retrieve the desired CTI from the MISP API.

4.8.1.1 List of RESTful Endpoints

As mentioned earlier, there are two REST endpoints to retrieve the desired CTI

from MISP. Below, we present their URLs:

� Events’ endpoint: https://<misp url>/events/restSearch

� Attributes’ endpoint: https://<misp url>/attributes/restSearch

4.8.1.2 Authorization

Automation functionality is designed to automatically feed other tools and systems

with the data of the MISP repository. To make this functionality available for

automated tools, an authentication key is used. Thus, in order to gain access to

66 4.8 : The CTI Sharing and Reviewing Phase

the REST API of MISP, the users should include their uniquely generated key (as

a header in the request).

4.8.1.3 Headers

The headers that should be included in the request are the following:

1 Authorization: <authorization_key >

2 Accept: application/json

3 Content -type: application/json

4.8.1.4 Search Constraints (Payload/Body)

Finally, in the RESTful search request, the user should also include the search

constraints of choice, in the following manner:

1 {
2 "returnFormat": "format", //(required)

3 "value": "search_value", //(required)

4 "type": "type_of_value_to_search",

5 "last": "last_x_amount_of_time",

6 "page": page_number,

7 "limit": number_of_results_per_page

8 }

Where:

� The format may be one of: json, xml, csv, openioc, stix2, suricata, yara,

and more.

� The search value may be either a specific string (e.g., cpe:/a:apache:solr:6.4.2),

or it may include wildcards, which are expressed by the % character in MISP

(e.g., %solr%).

� The type of value to search specifies the types of attributes, that the search

should focus on. (e.g., a CPE is stored in an attribute of text type, while a

reference url is stored in an attribute of link type.1)

� The last x amount of time is used to request events published within the

last x amount of time, where x can be defined in days, hours or minutes (for

example: 5d or 12h or 30m).

� The page number serves as the paginator of the results, where the user can

request the nth page of the results.

1See https://www.circl.lu/doc/misp/categories-and-types/#types for all available
types.

https://www.circl.lu/doc/misp/categories-and-types/#types

Chapter 4 : The ASPIS System 67

� The number of results per page is used to define the number of results the

user would like to receive per page.

4.8.1.5 cURL Example

With all of the aforementioned at hand, a user could pose a RESTful search, via

the curl command on the terminal. For example:

1 curl \

2 -d ‘{"returnFormat": "json", "value": "%ibm%", "page": 1, "limit": 10}’ \

3 -H "Authorization: auth_key" \

4 -H "Accept: application/json" \

5 -H "Content -type: application/json" \

6 -X POST https:// misp_url/events/restSearch

In this case, the user searches and retrieves the 10 latest CTI entries stored in

ASPIS, which refer “ibm” in any of their attributes, having the search output be in

JSON format.

4.8.2 CTI Reviewing through MISP Sightings

Finally, for the reviewing of the encompassed CTI, ASPIS makes use of the MISP

Sightings mechanism (as described in Section 3.3), which allows users to declare

whether an artifact is true positive or false positive, with regard to the vulnerabilities

and exploits that are stored in ASPIS.

4.9 ASPIS Usage

This section presents the main usage of ASPIS. Specifically, it showcases the main

functionalities of MISP, that provide a security expert with browsing, filtering,

inspecting and sharing capabilities, over the ASPIS indexed artifacts.

4.9.1 Login

The first page an ASPIS user comes across, is the login page, in order to gain access

to the CTI contents. As presented in Figure 4.5, the two fields required for logging

in, are an e-mail and a password.2

2In a fresh setup of MISP, these are provided to the system administrator during the
installation. The e-mail isn’t required to be a valid e-mail. Instead, it is a credential in the
form of e-mail, and it is created and provided by the system administrator, to each user.

68 4.9 : ASPIS Usage

Figure 4.5: ASPIS Login

Figure 4.6: ASPIS View Events List

4.9.2 Events Browsing and Filtering

By the time the users are logged in to the ASPIS MISP instance, they are provided

with a list of stored events, sorted in a chronologically descending order (as presented

in Figure 4.6. Through this page, the users are able to browse through the list of the

stored events. Furthermore, this page provides the users with filtering capabilities.

By clicking on the magnifying glass button, a window will pop up and as shown in

Figure 4.7, the users can search for a specific CVE ID, by adding a filtering rule on

the eventinfo field. Finally, through this page, if the users click on an event ID, they

will be redirected to the Event View page (presented in Section 3.5.3.3).

Chapter 4 : The ASPIS System 69

Figure 4.7: ASPIS Filter Events

4.9.3 Events Inspection

The Event View page enables ASPIS users to further inspect an event. First,

as presented in Figure 4.8, users can view, modify and review the event’s stored

artifacts. Moreover, the Event View page provides an Event Timeline view

(Figure 4.9), through which users are able to examine the timeline of any modi-

fication that may have occurred to the event. In ASPIS, users may use the Event

Timeline, to gain an overview of the artifacts’ discovery timeline. Finally, users are

provided with a correlation graph, which enables them to investigate any correlation

that may have occurred between the event at hand and the rest of the events, as

illustrated in Figure 4.10.

70 4.9 : ASPIS Usage

Figure 4.8: ASPIS Event Inspection

Figure 4.9: ASPIS Event Timeline Examination

Figure 4.10: ASPIS Event Correlations Graph Inspection

Chapter 4 : The ASPIS System 71

4.9.4 CTI Sharing: MISP REST API

With regard to the CTI sharing capabilities of ASPIS, it utilizes the MISP REST

API, to enable users share and retrieve any information that is stored in the system’s

database. To facilitate the process of CTI sharing, MISP provides a GUI that enables

users formulate their queries; namely the MISP Query Builder. Specifically, MISP

Query Builder provides various templates to best support each user’s querying needs

(i.e., Search based on events’ metadata or events’ attributes). After formulating their

queries, by adding the corresponding filtering rules, users can inject that set of rules

to an HTTP request. In example, in Figure 4.11, a user is willing to retrieve or

share any CTI artifacts that regard Wordpress and are discovered within the past

month. Next, users can execute the formulated query to the MISP REST API, to

verify its validity in terms of the MISP REST API querying syntax. After success,

as presented in Figure 4.12, users are provided with two possible ways of querying

MISP, without using the provided GUI; through cURL or PyMISP. Following the

aforementioned example, with simple PyMISP scripting, ASPIS users are able to

request from MISP any CTI artifact that regards Wordpress, discovered within the

past month, such as the CPE, CVSS score and description, in order to stay alert

over cyber-threats that may concern them (Figure 4.13).

Figure 4.11: MISP Query Builder in Action

72 4.9 : ASPIS Usage

Figure 4.12: MISP REST API: cURL Querying & PyMISP Querying

Figure 4.13: ASPIS CTI for Wordpress Plugins Vulnerabilities of December 2020

Chapter 4 : The ASPIS System 73

4.10 System Installation

The ASPIS system installation is a process that can be achieved in three steps. First,

a MISP docker should be setup on the user’s machine, according to the instructions

found in MISP docker’s github (https://github.com/MISP/misp-docker). After

finalizing the MISP docker setup, the user must navigate to the project folder and

copy the ASPIS scripts folder to the same machine that hosts the MISP docker.

The Python scripts found in this folder support the functionality described in

Sections 4.5-4.7. Next, the user should connect to the MISP instance and navigate to

<misp url>/events/automation, to copy the automatically generated authorization

key and paste it into the aforementioned folder’s keys.py, in the misp key field.

Then, the user should install a crontab to daily execute the extract from.sh shell

script, which executes the required Python scripts that monitor the identified CTI

sources.

https://github.com/MISP/misp-docker

74 4.10 : System Installation

Chapter 5

Experimental Evaluation

In Section 4.3.2 we presented that the correlation engine of MISP stores redundant

information in the correlations relation. To counter that, in Section 4.3.3 we pro-

posed an alternative representation of the correlations relation, which we referred

to as correlationsNF. In this chapter we evaluate ASPIS performance, with regard

to the space and time requirements for storing the gathered CTI, as well as the

queries’ response time. To this end, we have conducted a series of experiments that

are analyzed in the following sections.

