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Περίληψη

Σε ένα σύστημα φιλτραρίσματος πληροφορίας, οι χρήστες μπορούν να εγγράφονται σε

ένα διακομιστή, δημιουργώντας συνεχή ερωτήματα που εκφράζουν τις ανάγκες τους. Τα

ερωτήματα αυτά στοχεύουν στην ανάκτηση σχετικών κειμένων που έχουν δημοσιευθεί

στους διακομιστές. Πιο συγκεκριμένα, όταν νεα κείμενα δημοσιεύονται τα ερωτήματα που

ικανοποιούν αυτό το έγγραφο εντοπίζονται, ενημερώνοντας κατάλληλα τους χρήστες.

Δοσμένης μιας βάσης δεδομένων db και ενός εισερχόμενου κειμένου d το σύστημα

φιτραρίσματος πληροφορίας βρίσκει όλα τα ερωτήματα q ∈ db τα οποία ταιριάζουν με το

d. Στην παρούσα εργασία επικεντρωνόμαστε σε ερωτήματα που εκφράζονται στο μοντέλο

AWP . Το μοντέλο δεδομένων AWP βασίζεται σε γνωρίσματα που περιέχουν κείμενο

και η γλώσσα ερωτήσεων περιλαμβάνει λογικούς τελεστές και τελεστές εγγύτητας.

Επίσης, εξετάζουμε την αποτελεσματικότητα των τεχνικών παραλληλοποίησης των δι-

αδικασιών φιλτραρίσματος της πληροφοριας. Για το σκοπό αυτό χρησιμοποιούμε κατάλλη-

λες δομές δεδομένων, μεθόδους δεικτοδότησης και τεχνικές παραλληλοποίησης. Χρησι-

μοποιώντας τους προαναφερθέντες μηχανισμούς, οι μέθοδοι παραλληλοποίησης επιτυγχά-

νουν βελτίωση μεγαλύτερη του 98% στην απόδοση του φιλτραρίσματος για μεγάλες βάσεις

δεδομένων (εως 3 εκατομμύρια ερωτήματα) όπου οι ερωτήσεις των χρηστών εκφράζονται

στο μοντέλο AWP .
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Abstract

In the information filtering paradigm, clients subscribe to a server with continuous

queries that express their information needs. Such queries aim to retrieve relative doc-

uments that are published on the server. More specifically, whenever a new document

is published on the server, the continuous queries satisfying this document are found

and notifications are sent to the respective clients.

More formally, given a database of continuous queries db and an incoming document

d, an information filtering process finds all queries q ∈ db that match d. We concentrate

on queries that are expressed in the AWP data model. This model is based on named

attributes with values of type text, and its query language includes Boolean and word

proximity operators.

In this thesis, we consider the efficient parallelization of the information filtering

procedures. To this end, we employ appropriate data structures, indexing methods and

parallel techniques. Using the aforementioned machinery, our parallel methods achieve

an improvement of more than 98% in filtering performance for large databases (up to

3 million queries), expressed in the AWP model.
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Chapter 1

Introduction

T his thesis addresses the efficient parallelization of information filtering in pub-

lish/subscribe systems. In this chapter, we define the problem, highlight our

approach and present our contributions.

1.1 Problem definition

Lately, we have witnessed an exponential growth of the internet and of the amount of

information created, stored and requested on a daily basis. Users are often overwhelmed

by the vast amount of existing information and call for information filtering mechanisms

that will allow them to focus only on the relevant information.

Search engines (like Google, Yahoo and Bing) are the main applications used for

retrieving information in the internet. They are based on information retrieval tech-

niques and they are the most common example of the respective field. Although being

very popular and helpful, they do not completely address the problem of relevant in-

formation finding. By providing a query input field, the user manually starts a search

(usually using small, general keywords) without knowing whether relevant information

exists or not and without being aware of the possible available and useful information

due to the nature of the query structure, e.g., wrong or different query syntax can lead

to loss of useful information.

After submitting the query, depending on its definition, search engines may often

1



CHAPTER 1. INTRODUCTION

provide huge results that cannot be managed effectively by the user. Also, black-hat

SEO techniques (disapproved practices that could increase a page’s ranking in a search

engine result page, e.g., link manipulation, link farms, keyword stuffing) [52], can affect

the search results order and eventually mislead the user.