5.1 Experimental Setup

In this section we will describe the setup of the experiments conducted, to acquire

the measurements that evaluate the performance of the two ASPIS variations. The

first variation, namely ASPISD, utilizes the default MISP correlation engine. The

second, ASPISA, implements the proposed alteration of the MISP correlation engine,

as described in Section 4.3.3. The experimental evaluation aims to examine both

space and time requirements for storing CTI, and queries’ response times of the two

ASPIS variations. The experiments will review the effects of the complexity of the

multiple join operations, and the redundancy elimination of the stored information,

implemented in ASPISA, in comparison with ASPISD. In the following, we will

discuss the utilized data set, the generated query sets, the metrics employed in our

evaluation and the technical configuration of the machine that was used for the

experiments.

5.1.1 Data Set

The data set that is utilized for the purposes of the experimental evaluation, contains

all vulnerability entries, enlisted in the NVD dataset. Specifically, the data set

76 5.1 : Experimental Setup

consists of all yearly JSON data feeds provided by NVD, until CVE-2020, as they’re

offered in [35]. For reference purposes, in the rest of this chapter the data set will

be noted as DATA. The utilized elements of the JSON data feeds are presented in

Section 4.5.1.

DATA stores information of ∼158K CVE entries, that contain ∼307K objects

(approximately two objects per CVE entry, namely vulnerability and weakness, as

described in Section 4.3.1), and ∼3.8M attributes.

5.1.2 Query Sets

To evaluate the performance of the two ASPIS variations, we need to construct a

query load that is representative of the intended usage. In a real use-case scenario,

queries may use a CVE ID, a publication date and/or a CPE, to request matching

CTI entries and their related correlations. Queries that request entries with a high

number of correlations, are considered as expensive queries. Specifically, the response

time of such queries is increased proportionally to the number of correlations of the

requested entries.

To construct the query sets for the experimental evaluation, we first store the

vulnerability entries of the input dataset DATA, in ASPIS, in batches of 40K entries,

chronologically (with regard to their publication dates). Storing the vulnerabi-

lity entries in ASPIS results in the calculation and generation of correlations for

each stored entry. Then, we sample the stored CTI, to generate three query sets

for each batch of 40K stored entries, to be provided with a dynamic view of the

query response times, in a constantly growing database. Thus, for 40K vulnera-

bility entries indexed and correlated by ASPIS, we are resulted with CINT(40K),

CRAND(40K), CLOW(40K); the three generated query sets. Similarly, for 80K

vulnerability entries indexed and correlated, we have CINT(80K), CRAND(80K),

CLOW(80K), and so on. Each query of the generated query sets basically contains

one CVE ID, and it requests the corresponding stored CTI entry and its related

correlations, from ASPIS. Particularly, the formulated queries are generated from

three CVE ID lists (namely, CINT, CRAND and CLOW), and distinguished into three

query sets, with regard to the number of correlations related to each corresponding

CTI entry. The CVE ID lists’ generation methodology is described in the following.

CINT consists of the 20% CVE IDs of the indexed entries of ASPIS, that have the

higher number of correlations.

CRAND consists of all CVE IDs of the indexed entries of ASPIS.

CLOW consists of the 20% CVE IDs of the indexed entries of ASPIS, that have the

lower number of correlations (having at least one correlation).

Chapter 5 : Experimental Evaluation 77

0.1

1

10

100

1000

10000

40
00
0

80
00
0

12
00
00

16
00
00

N
u
m
b
er

o
f
co

rr
el
a
te
d
ev

en
ts

/
q
u
er
y

Number of stored events

CINT

C INT(1
58K)

C INT(1
20K)

C INT(8
0K)

C INT(4
0K)

CRAND

CRAND(1
58K)

CRAND(1
20K)

CRAND(8
0K)

CRAND(4
0K)

CLOW

CLOW
(158

K)

CLOW
(120

K)

CLOW
(80K

)

CLOW
(40K

)

Figure 5.1: Query sets’ average correlations per query proportionally to the stored events

Query set AVG(correlations per query)

CINT(40K) 215

CRAND(40K) 25

CLOW(40K) 1

CINT(80K) 905

CRAND(80K) 150

CLOW(80K) 1

CINT(120K) 1902

CRAND(120K) 245

CLOW(120K) 1

CINT(158K) 2660

CRAND(158K) 360

CLOW(158K) 1

Table 5.1: Query sets’ average correlations per query

In Figure 5.1 and Table 5.1 we provide an overview of the resulting correlati-

ons per query distribution for each query set. To calculate that, we produced a

query load of 100 queries for each query set. Each query requested from ASPIS
the total number of correlations per CVE ID searched. Thus, we were able to

extract an average correlations per query distribution for each query set. Finally,

the numbers presented in Figure 5.1 and Table 5.1 are averaged over 10 executions

of the aforementioned methodology. E.g., for ∼158K stored CVE entries, a highly

correlated CVE entry would return 2660 correlations on average (CINT(158K)),

while a random CVE entry would be intercorrelated with 360 entries (CRAND(158K)).

Finally, while the generated query sets of CINT and CRAND provide an adequate

overview of the expensive queries’ response times, CLOW query sets provide an

overview of the minimal effect of the correlations relation over the expensive queries’

response time, since they request one correlation per CTI entry, which is the minimal

number required to examine the effect of the correlations relation over the CTI

querying times.

78 5.1 : Experimental Setup

5.1.3 Configuration Parameters and Metrics Employed

To evaluate ASPIS, we evaluate the required space for storing the incoming CTI,

and the time required for the CTI storing and processing and the CTI querying

tasks.

5.1.3.1 CTI Storing Space Requirements

Following, we compare the space required by ASPISA and ASPISD, to store the

incoming CTI. Since ASPISA and ASPISD only differ in the correlations relation,

we focus on the space required to store this relation. Specifically, to achieve that

comparison, we study the correlations table size, with respect to the data and index

size (in MB). That information is provided by the MySQL information schema [32].

The aforementioned metrics presented in this section, are monitored for each step

of 100 CVEs insertions or modifications that occured, for both configurations.

5.1.3.2 CTI Storing and Processing Time

As described in Section 4.5, ASPIS gathers CTI from the monitored sources daily.

So, it is important for the system to be able to process the incoming CTI in less than

24h to function properly, because otherwise it would not be able to keep up with the

sources’ CTI dissemination rate. The processing and storing of the incoming CTI is

mainly affected by the number of correlations of the events. Thus, the more events

that are being stored in the system, the more correlations are going to be generated,

which leads to an increase in the incoming CTI processing and storing time. So,

the first metric that we are going to monitor is the CTI storing and processing

time. This metric is the wall-clock time elapsed by the moment the system begins

processing the gathered CTI until it is stored, indexed and correlated by ASPIS.

As mentioned in Section 5.1.1, DATA organizes all CVE entries by the year they

were discovered. So, to monitor that metric in a realistic manner, we simulate

the daily execution of the CTI storing task, by using the publication and the

modification dates provided by DATA. We use both dates to cumulatively count

the total time required for each day’s CTI publications’ indexing by ASPIS. The

daily execution simulation of the CTI storing task is described in Algorithm 1.

5.1.3.3 CTI Querying Response Time

The final metric we compare is the CTI querying response time of ASPIS. Specifically,

we query both variations, using the query sets presented in Section 5.1.2, and

compare the resulting average query response time for each query set. Further-

more, we measure the same metric for ASPIS, at the same time it executes the CTI

Chapter 5 : Experimental Evaluation 79

Algorithm 1: Daily CTI storing task simulation

Result: The daily time required by ASPIS for handling incoming CTI
daily storing time = {};
/*daily storing time is a list that stores the simulated elapsed time for each date*/

for each CVE entry in DATA do
start time = time.now();
Store or update CVE entry and correlate with existing entries of ASPIS;
elapsed time = time.now() - start time;
if CVE entry.publication date = CVE entry.modification date then

/*CVE entry was never modified after publication*/
daily storing time[CVE entry.publication date] += elapsed time;

else
/*CVE entry was published on publication date and modified on
modification date*/

daily storing time[CVE entry.publication date] += elapsed time;
daily storing time[CVE entry.modification date] += elapsed time;

end

end

storing task, to capture the effects it would have over the CTI queries’ response

times, providing an overview of a realistic use-case scenario, where users can query

the system’s CTI at any given point in time. As mentioned in Section 5.1.3.2, during

the CTI storing task, ASPIS handles incoming CTI and recalculates correlations,

which are tasks that occupy the system’s resources, burdening its performance. To

this end, for both experiments we count the wall-clock time required for the queries’

responses. Finally, while the first experiment is conducted for all query sets, the

second is conducted for the last two triplets of query sets of Section 5.1.2 (for 120K

and 158K indexed entries in ASPIS), to capture the average query response time on

instances that already contain high amounts of correlations, which makes the CTI

storing a challenging task for the system.

5.1.4 Technical Configuration

For the experiments conducted, in order to get the measurements that evaluate the

two variations of ASPIS, we use an off-the-rack PC with a Xeon W-1250 3.3GHz

CPU, a total of 16GB RAM capacity (2 × 8GB DDR-4 3200MHZ) and a 512GB

NVMe SSD (Read & Write Speeds: 3GB/s & 1.8GB/s), running Ubuntu Linux

18.04. The results of each experiment presented in Section 5.2 are averaged over 10

runs.

80 5.2 : Experiment Results

5.2 Experiment Results

In this section, we review the experiment results for the CTI storing and querying

space and time requirements of ASPIS. The experiments conducted, can be divided

in three parts. The first regards the CTI storing space requirements of ASPIS. The

second part regards the CTI storing time requirements of the system. Finally, the

third part regards the CTI queries’ response times of the system. All experiments

are conducted for both ASPISA and ASPISD variations, to compare them in terms of

overall space and time requirements, for the tasks of CTI storing and CTI querying.

5.2.1 CTI Storing Space Requirements

Regarding the system’s space requirements for the task of CTI storing, we compare

the correlations relation’s required space of ASPISA and ASPISD variations, used

to store the corresponding information. Particularly, as stated in Section 5.1.3.1, we

monitor the correlations table size of the two variations, with respect to the data and

index size (in MB). Figure 5.2 illustrates how the two aformentioned metrics increase

for both variations, with regard to the number of stored CTI entries. Specifically,

the x axis of the illustrated graphs represents the number of unique CTI entries,

stored in the system, while the y axis indicates the storage space that was used to

store the correlations relation’s information in the database.

Reviewing the results, we observe that for ASPISD, the occupied space escalates

exponentially with regard to the number of the stored CTI entries, while in ASPISA,

it increases logarithmically after ∼50K entries. This difference is entirely attributed

to the redesign of the correlations relation discussed in Section 4.3.3. Our proposal

optimizes storage requirements, reducing it by an order of magnitude. Specifically,

for ∼158K CTI entries, ASPISD required ∼40GB, and ASPISA required ∼350MB.

5.2.2 CTI Storing and Processing Time

Regarding the CTI storing and processing task’s execution times, as stated in

Section 5.1.3.2, we monitor the daily and the monthly average CTI storing and pro-

cessing time. For the daily CTI storing and processing time, we simulated the daily

execution of the CTI storing task, by using the publication and modification

dates provided by the input dataset, DATA, according to the simulation methodology

presented in Algorithm 1. With regard to the monthly average CTI storing and pro-

cessing time, we monitor a moving average for a window of 30 days, over the stored

dates and times provided by the daily CTI storing and processing time.

To this end, Figure 5.3 presents the simulations’ elapsed daily times for storing

Chapter 5 : Experimental Evaluation 81

correlations relation space requirements

1

10

100

1000

10000

100000

20
00
0

40
00
0

60
00
0

80
00
0

10
00
00

12
00
00

14
00
00

16
00
00

1

10

100

1000

10000

100000

20
00
0

40
00
0

60
00
0

80
00
0

10
00
00

12
00
00

14
00
00

16
00
00

R
eq

u
ir
ed

sp
a
ce

(M
B
)

Number of events

ASPISD index size (MB)
ASPISA index size (MB)

R
eq

u
ir
ed

sp
a
ce

(M
B
)

Number of events

ASPISD data size (MB)
ASPISA data size (MB)

Figure 5.2: ASPISA and ASPISD CTI storing space requirements

the CTI for both ASPISD and ASPISA. To provide a clearer view of the elapsed

times for the CTI gathering and storing, we present the calculated monthly moving

average of the daily times, in Figure 5.4. From that, we realize that the MISP corre-

lation engine alteration implemented in ASPISA, requires approximately 150% more

CTI processing and storing time, than the default correlation engine of ASPISD.

This occurs due to the internal correlation mechanism of MISP, which reproduces the

default correlations relation through multiple join operations over correlationsNF,

each time it stores new CTI, to calculate and store new CTI correlations, as described

in Section 4.3.3 and Section 4.3.3.2. However, it doesn’t interfere with the system’s

functionality, since it doesn’t exceed the CTI processing and storing time margin of

24h.

82 5.2 : Experiment Results

0.01

0.1

1

10

100

1000

10000

100000

19
88

19
91

19
94

19
97

20
00

20
03

20
06

20
09

20
12

20
15

20
18

20
21

0.01

0.1

1

10

100

1000

10000

100000

19
88

19
91

19
94

19
97

20
00

20
03

20
06

20
09

20
12

20
15

20
18

20
21

S
ec
o
n
d
s

Date

Daily limit
ASPISD

S
ec
o
n
d
s

Date

Daily limit
ASPISA

Figure 5.3: Daily time elapsed for the CTI gathering and storing

0.01

0.1

1

10

100

1000

10000

100000

19
88

19
91

19
94

19
97

20
00

20
03

20
06

20
09

20
12

20
15

20
18

20
21

S
ec
o
n
d
s

Date

Daily limit
ASPISA

ASPISD

Figure 5.4: Monthly average time elapsed for the CTI gathering and storing

Chapter 5 : Experimental Evaluation 83

0.01

0.1

1

10

40
00
0

80
00
0

12
00
00

16
00
00

Q
u
er
y
re
sp

o
n
se

ti
m
e
(s
ec
)

ASPISA CTIQ(CLOW)+CTIS
ASPISA CTIQ(CLOW)

ASPISD CTIQ(CLOW)+CTIS
ASPISD CTIQ(CLOW)

(a) CLOW query sets

0.01

0.1

1

10

40
00
0

80
00
0

12
00
00

16
00
00

Number of stored events

ASPISA CTIQ(CRAND)+CTIS
ASPISA CTIQ(CRAND)

ASPISD CTIQ(CRAND)+CTIS
ASPISD CTIQ(CRAND)

(b) CRAND query sets

0.01

0.1

1

10

40
00
0

80
00
0

12
00
00

16
00
00

ASPISA CTIQ(CINT)+CTIS
ASPISA CTIQ(CINT)

ASPISD CTIQ(CINT)+CTIS
ASPISD CTIQ(CINT)

(c) CINT query sets

Figure 5.5: ASPISD and ASPISA CTI querying average response times

5.2.3 CTI Querying Response Time

Using the query sets presented in Section 5.1.2, we compare the resulting average

query response times of the two variations of ASPIS, in seconds, for each query

set. To this end, Figure 5.5 presents the resulting average query response times for

each query set, for both variations. Particularly, Figure 5.5a presents the resulting

average query response times of ASPISA and ASPISD, for queries that request CTI

entries, with a low amount of correlations, while the results illustrated in Figure 5.5b

and Figure 5.5c refer to the queries that request random CTI entries and CTI

entries with a high number of correlations, respectively. The resulting times are

provided in relation to the number of stored events in ASPIS, and as realized, the

number of the stored events and their corresponding correlations affect the system’s

CTI querying performance. Furthermore, we realize that queries that request CTI

entries with a higher amount of correlations, tend to result in longer response times,

compared to the queries that request CTI entries with lower numbers of correlations.

Finally, Figure 5.5 presents how the CTI querying response times are affected by

the simulatenous execution of the CTI storing task. Particularly, for each examined

query set, the CTI storing task results in ∼20% increased querying response times.

84 5.2 : Experiment Results

Chapter 6

Conclusions and Future Work

In the previous chapter, we presented the ASPIS system’s experimental evaluation,

comparing the two correlation engines; the one provided by MISP, and the proposed

alteration. In this chapter, we sum up the thesis and conclude the experimental

evaluation results. Finally, we discuss our future plans regarding both the extensi-

bility and the longevity of ASPIS.

6.1 Summary and Conclusions

In this thesis we put our focus on facilitating the CTI life-cycle, by utilizing the

appropriate open-source tools, for automating the CTI gathering and sharing tasks.