More importantly, search engines are not able to inform the user of new available in-

formation. Additionally, the vast flow of newly created information significantly reduces

the time frame that a query result remains valid. This means that a query result may

be outdated within minutes or even seconds after its execution (since new information

may be added or existing may be modified of even be deleted).

This creates the need of a system able to inform users when something that inter-

ests them becomes available. Information filtering, also referred to as publish/subscribe

or continuous querying or information push, solves this problem by dynamically noti-

fying the user, at the time new information becomes available. This key feature makes

information filtering equally important to information retrieval and search engines.

Information filtering system users can express their information interests by sub-

scribing to a server with continuous queries or profiles. These queries are specified

using a well-defined language tailored to express the information needs of users. In an

information filtering scenario, a user posts a query to the system in order to receive no-

tifications when certain events of interest occur, e.g., a document, matching the stored

user query, is added to the system. Whenever a new information reaches the system,

it is validated with indexed queries and the matching users are instantly notified.

Existing indexing and filtering algorithms are sequential. The goal of this thesis

is to adopt and extend those algorithms in order to take advantage of the multi-

core capabilities of modern processors and to effectively solve the problem of filtering

parallelization in each individual server. Based on the above, the problem of information

filtering examined in this thesis may be defined as follows:

Given a database of continuous queries db and a document d, find all queries

q ∈ db that match d, using parallelization techniques.

2



1.2. SOLUTION OUTLINE

1.2 Solution outline

This thesis is focusing on the algorithms and the data structures used for indexing user

queries in publish/subscribe systems and on the acceleration of the filtering process by

taking advantage of the use of parallelization techniques.

The process of filtering causes the most work in the server, therefore it has to

be efficient in order to handle millions of user queries in real-time. We focus on the

parallelization of the matching process (information filtering), with all the information

being in text format and using a data model that is quite common in information

retrieval, called AWP (Attributes with Word Patterns) [44].

This model is based on attributes with text values and the query language supports

attributes, along with comparison operators (like “equals” and “contains”) and word

proximity operators from the Boolean model of information retrieval [18].

The algorithms are based on the prior work of Tryfonopoulos et al. [70, 71] and

on the work of Zervakis et al. [80]. The basic idea behind the algorithms that we

will present, is the use of tries in order to index the queries and to achieve the best

clustering possible. Better clustering is going to help us during the filtering process in

order to minimize the number of visits to the forest nodes and thus taking less time to

compute the answer.

In our work, we concentrate on extending the presented algorithm implementation

by parallelizing the indexing and filtering process to suit modern multi-core processors.

Such an improvement is critical as filtering algorithms are expected to process high

volumes of incoming information as efficiently as possible.

1.3 Contributions

A major part of the work conducted in the field of publish/subscribe systems. The

algorithms used are based on the work of Garcia-Molina [74] as well as on the extensions

of the algorithms presented by Tryfonopoulos et al. [70, 71]. Specifically, we will extend

the use of the PrefixTrie algorithm, that is an extension of the Tree of Yan and

Garcia-Molina [74] for attributes.

3
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Also, we extend the use of the algorithms BestFitTrie and ReTrie as they are

presented in Tryfonopoulos et al. [71], which is an approach for better organization

and reorganization of the forest respectively, both targeting on better query grouping.

Finally, we extend the use of the StaR algorithm, the first algorithm in literature to

consider database reorganization through appropriate word/query statistics for efficient

filtering.

We propose methods to improve the performance of the filtering procedure and we

concentrate on solving the parallelization problem efficiently.

Finally, we present measurements of the times of each algorithms using single core and

multi-core examples.

In the light of the above, our contributions are:

• We investigate the effectiveness of the parallel techniques in both indexing and

filtering functions.

• We extend existing algorithms implementation from single-core to multi-core en-

vironments while exploiting full CPU capacity, based on the machine’s charac-

teristics. We identify one parallelization option and experimentally evaluate its

performance.

1.4 Thesis structure

The rest of the work is organized as follows. Chapter 2 surveys related work in the fields

of information filtering on single-core and multi-core environments and techniques on

query indexing and publication filtering.

Chapter 3 presents the data model and algorithms developed to solve the problem

of indexing user queries, describing the indexing Algorithms (BestFitTrie, Prefix-

Trie, ReTrie, StaR) and it’s variants, developed to solve the indexing and filtering

problem.

Chapter 4 gives the experimental evaluation of the developed parallel versions of

the algorithms using real-world data sets and comparing them against their sequen-

tial/serial version.

4
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Finally, Chapter 5 gives conclusions and future directions for our work.

5
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Chapter 2

Related work

In this chapter, we present related work in information filtering systems and paral-

lelization techniques. At first, we briefly provide a background discussion on tries and

on information filtering. Subsequently, we present works that focus on single-core an

multi-core environments and techniques. Finally, we present previous works on multi-

threading techniques in the information filtering field.

2.1 Tries

The concept of tries was originally developed in the work of R. de la Briandais [25], but

the actual term tries was coined by Frednik [36] and was derived from the word retrieval.

Tries are used in a wide range of applications including, dictionary management [2, 7,

42], text compression [10], natural language processing [8, 63], pattern recognition

[33, 68], IP routing [61], or even searching for reserved words in a compiler [3]. The

range of applications over which they can be applied, rank them as data structures

of general purpose with properties that have become known through various surveys

[27, 32, 41, 42, 67, 68].

There are several ways on how to implement the trie nodes and the choice depends

on the type of application that use them. However, two are the most common ways to

implement tries. The first is by using arrays on the size of the alphabet (array tries)

[36] and the second is by using linked lists with non-empty elements as roots of subtrees

7
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[25, 43].

The tries based on arrays are best suited to a relatively small alphabet. Lists are

more suited for larger alphabet sizes or nodes that have a small number of children (in

such case the array representation would consist of many null pointers). There are two

main ways to reduce the size of a trie, either by reducing the size of the nodes or by

reducing the number of nodes needed to represent sets of words.

Compact tries [69] are variations that aim at reducing the total number of nodes

used to represent a set of words. This is achieved by compressing sequences of nodes

that lead to a leaf, thus, reducing the degree of branching in a single node. Another

concept for reducing the size of the trie is to address the indexing of words as a whole

and not as a sequence. This way the size of nodes can be influenced, resulting in a

smaller forest. Nevertheless, Comer and Sethi [23] showed that the problem of finding

the smallest possible tree is NP-complete and therefore several heuristic methods for

reducing the size of a static tree have been proposed. Such an example can be found

in the work of Comer [22].

In our approach, we use the concept of tries based on linked lists to implement data

structures which are going to store the user queries. The algorithms we will present are

using tries based on lists and on techniques used by compact tries, in order to be able

to identify the common elements of the queries and thus to make better node grouping.

2.2 Information filtering

Information retrieval and information filtering are often referred as two sides of the

same coin [9]. Although many of the underlying issues are similar in retrieval and

filtering, since they share the common goal of information delivery to information

seekers, the design issues (e.g., timeliness of data, identification and representation of

user needs), the techniques and the algorithms devised to satisfy these information

needs, differ significantly.

Information filtering, also known as publish/subscribe, continuous querying, or in-

formation push, is equally important to one-time querying, since users are able to
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subscribe to information sources and be notified when documents of interest are pub-

lished. In an information filtering scenario, a user posts a subscription (or continuous

query) to the system to receive notifications whenever certain events of interest take

place (e.g., when a paper on distributed systems becomes available).

One of the early works done on the field of selective dissemination of information,

is the work of Luhn [51], which describes an “Business Intelligence System”. In this

system, the user describes his interests, creating a profile, and then the text selection

system offers lists of new texts. From this list, the users have the ability to choose

and order the texts that interest them. At that time, this process of selection of texts

presented, was described as selective dissemination of new information. The term in-

formation filtering was coined later by Denning [26], where it was described the need

for the existence of a system which will filter incoming e-mails in order of significance.

In their early approaches, scientists focused on the correct representation of the

interests of the user [55] and on the optimization of the filtering process [39]. The work

of Morita and Shinoda [55] focused on the use of techniques that observe the behavior

of users while indexing subsets of terms in order to determine which texts interest a

real user. The work of Hull [39] studied the filtering, using methods based on machine

learning techniques, where combinations of strategies were used to increase the accuracy

of filtering (and of the results delivered to the user). Other techniques include the use of

statistical data for filtering incoming documents such as LSI-SDI [34] that makes use of

the LSI method in order to filter incoming documents. Latent Semantic Indexing (LSI)

is an extension of the standard vector retrieval method where associations among terms

and texts are calculated and exploited in retrieval. The assumption is that there is some

underlying or “latent” structure in the pattern of word usage across documents and

that statistical techniques can be used to estimate this latent structure. A description of

terms, documents, and user queries based on the underlying latent semantic structure

is used for representing and retrieving information.