Specifically, this thesis presented ASPIS, an Automated Source Pairing Intelligence

System, which stores valuable cyber-security-oriented information in an eVDB, for

the CTI gathering and sharing. With the development and automation of crawling

and parsing procedures, ASPIS manages to monitor five different sources; NVD,

JVN, KB-Cert, VulDB and Exploit-DB, and retrieve CTI daily. The proposed

CTI sharing platform for the purposes of the work carried out in this thesis, was

MISP. With the utilization of the PyMISP library and the use of Python scripting,

ASPIS manages to fully automate the CTI gathering task. Particularly, through

the proposed architecture, the system is able to gather and store CTI from different

sources, in a unified manner. At the same time it enables its users to complete the

CTI life-cycle, by providing all required functionalities that regard the CTI sharing

and reviewing.

Regarding the CTI analysis, we used the MISP correlation engine, to provide

additional context to the stored CTI. Characteristically, our proposed system uses

the MISP correlation engine, to generate correlations between the stored CTI, with

regard to the vulnerable tools, platforms, and hardware, providing connections

86 6.2 : Future Work

between related vulnerability events. However, when we put the default MISP

correlation engine to use, we realized that it led to space deficiency issues, due to its

non-optimized database schema. To counter that, we proposed an alternative cor-

relation engine schema, following the standard BCNF decomposition methodology.

Finally, through the experimental evaluation conducted, we presented that ASPIS
not only provides a sufficient solution to the space deficiency issues of the MISP

correlation engine, but it also consists a sustainable solution for the tasks of CTI

gathering, storing and sharing.

6.2 Future Work

In this section we discuss the possibility of future extensions of ASPIS, and also the

available directions that we plan to focus on in our future work.

Our future plans focus on automating and enhancing the complete CTI life-cycle,

and optimizing the system’s procedures by:

� automating the process of source identification, which may be achieved with

the use of focused crawling techniques, which are able to target CTI-related

content,

� providing a ranking methodology for the credibility of the identified sources,

� utilizing more flexible data structuring techniques, in order to be able to

dynamically enrich existing knowledge with additional context,

� establishing a more user-friendly UI, for the purposes of the contents’ presentation,

along with a user-friendly publish/subscribe mechanism,

� extending the MISP correlation engine with additional functionality, to provide

supplementary context to the correlated stored information,

� optimizing the query execution for ASPISA, by fine-tuning the MISP internal

code.

Appendix A

Examples of MISP Objects in

JSON Format

A.1 NVD: Vulnerability Object

1 [

2 {"id": {"value": "CVE -2020 -5659" }},
3 {"vulnerable_configuration":
4 {"value": "cpe:2.3:a:riken:xoonips:*:*:*:*:*:xoops:*:*"}
5 },
6 {"published":
7 {"value": "2020 -11 -16 T05:15:00.000000+0000" }
8 },
9 {"modified":

10 {"value": "2020 -11 -20 T14:54:00.000000+0000" }
11 },
12 {"cvss -score": {"value": 8.8}},
13 {"cvss -string":
14 {"value": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H"}
15 },
16 {"references":
17 {"value": "https://jvn.jp/en/vu/JVNVU92053563/index.html"},
18 {"comment": "[‘Third Party Advisory ’]"}
19 },
20 {"references":
21 {"value":

"https:// xoonips.osdn.jp/modules/news/index.php?page=article&

22 storyid =13"},
23 {"comment": "[‘Release Notes ’, ‘Vendor Advisory ’]"}
24 },
25 {"description":

88 A.2 : NVD: Weakness Object

26 {"value": "SQL injection vulnerability in the XooNIps 3.49 and

earlier allows remote authenticated attackers to execute

arbitrary SQL commands via unspecified vectors ."}
27 },
28 {"credit": {"value": "nvd"}}
29]

A.2 NVD: Weakness Object

1 [

2 {"id": {"value": "CWE -89"}},
3 {"name":
4 {"value": "Improper Neutralization of Special Elements used in

an SQL Command (‘SQL Injection ’)"}
5 },
6 {"description":
7 {"value": "The software constructs all or part of an SQL

command using externally -influenced input from an upstream

component, but it does not neutralize or incorrectly

neutralizes special elements that could modify the intended SQL

command when it is sent to a downstream component ."}
8 }
9]

A.3 JVN: Vulnerability Object

1 [

2 {"id": {"value": "CVE -2020 -5659" }},
3 {"vulnerable_configuration":
4 {"value": "cpe:/a:riken:xoonips"}
5 },
6 {"published":
7 {"value": "2020 -11 -09 T06:10:44.000000+0000" }
8 },
9 {"modified":

10 {"value": "2020 -11 -09 T06:10:44.000000+0000" }
11 },
12 {"cvss -score": {"value": 6.3}},
13 {"cvss -string":
14 {"value": "CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:L"}
15 },
16 {"references":

Chapter A : Examples of MISP Objects in JSON Format 89

17 {"value":
"https://cve.mitre.org/cgi -bin/cvename.cgi?name=CVE -2020 -5659" }

18 },
19 {"references":
20 {"value":

"https://cve.mitre.org/cgi -bin/cvename.cgi?name=CVE -2020 -5662" }
21 },
22 {"references":
23 {"value":

"https://cve.mitre.org/cgi -bin/cvename.cgi?name=CVE -2020 -5663" }
24 },
25 {"references":
26 {"value":

"https://cve.mitre.org/cgi -bin/cvename.cgi?name=CVE -2020 -5664" }
27 },
28 {"references":
29 {"value": "https://jvn.jp/en/vu/JVNVU92053563 /"}
30 },
31 {"description":
32 {"value": "XOOPS module "XooNIps" contains multiple

vulnerabilities listed below. * SQL injection (CWE -89) -

CVE -2020 -5659 * Reflected cross -site scripting (CWE -79) -

CVE -2020 -5662 * Stored cross -site scripting (CWE -79) -

CVE -2020 -5663 * Deserialization of untrusted data (CWE -502) -

CVE -2020 -5664 stypr of Flatt Security Inc. reported this

vulnerability to the developer and coordinated on his own.

After coordination was completed, this case was reported to

JPCERT/CC, and JPCERT/CC coordinated with the developer for the

publication ."}
33 },
34 {"credit": {"value": "jvn"}}
35]

A.4 KB-Cert: Vulnerability Object

1 [

2 {"id": {"value": "CVE -2019 -9507" }},
3 {"vulnerable_configuration":
4 {"value": "cpe:2.3:a:riken:xoonips:*:*:*:*:*:xoops:*:*"}
5 },
6 {"published":
7 {"value": "2019 -04 -12 T00:00:00+00:00"}
8 },
9 {"modified":

90 A.4 : KB-Cert: Vulnerability Object

10 {"value": "2020 -03 -30 T17:38:00+00:00"}
11 },
12 {"summary":
13 {"value": "The Vertiv Avocent Universal Management Gateway

Model UMG -4000 is a data center management appliance. The web

interface of the UMG -4000 is vulnerable to command injection,

stored cross -site scripting (XSS), and reflected XSS, which may

allow an authenticated attacker with administrative privileges

to remotely execute arbitrary code."}
14 },
15 {"description":
16 {"value": "The Vertiv Avocent UMG -4000 contains multiple

vulnerabilities that could allow an authenticated attacker with

administrative privileges to remotely execute arbitrary code.