One of the first works that studied the issue of performance factor in information

filtering systems is the work of Bell and Moffat [11], which describes an information fil-

tering system, capable of filtering large volumes of information of data. The researchers

9
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developed a server which was receiving incoming texts with great pace, and proposed

algorithms supporting the vector space model of information retrieval by improving

the SQI algorithm of Yang and Garcia-Molina [73].

Another influential system is InRoute [13]. InRoute is based on inference networks

and focuses on filtering efficiency. The InRoute system creates documents and query

networks and uses belief propagation techniques to filter incoming documents.

Other works in the area focused on adaptive filtering [14, 82] and how queries, that

were represented in the vector space model, have adjusted according to the documents

that have been filtered in the past.

Besides the statistical approaches described above, filtering systems based on the

Boolean model of information retrieval have also been developed. A representative

example is LMDS [77], which uses least frequent trigrams to allow faster processing

of incoming documents. LMDS indexes queries of users under the trigram with the

smaller number of appearances. The documents are also represented as a sequence of

trigrams. During the process of filtering, a table determines which queries match the

incoming document and since false positive results may incur, a second stage is required

to determine the actual matches.

Later on, similar works focused on information filtering that support data models

with attributes and query languages that implement arithmetic and string compari-

son operators (e.g., Le Subscribe [30] and the monitoring subsystem of Xyleme [60]).

Another system worth mentioning is the system presented by Campailla et al. [15],

because it uses queries based on attributes, but goes beyond conjunctive queries which

is the standard class of queries that other systems use [30]. Most recent works focus

on supporting documents in XML format and queries that are subsets of XQuery or

XPath (e.g., XFilter [6], YFilter [28], Xtrie [17] and xmltk [37].

One of the main issues in publish/subscribe systems is to determine the interests

of the user and the best possible way to represent them. Thus, we find approaches

such as those of Nanas et al. [56, 57] for creating profiles representing users. By using

genetic and machine learning algorithms, profiles are created close to user’s interests.

Additionally, the user rates the final information delivered to him, indirectly indicating
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which queries will be used for the next generation of queries.

Chang et al. [19] relying on the fact that a user’s interests change over time, de-

veloped a personalized filtering system focusing on the ability to easily reflect these

changes. Using a data mining system, based on the Apriori algorithm [1], they devel-

oped the updatable tree which is an index structure that supports incremental updates.

They focused on recognizing both long-term and short-term interests of each user by

taking weights of keywords in queries into consideration. Categorizing the users’ in-

terests aimed at a better query indexing and made it easier to reorganize the system

when changes occur regularly. Other approaches stir away from the classical model of

query representation as a sequence of simple terms and focus on relationships between

words [56]. In these approaches, a network of word nodes with weights is created, to

better represent the interests of each user and to increase the accuracy of the results

returned to him. As part of this effort, for better and comprehensive representation of

information, methods were developed for the description of the user’s interests based

on ontologies [81]. Park and Chung [62] also developed a broker that accepts queries

in SPARQL, a language for expressing queries in a form suitable to be filtered by doc-

uments represented by ontologies. An extension of SPARQL with full-text operators

was proposed by Zervakis et al. [79], aiming at more expressive continuous queries that

are able to support versatile user needs.

Other works [48, 83, 84] focus more on the problem of the document filtering and

divide it in two stages in order to accelerate the process and to provide greater accuracy

in the results brought to users. In the first stage irrelevant documents are excluded from

entering the system while in the second stage a filtering technique, based on a pattern

matching method, is applied to the remaining texts (which is a relatively a smaller

number). Their aim is to achieve greater precision in identifying those that match the

queries and reduce the number of non-relevant documents that arrive to the final user.

Following the assumption that word patterns offer more information than a model based

on a set of words [53] Nanas and Vavalis [58] tried to identify semantic similarities in

documents and user queries. In the same context, other researches were also initiated

[4, 46, 47] receiving more into account the negative user response to documents while
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combining this response with terms pattern recognition in order to effectively reduce

the noise that reaches users.

2.2.1 Information filtering in databases

The majority of the work on information filtering regarding the database literature, has

its origins on the work of Franklin and Zdonik [35] where the term selective dissemina-

tion of information (SDI) is also used. Their previous work also appears in the DBIS

system [5]. The term publish/subscribe systems, that comes from the area of distributed

systems, is also used by database researchers. Another system with great influence is

SIFT [74, 75], where publications are simple documents and queries are sets of words.

The SIFT system was the first that emphasized on the indexing of the queries/profiles

in order to cope with a large amount of document arrival rate [74].

A more recent fully-functional, content-based information filtering system is Ping,

as proposed by Chantzios et. al. [20]. Ping aims to showcase the realisability of in-

formation filtering and to explore and test the suitability of the existing technological

arsenal for information filtering tasks. The system is entirely based upon open-source

tools and it is customisable enough to be adapted for different textual information fil-

tering tasks. Ping puts emphasis in user profile expressivity, intuitive UIs, and timely

information delivery.

2.2.2 Information filtering in distributed systems

We will mention some of the most representative information filtering systems de-

veloped in recent years. Driven by the lack of large-scale systems Carzaniga et al.

[16] developed SIENA, a distributed system that provides user-notification services

that are based on events. The SIENA system makes use of a data model based on

attribute-value pairs, that offers the opportunity to express notifications, subscriptions

and advertisements.

This is the first distributed system which focuses both at providing expressiveness

in the way users request the information and to offer solutions related to a wide range
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of users in a wide space such as the Internet. Building on top of SIENA’s main idea,

Koubarakis et al. [44] developed the DIAS system as well as the P2P-DIET system

[40, 45] and used AWP and AWPS data models whereas the creation of which was

based on ideas of information retrieval. These two systems attempt to combine ideas

from information retrieval and databases in order to provide them in a single framework,

while maintaining the characteristics of SIENA relating to the information filtering side.

Another important contribution of P2P-DIET is that it demonstrates how to sup-

port ad-hoc or one-time query scenarios, while supporting two similar protocols, that of

super-peer systems [76] and the pub/sub features (SIENA) [16]. Also, the iClusterDL

system [65] demonstrates how to use an unstructured network, called Semantic Over-

lay Network [24], to support functions of both information retrieval and information

filtering in an electronic library.

2.3 Information filtering parallel techniques

As the trend of representing information in XML rises, algorithms are developed to sup-

port documents and queries in this form ([21, 38, 50]), while Grummt [38] emphasizes

at the parallel query and document processing.

An interesting approach to document filtering is also given by Vanderbauwhede et

al. [72] as they implement the procedure of filtering, using Field Programmable Gate

Arrays (FPGA) in order to accelerate the most demanding routines. Similarly, other

work [31, 64] try to exploit the power of modern processors by using threads [49, 54]

and by parallelizing the algorithms that are responsible for the filtering.

The work of Farroukh et al. [31], showed a 74% reduction of the average matching

time when using eight processors. In the work of Qian et al. [64] experiments showed

that relatively independent matching algorithm produced similar throughput as com-

plete independent matching algorithm and the average matching time of collaborative

matching algorithm was reduced by approximately 77% as the number of threads in-

creases from one to six.
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Chapter 3

Data model and algorithms

In this chapter, we present the AWP data model (Section 3.1) we used to define both

the user queries and the documents. We also present the algorithms, which make use

of the data model, for indexing the queries and matching the incoming documents. We

follow the presentation of [44, 71, 78], on top of which this thesis was based on.

3.1 The AWP model

AWP is a data model widely used in the area of information filtering. It can be used

to represent and query textual information under the Boolean model, using attributes

with values of type text, witch are used to encode textual information in a notification

(e.g., author and title).

The query language of the AWP model, supports Boolean and word proximity

operators, as well as comparison operators equals and contains, just as the model of

Chang et al. [18] does.

3.1.1 Definition of documents

Documents in AWP consist of attributes with values of plain text. Let Σ be a finite al-

phabet. A word is a finite non-empty sequence of letters belonging to Σ. As a vocabulary

we define a set of finite number of words denoted by V .
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In the examples of this thesis, the dictionary V represents the dictionary of the

English language.

Definition 1 A text value s, of length n, that belongs to vocabulary V is a total function

s : {1, 2, . . . , n} → V .

Essentially, s consists of a finite sequence of words belonging to V and the expression

s(i) gives us the i-th word of s. The value s can be used to represent finite-length strings

of words separated by blanks. In order to refer to the length of a text value s, we will

use the notation |s|.