The web interface does not sanitize input provided from the

remote client, making it vulnerable to command injection,

stored cross -site scripting, and reflected cross -site

scripting. CVE -2019 -9507 - CWE -95 ... \nImpact: An

authenticated remote attacker could inject arbitrary scripts or

persistently store malicious scripts on the web server that

could be used to collect and exfiltrate sensitive

information .\ nSolution: Apply an update Vertiv Avocent has

addressed these issues in the below versions: Non -Trellis

customers are encouraged to install Universal Management

Gateway firmware version 4.2.2.21 or higher to address these

vulnerabilities, located here. Trellis users of the Universal

Management Gateway running firmware version 4.2.0.23 that are

operating Trellis versions 5.0.2 through 5.0.6 should install

the update patch located here. Trellis users of the Universal

Management Gateway that are operating Trellis versions 5.0.6

and later should install Universal Gateway firmware version

4.3.0.23 located here.\ nAcknowledgements: This document was

written by Laurie Tyzenhaus ."}
17 },
18 {"cvss -string":
19 {"value": "AV:N/AC:M/Au:S/C:C/I:C/A:C"},
20 {"comment": "Temp [E:POC/RL:OF/RC:C] / Env [

CDP:ND/TD:ND/CR:ND/IR:ND/AR:ND]"}
21 },
22 {"cvss -score": {"value": 8.5}, {"comment": "Temp [6.7] / Env [

6.7]"}},
23 {"references":
24 {"value": "https://jvn.jp/en/vu/JVNVU92053563/index.html"},
25 {"comment": "[‘Third Party Advisory ’]"}
26 },
27 {"references":

Chapter A : Examples of MISP Objects in JSON Format 91

28 {"value":
"https://www.vertiv.com/globalassets/documents/firmware/

29 universal -management -gateway -release -notes -v4 .3.0.23 _vertiv_

30 update.pdf"}
31 },
32 {"references":
33 {"value":

"https://www.vertiv.com/en-us/support/software -download/

34 software/trellis -enterprise -and -quick -start -solutions -software -

35 downloads /"}
36 },
37 {"references":
38 {"value": "https://cwe.mitre.org/data/definitions /95. html"}
39 },
40 {"references":
41 {"value": "https://cwe.mitre.org/data/definitions /79. html"}
42 },
43 {"references":
44 {"value":

"https://www.owasp.org/index.php/Cross -site_Scripting_(XSS)#

45 Stored_and_Reflected_XSS_Attacks"}
46 },
47 {"credit": {"value": "kbcert"}}
48]

A.5 VulDB: Vuldb-Vulnerability Object

1 [

2 {"id": {"value": "CVE -2020 -35364" }},
3 {"summary":
4 {"value": "Beijing Huorong Internet Security 5.0.55.2

injection"}
5 },
6 {"published":
7 {"value": "2020 -27 -12 T10:05:00.000000+0000" }
8 },
9 {"vuldb -link":

10 {"value": "https://vuldb.com/?id .166845" }
11 },
12 {"zeroday -price": {"value": "$5k -$25k"}},
13 {"current -price": {"value": "$0 -$5k"}},
14 {"remediation":
15 {"value": "Not Defined"},
16 {"comment": "https://vuldb.com/? advisory_url .166845" }

92 A.6 : Exploit-DB: ExpDB-PoC Object

17 },
18 {"exploitability":
19 {"value": "Proof -of-Concept"},
20 {"comment": "https://vuldb.com/? exploit_url .166845" }
21 },
22 {"cvss -score": {"value": 6.3}, {"comment": "VulDB [5.3] / NVD [

8.8] "}},
23 {"cvss -string -VDB":
24 {"value": "AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N"}
25 },
26 {"cvss -string -NVD":
27 {"value": "AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H"}
28 },
29 {"credit": {"value": "vuldb"}}
30]

A.6 Exploit-DB: ExpDB-PoC Object

1 [

2 {"description":
3 {"value": "Gitlab 11.4.7 - Remote Code Execution"}
4 },
5 {"references": {"value":

"https://www.exploit -db.com/raw /49257" }},
6 {"author": {"value": "Fortunato Lodari"}},
7 {"credit": {"value": "expdb"}}
8]

Appendix B

MISP Versions Changelog

MISP 2.4.95 (2018-09-06)

� The search API in MISP has been refactored to be consistent among the

various export formats (JSON, XML, OpenIOC, Suricata, Snort, and the text

export); particularly, regarding the filtering process. String searches are by

default exact lookups, but the search API allows the use of ”%” wildcards to

perform substring searches.

� A complete REST client has been added in the MISP interface, to enable

MISP users query the API from the instance at hand.

� A debug functionality has been added in any API query to quickly show the

SQL queries performed.

MISP 2.4.96 (2018-10-09)

� All MISP export APIs have been unified into the restSearch APIs, with an

improved query format.

� A pagination system has been introduced, allowing users to easily paginate

over search result sets and limit the output.

� The search results in the MISP UI can be directly downloaded in any of the

supported formats available in MISP.

� Event/attribute data fetching performance increased, with the use of an internal

pagination and caching mechanism, which scales with the amount of memory

given to the PHP process, and hence reducing the chance of running into

memory limit issues.

� The freetext import is now delegated to a background process for large imports.

94

MISP 2.4.100 (2018-12-31)

� Improvements to the UI, API, import and export.

� Addition of a new query builder, available through the REST client interface,

that facilitates users to create JSON queries.

MISP 2.4.101 (2019-01-20)

� Improvements to the UI, import and export.

� Enabling/Disabling correlations is now accessible when creating/modifying an

attribute.

MISP 2.4.103 (2019-03-04)

� Improvements to the UI.

� Implementation of a new attribute filtering tool to the event view, that allows

for complex filtering rules.

MISP 2.4.106 (2019-04-25)

� Performance improvements for events with large numbers of attributes and

objects.

MISP 2.4.108 (2019-06-04)

� Added object relation as a filter for both the event/attribute restSearch functions.

MISP 2.4.109 (2019-06-13)

� Added date as a new restSearch filter, with a variety of accepted syntax

options, such as:

– time ranges in the shorthand format (7d or 24h, etc.)

– Timestamps

– fallback parsing for other formats (2019-01-01, ”fortnight ago”, etc.)

– date ranges using lists [14d, 7d]

MISP 2.4.112 (2019-08-02)

� New parameters added to attributes/restSearch to include additional context.

Chapter B : MISP Versions Changelog 95

– includeCorrelations: includes the correlations to other attributes (includes

a light-weight event object with each attribute)

– includeContext: includes the additional event fields in the attributes/restSearch

results (in JSON format) (e.g. UUID)

� Added ”weakness” object. It describes a weakness through the Common

Weakness Enumeration (CWE) format.

MISP 2.4.119 (2019-12-02)

� Enhanced database diagnostics with the integration of a new sub-system that

compares the current state of the MISP database to the reference DB schema,

highlighting potential issues or divergences. Additionally, it allows users to

generate SQL queries that would rectify the potential issues.

� Improved timestamp filtering in MISP. It now provides 4 different timestamp

filters on the following levels: event, attribute, attribute and event, and event

publish.

� Added tracking of the API deprecations, warning users of their state.

MISP 2.4.120 (2020-01-21)

� Extended the data-model by adding first seen and last seen values at the

attribute and object levels.

� Added the event timeline feature, through which users can (a) quickly view

the overall timeline of attributes and objects within an event, (b) zoom in and

out in the timeline, (c) edit and change the first seen and last seen by moving

the attributes/objects directly on the timeline.

MISP 2.4.123 (2020-03-11)

� Added a dashboard system, which is accessible directly in MISP and fully

customizable by its users.

� Users can select their home page, to land to any page in MISP

MISP 2.4.127 (2020-06-19)

� Added event ID to the page table.

� Refactored correlation saving to (a) always show other correlating value, (b)

make correlation saving faster (by moving more work to database, and not

fetching unnecessary fields), (c) fixed minor bugs.

96

MISP 2.4.129 (2020-07-28)

� Merge events functionality improved to (a) correctly handle objects, tags and

sharing groups, (b) be enabled through API (which will directly merge all

contents of the source event into the target event).

MISP 2.4.130 (2020-08-21)

� Speed improvements:

– Updating of correlations in one query. (Before, for every event saving

action, four queries for updating correlations were generated.

– Faster loading of related attributes (from the correlations).

� Show event preview before merging two events.

� The free-text import tool converts [at] to @ and hxtp and htxp to http.

MISP 2.4.131 (2020-09-08)

� Added a count returnFormat for the REST API, which simply counts the

number of attributes/events found (on each respective scope).

� The API GET requests on restSearch with no parameters are no longer allowed.

The users of the GET queries are warned with posted JSON bodies.

References

[1] ACHE Crawler by ViDA-NYU. https://github.com/ViDA-NYU/ache.

Accessed: 2021-04-06.

[2] BitSight Security Ratings. https://www.bitsight.com/security-ratings.

Accessed: 2021-02-20.

[3] BreachAlert, SKURIO. https://skurio.com/solutions/breach-alert/.

Accessed: 2021-02-20.

[4] BrightCloud, Webroot. https://www.brightcloud.com/. Accessed: 2021-02-

20.

[5] CIF: Collective Intelligence Framework by csirtgadgets. https://

csirtgadgets.com/collective-intelligence-framework. Accessed: 2021-

04-06.