Example 1 The following sequence of words “will study the data structures”, is rep-

resented by a text value s of length |s| = 5 and s(1) = will, s(2) = study etc.

In the rest of this section, we are going to use the s symbol when referring to text

values while our definitions will abide by the mathematical definitions quoted above.

Next we define A as a set of attributes which we will call attribute universe.

Practically, the attributes are used to organize information into fields. Thus, for

example, attributes of a document are the author’s name, the title, the summary, the

body text etc. The attributes may derive from a collection of values (namespaces), for

example from the set Dublin Core Metadata Element1.

Definition 2 A document d consists of a set of attribute-value pairs (A, s) where A ∈

A, s is a text value and all attributes are unique and distinct.

From now on, when we use the notation A(d) we will refer to a unique text value s of

document d, such that (A, s) ∈ d.

Example 2 Consider the following set of pairs in a document:

d = {(AUTHOR,“Hector Garcia-Molina”),

(TITLE,“Selective dissemination of information in databases”),

(ABSTRACT,“In this paper we will study the most widespread . . . ”)}

Based on the above, we have AUTHOR(d) = “Hector Garcia-Molina”
1http://purl.org/dc/elements/1.1/
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3.1.2 Definition of queries

In order to define queries in AWP , we will use the concept of the word we have given

in Section 3.1.1, together with the concept of interval in order to define proximity

formulas and word patterns. These notions, along with the concept of attributes, are

necessary to define queries.

Let I be a set of (distance) intervals, defined as follows:

I = {[l, u] : l, u ∈ N, 0 ≤ l and l ≤ u} ∪ {[l,∞) : l ∈ N and l ≥ 0}

Definition 3 A proximity formula is an expression of the form

w1 ≺i1 · · · ≺in wn

where w1, . . . , wn are words of V and i1, . . . , in are intervals of I.

The operator ≺i used in Definition 3 is called proximity operator and is used to

define the concepts of order and distance between the words in a text document.

Using the results of these operators we limit the bounds between two words. Thus for

example, the type w1 ≺[l,u] w2 indicates that the word w1 is placed before the word w2

and separated by at least l and at most u other words.

Example 3 Consider the following proximity formulas:

information ≺[0,0] retrieval,

Web ≺[0,0] information ≺[0,0] retrieval,

topics ≺[0,5] information ≺[0,0] retrieval

The proximity formula:

information ≺[0,0] retrieval

indicates that the word retrieval appears exactly before the word information. This is

a way to encode the string information retrieval in AWP. We can also create larger

expressions using proximity operators. For example, in the proximity formula:

topics ≺[0,5] information ≺[0,0] retrieval
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the word topics is constrained to precede the word information by at least 0 and up to 5

words. Similarly the word information must appear just before the word retrieval.

Definition 4 A word pattern is a conjunction of words that belong to V, proximity

formulas and boolean operators.

Example 4 The following example is a word pattern:

applications ∧ (selective ≺[0,0] dissemination ≺[0,3] information)

In the following definitions, the symbol w should read as contains, and the expres-

sion B w wp is a way to say that the value of the attribute B contains a pattern of

words as specified by wp.

Definition 5 A query is a notation of the form:

A1 = s1 ∧ · · · ∧ An = sn ∧B1 w wp1 ∧ · · · ∧Bm w wpm

where each Ai, Bi ∈ A, each si is a text value that belongs to a document and every

wpi is a word pattern.

Example 5 The following formula is a query:

AUTHOR = “Hector Garcia-Molina” ∧

TITLE w (selective ≺[0,0] dissemination ≺[0,3] information) ∧ structures

Although the queries of a user may be unrelated and involve a variety of topics, all

queries are formed based on the AWP data model. From now on when we refer to a

user query we will refer to a set of queries expressed in AWP .

3.1.3 Query answering

We will now describe the query semantics in the AWP data model. In the case of infor-

mation filtering, the answer to a query essentially means that the incoming document

matches the query of a user. To better understand this concept, we define it formally

in two steps. First, Definition 6 shows when a text value satisfies a word pattern and

then, using the Definition 7, we respond to when a document satisfies a query.
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Definition 6 Let s be a text value and wp be a word pattern. The concept of s satisfying

wp (denoted by s |= wp) is defined as follows:

1. if wp is a word then s |= wp iff there exists p ∈ {1, . . . , |s|} and s(p) = wp.