[6] Common Vulnerabilities and Exposures (CVE) by MITRE. https://cve.

mitre.org. Accessed: 2021-04-06.

[7] CTAC, Wapack Labs. https://www.wapacklabs.com/ctac. Accessed: 2021-

02-20.

[8] Cyber Advisor, SurfWatch Labs. https://www.surfwatchlabs.com/threat-

intelligence-products/cyber-advisor. Accessed: 2021-02-20.

[9] Cyjax. https://www.cyjax.com/cyber-threat-services/. Accessed: 2021-

02-20.

[10] EclecticIQ. https://www.eclecticiq.com/platform. Accessed: 2021-02-20.

[11] ElasticSearch (a distributed, RESTful search and analytics engine). https:

//www.elastic.co/elasticsearch/. Accessed: 2021-04-06.

[12] Exploit-DB by OffSec Services. https://www.exploit-db.com. Accessed:

2021-04-06.

[13] F5 Labs. https://www.f5.com/labs. Accessed: 2021-02-20.

https://github.com/ViDA-NYU/ache
https://www.bitsight.com/security-ratings
https://skurio.com/solutions/breach-alert/
https://www.brightcloud.com/
https://csirtgadgets.com/collective-intelligence-framework
https://csirtgadgets.com/collective-intelligence-framework
https://cve.mitre.org
https://cve.mitre.org
https://www.wapacklabs.com/ctac
https://www.surfwatchlabs.com/threat-intelligence-products/cyber-advisor
https://www.surfwatchlabs.com/threat-intelligence-products/cyber-advisor
https://www.cyjax.com/cyber-threat-services/
https://www.eclecticiq.com/platform
https://www.elastic.co/elasticsearch/
https://www.elastic.co/elasticsearch/
https://www.exploit-db.com
https://www.f5.com/labs

98 References

[14] Flashpoint Intelligence Platform. https://www.flashpoint-intel.com/

platform/. Accessed: 2021-02-20.

[15] Gensim: Topic modeling for humans (a free Python library). https://

radimrehurek.com/gensim/. Accessed: 2021-04-06.

[16] Google Scholar. https://scholar.google.com. Accessed: 2021-05-19.

[17] GOSINT: A Framework for Collecting, Processing, and Exporting Indicators

of Compromise (IoC). https://gosint.readthedocs.io/en/latest/.

Accessed: 2021-04-06.

[18] Grakn: The Knowledge Graph. https://grakn.ai/. Accessed: 2021-04-06.

[19] GraphQL: A query language for APIs. https://graphql.org/. Accessed:

2021-04-06.

[20] Helix Security Platform, FireEye. https://www.fireeye.com/products/

helix.html. Accessed: 2021-02-20.

[21] IEEE Digital Library. https://ieeexplore.ieee.org/Xplore/home.jsp.

Accessed: 2021-05-19.

[22] Intel 471. https://intel471.com/. Accessed: 2021-02-20.

[23] IoTSec Ontology github page. http://iotsec.brunomozza.com/. Accessed:

2021-04-06.

[24] JVN iPedia - Vulnerability Countermeasure Information Database. https:

//jvndb.jvn.jp/en/. Accessed: 2021-04-06.

[25] JVN vulnerability data-feeds. https://jvndb.jvn.jp/en/feed/. Accessed:

2021-04-06.

[26] KB-Cert by Carnegie Mellon University. https://www.kb.cert.org/vuls/.

Accessed: 2021-04-06.

[27] KB-Cert vulnerability notes. https://www.kb.cert.org/vuls/bypublished/

desc/. Accessed: 2021-04-06.

[28] MISP - Open Source Threat Intelligence Platform & Open Standards For

Threat Information Sharing. https://www.misp-project.org/. Accessed:

2021-04-06.

[29] MISP Sightings remodeling and extensions. https://www.misp.software/

2017/02/16/Sighting-The-Next-Level.html. Accessed: 2021-04-06.

[30] MITRE ATT&CK TTPs knowledge base. https://attack.mitre.org/.

Accessed: 2021-04-06.

https://www.flashpoint-intel.com/platform/
https://www.flashpoint-intel.com/platform/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://scholar.google.com
https://gosint.readthedocs.io/en/latest/
https://grakn.ai/
https://graphql.org/
https://www.fireeye.com/products/helix.html
https://www.fireeye.com/products/helix.html
https://ieeexplore.ieee.org/Xplore/home.jsp
https://intel471.com/
http://iotsec.brunomozza.com/
https://jvndb.jvn.jp/en/
https://jvndb.jvn.jp/en/
https://jvndb.jvn.jp/en/feed/
https://www.kb.cert.org/vuls/
https://www.kb.cert.org/vuls/bypublished/desc/
https://www.kb.cert.org/vuls/bypublished/desc/
https://www.misp-project.org/
https://www.misp.software/2017/02/16/Sighting-The-Next-Level.html
https://www.misp.software/2017/02/16/Sighting-The-Next-Level.html
https://attack.mitre.org/

References 99

[31] mongoDB: The database for modern applications (a NoSQL database). https:

//www.mongodb.com/. Accessed: 2021-04-06.

[32] MySQL information schema. https://dev.mysql.com/doc/mysql-

infoschema-excerpt/8.0/en/information-schema-tables-table.html.

Accessed: 2021-04-06.

[33] National Vulnerability Database (NVD) by NIST. https://nvd.nist.gov/.

Accessed: 2021-04-06.

[34] netfilter: firewalling, NAT, and packet mangling for linux. https://www.

netfilter.org. Accessed: 2021-04-06.

[35] NIST NVD vulnerability data-feeds. https://nvd.nist.gov/vuln/data-

feeds. Accessed: 2021-04-06.

[36] OpenCTI: Open Cyber-Threat Intelligence platform. https://www.opencti.

io/en/. Accessed: 2021-04-06.

[37] OpenTAXII: a robust Python implementation of TAXII Services. https://

opentaxii.readthedocs.io/en/stable/. Accessed: 2021-04-06.

[38] OpenTPX - Threat Partner eXchange by LookingGlass. https://github.com/

Lookingglass/opentpx. Accessed: 2021-04-06.

[39] Prelude SIEM - Smart Security. https://www.prelude-siem.com/en/

prelude-siem-en/. Accessed: 2021-04-06.

[40] PyMISP documentation. https://pymisp.readthedocs.io/en/latest/.

Accessed: 2021-04-06.

[41] RabbitMQ (an open-source message broker). https://www.rabbitmq.com/.

Accessed: 2021-04-06.

[42] Recorded Future. https://www.recordedfuture.com/. Accessed: 2021-02-20.

[43] Retina Network Community by BeyondTrust. https://www.beyondtrust.

com/vulnerability-management. Accessed: 2021-04-06.

[44] SearchLight, Digital Shadows. https://www.digitalshadows.com/

searchlight/. Accessed: 2021-02-20.

[45] SecurityFocus Vulnerability Database. https://www.securityfocus.com.

Accessed: 2021-04-06.

[46] Snort: The open-source intrusion prevention system. https://www.snort.org.

Accessed: 2021-04-06.

[47] Soltra, Celerium. https://www.celerium.com/automate. Accessed: 2021-02-

20.

https://www.mongodb.com/
https://www.mongodb.com/
https://dev.mysql.com/doc/mysql-infoschema-excerpt/8.0/en/information-schema-tables-table.html
https://dev.mysql.com/doc/mysql-infoschema-excerpt/8.0/en/information-schema-tables-table.html
https://nvd.nist.gov/
https://www.netfilter.org
https://www.netfilter.org
https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds
https://www.opencti.io/en/
https://www.opencti.io/en/
https://opentaxii.readthedocs.io/en/stable/
https://opentaxii.readthedocs.io/en/stable/
https://github.com/Lookingglass/opentpx
https://github.com/Lookingglass/opentpx
https://www.prelude-siem.com/en/prelude-siem-en/
https://www.prelude-siem.com/en/prelude-siem-en/
https://pymisp.readthedocs.io/en/latest/
https://www.rabbitmq.com/
https://www.recordedfuture.com/
https://www.beyondtrust.com/vulnerability-management
https://www.beyondtrust.com/vulnerability-management
https://www.digitalshadows.com/searchlight/
https://www.digitalshadows.com/searchlight/
https://www.securityfocus.com
https://www.snort.org
https://www.celerium.com/automate

100 References

[48] Springer. https://www.springer.com. Accessed: 2021-05-19.

[49] Suricata - Open Source Intrusion Detection System (IDS) / Intrusion

Prevention System (IPS) / Network Security Monitoring (NSM) engine. https:

//suricata-ids.org. Accessed: 2021-04-06.

[50] Swagger: API Development. https://swagger.io/. Accessed: 2021-04-06.

[51] The MANTIS Cyber Threat Intelligence Management Framework, SIEMENS.

https://django-mantis.readthedocs.io/en/latest/readme.html.

Accessed: 2021-02-20.

[52] TheHive - Security incident response for the masses. https://thehive-

project.org/. Accessed: 2021-04-06.

[53] ThreatConnect. https://threatconnect.com/. Accessed: 2021-02-20.

[54] ThreatQ, ThreatQuotient. https://www.threatq.com/. Accessed: 2021-02-

20.

[55] ThreatStream, Anomali. https://www.anomali.com/products/

threatstream. Accessed: 2021-02-20.

[56] VDMR, Qualys. https://www.qualys.com/apps/vulnerability-

management-detection-response/. Accessed: 2021-02-20.

[57] VirusTotal (online file virus analysis). https://www.virustotal.com/gui/.

Accessed: 2021-04-06.

[58] VulDB recent CVSS metrics. https://vuldb.com/?cvssv3. Accessed: 2021-

04-06.

[59] VulDB recent exploits. https://vuldb.com/?exploits. Accessed: 2021-04-06.

[60] VulDB recent vulnerabilities. https://vuldb.com/?recent. Accessed: 2021-

04-06.

[61] VulDB: The community-driver vulnerability database. https://vuldb.com/.

Accessed: 2021-04-06.

[62] YETI - Your Everyday Threat Intelligence. https://yeti-platform.github.

io/. Accessed: 2021-04-06.

[63] ZeroFox. https://www.zerofox.com/. Accessed: 2021-02-20.

[64] ZeroMQ (an open-source messaging library). https://zeromq.org/. Accessed:

2021-04-06.

[65] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk,

M. Rodriguez-Muro, and G. Xiao. Ontop: Answering SPARQL queries over

relational databases. Semantic Web, 8, 02 2016.

https://www.springer.com
https://suricata-ids.org
https://suricata-ids.org
https://swagger.io/
https://django-mantis.readthedocs.io/en/latest/readme.html
https://thehive-project.org/
https://thehive-project.org/
https://threatconnect.com/
https://www.threatq.com/
https://www.anomali.com/products/threatstream
https://www.anomali.com/products/threatstream
https://www.qualys.com/apps/vulnerability-management-detection-response/
https://www.qualys.com/apps/vulnerability-management-detection-response/
https://www.virustotal.com/gui/
https://vuldb.com/?cvssv3
https://vuldb.com/?exploits
https://vuldb.com/?recent
https://vuldb.com/
https://yeti-platform.github.io/
https://yeti-platform.github.io/
https://www.zerofox.com/
https://zeromq.org/

References 101

[66] T. Chantzios, P. Koloveas, S. Skiadopoulos, N. Kolokotronis, C. Tryfonopoulos,

V.G. Bilali, and D. Kavallieros. The Quest for the Appropriate Cyber-threat

Intelligence Sharing Platform. In Slimane Hammoudi, Christoph Quix, and

Jorge Bernardino, editors, Proceedings of the 8th International Conference

on Data Science, Technology and Applications, DATA 2019, Prague, Czech

Republic, July 26-28, 2019, pages 369–376. SciTePress, 2019.

[67] VERIS Community. Vocabulary for Event Recording and Incident Sharing,

2014. http://veriscommunity.net/. Accessed: 2020-08-14.

[68] J. Connolly, M. Davidson, and C. Schmidt. The Trusted Automated eXchange

of Indicator Information (TAXII�), 2014. http://taxii.mitre.org/about/

documents/Introduction_to_TAXII_White_Paper_May_2014.pdf. Accessed:

2020-08-14.

[69] R. Danyliw. The Incident Object Description Exchange Format Version 2, 2016.

https://tools.ietf.org/html/rfc7970. Accessed: 2020-08-14.

[70] A. de Melo e Silva, J.J. Costa Gondim, R. de Oliveira Albuquerque, and L.J.

Garćıa-Villalba. A Methodology to Evaluate Standards and Platforms within

Cyber Threat Intelligence. Future Internet, 12(6):108, 2020.

[71] Y. Ducq, C. Agostinho, D. Chen, G. Zacharewicz, R. Jardim-Gonçalves,

and G. Doumeingts. Generic methodology for service engineering based on

service modelling and model transformation. Manufacturing Service Ecosystem.

Achievements of the European 7th FP FoF-ICT Project MSEE: Manufacturing

SErvice Ecosystem (Grant No. 284860). Eds. S. Weisner, C. Guglielmina, S.

Gusmeroli, G. Doumeingts, pages 41–49, 2014.

[72] ENISA. ENISA Threat Landscape 2015, 2016. https://www.enisa.europa.

eu/publications/etl2015/at_download/fullReport. Accessed: 2020-08-14.

[73] ENISA. ENISA Threat Landscape 2016, 2017. https://www.

enisa.europa.eu/publications/enisa-threat-landscape-report-

2016/at_download/fullReport. Accessed: 2020-08-14.

[74] ENISA. ENISA Threat Landscape 2017, 2018. https://www.

enisa.europa.eu/publications/enisa-threat-landscape-report-

2017/at_download/fullReport. Accessed: 2020-08-14.

[75] ENISA. Exploring the Opportunities and Limitations of Current Threat

Intelligence Platforms, 2018. https://www.enisa.europa.eu/publications/

exploring-the-opportunities-and-limitations-of-current-threat-

intelligence-platforms/at_download/fullReport. Accessed: 2020-08-14.

http://veriscommunity.net/
http://taxii.mitre.org/about/documents/Introduction_to_TAXII_White_Paper_May_2014.pdf
http://taxii.mitre.org/about/documents/Introduction_to_TAXII_White_Paper_May_2014.pdf
https://tools.ietf.org/html/rfc7970
https://www.enisa.europa.eu/publications/etl2015/at_download/fullReport
https://www.enisa.europa.eu/publications/etl2015/at_download/fullReport
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2016/at_download/fullReport
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2016/at_download/fullReport
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2016/at_download/fullReport
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2017/at_download/fullReport
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2017/at_download/fullReport
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2017/at_download/fullReport
https://www.enisa.europa.eu/publications/exploring-the-opportunities-and-limitations-of-current-threat-intelligence-platforms/at_download/fullReport
https://www.enisa.europa.eu/publications/exploring-the-opportunities-and-limitations-of-current-threat-intelligence-platforms/at_download/fullReport
https://www.enisa.europa.eu/publications/exploring-the-opportunities-and-limitations-of-current-threat-intelligence-platforms/at_download/fullReport

102 References

[76] ENISA. ENISA Threat Landscape 2018, 2019. https://www.

enisa.europa.eu/publications/enisa-threat-landscape-report-

2018/at_download/fullReport. Accessed: 2020-08-14.

[77] ENISA. ENISA Proactive Detection - Survey Results, 2020. https:

//www.enisa.europa.eu/publications/proactive-detection-survey-

results/at_download/fullReport. Accessed: 2020-08-14.

[78] B. Feinstein, D. Curry, and H. Debar. The Intrusion Detection Message

Exchange Format (IDMEF), 2007. https://tools.ietf.org/html/rfc4765.

Accessed: 2020-08-14.

[79] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database

systems - the complete book (international edition). Pearson Education, 2002.

[80] Infoblox. BloxOne Threat Defense Advanced: Strengthen and Optimize Your

Security Posture from the Foundation. https://www.infoblox.com/wp-

content/uploads/infoblox-datasheet-bloxone-threat-defense-

advanced.pdf, 2020. Accessed: 2020-10-30.

[81] Y. Jiang, Y. Atif, and J. Ding. Cyber-Physical Systems Security Based on a

Cross-Linked and Correlated Vulnerability Database. In S. Nadjm-Tehrani,

editor, Critical Information Infrastructures Security - 14th International

Conference, CRITIS 2019, Linköping, Sweden, September 23-25, 2019, Revised

Selected Papers, volume 11777 of Lecture Notes in Computer Science, pages

71–82. Springer, 2019.

[82] A. Khazaei, G. Mohammad, and M. Christoph. VuWaDB: A Vulnerability

Workaround Database. International Journal of Information Security and

Privacy (IJISP), 12(4):24–34, 2018.

[83] P. Koloveas, T. Chantzios, S. Alevizopoulou, S. Skiadopoulos, and

C. Tryfonopoulos. inTIME: A Machine Learning-Based Framework for Ga-

thering and Leveraging Web Data to Cyber-Threat Intelligence. Electronics,

10(7), 2021.

[84] P. Koloveas, T. Chantzios, C. Tryfonopoulos, and C. Skiadopoulos. A Crawler

Architecture for Harvesting the Clear, Social, and Dark Web for IoT-Related

Cyber-Threat Intelligence. In C. K. Chang, P. Chen, M. Goul, K. Oyama,

S. Reiff-Marganiec, Y. Sun, S. Wang, and Z. Wang, editors, 2019 IEEE World

Congress on Services, SERVICES 2019, Milan, Italy, July 8-13, 2019, pages

3–8. IEEE, 2019.

https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2018/at_download/fullReport
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2018/at_download/fullReport
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2018/at_download/fullReport
https://www.enisa.europa.eu/publications/proactive-detection-survey-results/at_download/fullReport
https://www.enisa.europa.eu/publications/proactive-detection-survey-results/at_download/fullReport
https://www.enisa.europa.eu/publications/proactive-detection-survey-results/at_download/fullReport
https://tools.ietf.org/html/rfc4765
https://www.infoblox.com/wp-content/uploads/infoblox-datasheet-bloxone-threat-defense-advanced.pdf
https://www.infoblox.com/wp-content/uploads/infoblox-datasheet-bloxone-threat-defense-advanced.pdf
https://www.infoblox.com/wp-content/uploads/infoblox-datasheet-bloxone-threat-defense-advanced.pdf

References 103

[85] B.A. Mozzaquatro, C. Agostinho, D. Gonçalves, J. Martins, and R. Jardim-

Gonçalves. An Ontology-Based Cybersecurity Framework for the Internet of

Things. Sensors, 18(9):3053, 2018.

[86] M. Nerwich, P. Gauravaram, H. Paik, and S. Nepal. Vulnerability Database as

a Service for IoT. In L. Batina and G. Li, editors, Applications and Techniques

in Information Security. ATIS 2020. Communications in Computer and Infor-

mation Science, volume 1338. Springer, Singapore, 2020.

[87] OASIS. STIX Version 2.0. Part 1: STIX Core Concepts, 2017.

http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part1-stix-

core.html. Accessed: 2020-08-14.

[88] OASIS. STIX Version 2.0. Part 2: STIX Objects, 2017. http://docs.oasis-

open.org/cti/stix/v2.0/stix-v2.0-part2-stix-objects.html. Accessed:

2020-08-14.

[89] P. Poputa-Clean and M. Stingley. Automated Defense-Using Threat

Intelligence to Augment Security, 2015. https://www.sans.org/reading-

room/whitepapers/threats/automated-defense-threat-intelligence-

augment-35692. Accessed: 2020-08-14.

[90] F. Skopik, G. Settanni, and R. Fiedler. A problem shared is a problem halved:

A survey on the dimensions of collective cyber defense through security infor-

mation sharing. Computers & Security, 60:154–176, 2016.

[91] V.M. Vilches, L.U.S. Juan, B. Dieber, U.A. Carbajo, and E. Gil-Uriarte.

Introducing the Robot Vulnerability Database (RVD), 2020.

[92] C. Wagner, A. Dulaunoy, G. Wagener, and A. Iklody. MISP: The Design

and Implementation of a Collaborative Threat Intelligence Sharing Platform.

In S. Katzenbeisser, E. R. Weippl, E.O. Blass, and F. Kerschbaum, editors,

Proceedings of the 2016 ACM on Workshop on Information Sharing and

Collaborative Security, WISCS 2016, Vienna, Austria, October 24 - 28, 2016,

pages 49–56. ACM, 2016.

[93] T. D. Wagner, K. Mahbub, E. Palomar, and A. E. Abdallah. Cyber threat

intelligence sharing: Survey and research directions. Computers & Security,

87:101589, 2019.

http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part1-stix-core.html
http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part1-stix-core.html
http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part2-stix-objects.html
http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part2-stix-objects.html
https://www.sans.org/reading-room/whitepapers/threats/automated-defense-threat-intelligence-augment-35692
https://www.sans.org/reading-room/whitepapers/threats/automated-defense-threat-intelligence-augment-35692
https://www.sans.org/reading-room/whitepapers/threats/automated-defense-threat-intelligence-augment-35692

	List of Tables
	List of Figures
	List of Symbols
	List of Abbreviations
	Introduction
	Problem Statement
	Cyber-Threat Intelligence
	Strategic CTI
	Tactical CTI

	Threat Information Types
	CTI Sources
	CTI Sharing Importance
	The CTI life-cycle

	Our Contribution
	Thesis Organization

	Related Work
	Evaluation of CTI Sharing Standards and Platforms
	Current State-of-the-Art CTI Sharing Solutions
	CTI Sharing Tools and Platforms
	MISP - Open Source Threat Intelligence & Open Standards for CTI Sharing
	OpenCTI - Open Cyber-Threat Intelligence Platform
	GOSINT - The Open-Source Threat Intelligence Gathering and Processing Framework
	YETI - Your Everyday Threat Intelligence.
	OpenTAXII - a Python Implementation of TAXII Services.
	CIF - Collective Intelligence Framework.

	CTI Services
	CTI Platforms

	Implementations of Frameworks, Tools and Platforms for Targeted CTI Gathering and Sharing

	MISP
	The Data Model
	MISP Database Overview for Storing CTI
	Events Table
	Objects Table
	Attributes Table
	Correlations Table

	CTI Sharing Properties and Features
	Additional Features
	Current State of MISP
	General MISP Layout
	Simple User
	Administrator
	Events
	Creating an Event
	List of Events
	Events View
	Correlation Engine

	The ASPIS System
	System Overview
	Technology Stack and Applied Tools
	MISP in ASPIS
	MISP Objects Employed
	The Vulnerability Object
	The Weakness Object
	The VulDB-Vulnerability Object
	The ExpDB-PoC Object

	MISP Correlations in ASPIS
	MISP Correlation Engine Functionality

	MISP Correlation Engine Alteration
	Proposal for an Alternative MISP Correlation Engine
	MISP Correlation Engine Table BCNF Decomposition

	Monitored Sources
	The Source Crawling and Parsing Phase
	NVD Parsing
	JVN Parsing
	KB-Cert Crawling and Parsing
	VulDB Crawling and Parsing
	Exploit-DB Crawling and Parsing

	The Object Structuring Phase
	The Event Management Phase
	Event Lookup
	Event Creation
	Event Modification
	Event Enrichment with Complementary CTI from Another Source
	Event Update due to Updated CTI
	Exploit-DB Entry Added a Reference to a CVE ID

	Events' Correlations

	The CTI Sharing and Reviewing Phase
	MISP REST API: RESTful Searches
	List of RESTful Endpoints
	Authorization
	Headers
	Search Constraints (Payload/Body)
	cURL Example

	CTI Reviewing through MISP Sightings

	ASPIS Usage
	Login
	Events Browsing and Filtering
	Events Inspection
	CTI Sharing: MISP REST API

	System Installation

	Experimental Evaluation
	Experimental Setup
	Data Set
	Query Sets
	Configuration Parameters and Metrics Employed
	CTI Storing Space Requirements
	CTI Storing and Processing Time
	CTI Querying Response Time

	Technical Configuration

	Experiment Results
	CTI Storing Space Requirements
	CTI Storing and Processing Time
	CTI Querying Response Time

	Conclusions and Future Work
	Summary and Conclusions
	Future Work

	Examples of MISP Objects in JSON Format
	NVD: Vulnerability Object
	NVD: Weakness Object
	JVN: Vulnerability Object
	KB-Cert: Vulnerability Object
	VulDB: Vuldb-Vulnerability Object
	Exploit-DB: ExpDB-PoC Object

	MISP Versions Changelog