2. if wp is a proximity formula of the form w1 ≺i1 · · · ≺in−1 wn then s |= wp iff

there exist p1, . . . , pn ∈ {1, . . . , |s|} such that, s(pj) = wj and pj − pj−1 ∈ ij for

all j = 2, . . . , n

3. if wp is of the form wp1 ∧ wp2 then s |= wp iff s |= wp1 and s |= wp2.

Example 6 The text value s =“applications of selective dissemination of information”

satisfies the word pattern of Example 4:

applications ∧ (selective ≺[0,0] dissemination ≺[0,3] information)

since s(1) ∧ s(3) ≺[0,0] s(4) ≺[0,3] s(6)

Definition 7 Let d be a document and φ a query. The concept of d satisfying the query

φ (denoted by d |= φ) is defined as follows:

1. If φ is of the form A w wp then d |= φ iff there exists a pair (A, s) ∈ d and

s |= wp.

2. If φ is of the form A = s then d |= φ iff there exists a pair (A, s) ∈ d.

3. If φ is of the form φ1 ∧ φ2 then d |= φ iff d |= φ1 and d |= φ2.

Example 7 Let us consider a document d of the Example 2. The value of attribute

AUTHOR in document d is “Hector Garcia-Molina” and the value of attribute TITLE

satisfies the word pattern

(selective ≺[0,0] dissemination ≺[0,3] information) ∧ databases

according to Definition 6. Thus, d satisfies the query of Example 5

AUTHOR = “Hector Garcia-Molina” ∧

TITLE w (selective ≺[0,0] dissemination ≺[0,3] information) ∧ structures

according to Definition 7.
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3.1.4 The expressive power of AWP

The proximity operator ≺i, that is used in this thesis, have more potential to express

information than the traditional information filtering model which makes use of the

operator kW which means “the first word must precede the second word k number of

words” [18]. Thus, for example, the expression w1 kW w2 in [18] is equivalent to the

expression w1 ≺[0,k] w2 in the model AWP which we use in this thesis. Additionally,

the operator kW does not have enough expressive power to express w1 ≺[l,u] w2 for

l > 0 or u = ∞, i.e., the first word not to be exactly next to the second and the

distance of the second word from the first to be indifferent. Our model cannot express

the operator kN of [18] with meaning “the first word should be at a distance k from

the second, regardless of the display order”. AWP model can, however, make use of

disjunction and the sentence w1kNw2 can be converted to w1 ≺[0,k] w2 ∨ w2 ≺[0,k] w1.

In conclusion, the proximity operators of AWP have the same expressive power

with kN , regarding the distance between words, but lack in power when we seek the

existence of the window containing the words.

In the implementation of the algorithms, we have covered a subset of the AWP

data model and chose not to support the proximity operators.

3.2 Algorithms for filtering

In this chapter, we will describe the algorithms we used in order to solve the filtering

problem of the incoming documents [71, 75, 78]. In Section 3.2.1 we will present the

BestFitTrie algorithm and its data structures. The PrefixTrie algorithm will be

presented in Section 3.2.2. PrefixTrie is an extension of Tree algorithm that uses

alphabetical sorting for the sets of words entering the forest of tries. In Section 3.2.4

we will present the ReTrie algorithm. ReTrie is a variant of BestFitTrie that

reorganizes the queries based on a clustering ratio. Finally, in Section 3.2.5 we will

present the StaR, an algorithm that utilises word statistics in order to reorganize the

queries.
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Figure 3.1: Data structures for each document

3.2.1 The Algorithm BestFitTrie

The first algorithm we used, in order to solve the filtering problem, is the BestFit-

Trie algorithm, as described in the works [71, 78]. BestFitTrie algorithm uses some

specially designed structures to represent queries and documents. Next, we will describe

the data structures of the algorithm.

3.2.1.1 Data structures for documents

Every document that is published, must be represented by an appropriate data struc-

ture in order for the matching process to be completed as soon as possible. Best-

FitTrie stores published documents using two main data structures (see also Figure

3.1):

• an array for displaying words called Occurrence Table which is denoted as OT (d)

and

• a dynamically linked list used for the document’s attributes, called Distinct At-

tribute List, which is denoted as DAL(d).

More specifically, as shown in Figure 3.1a, the data structure OT (d) is a hash table

which contains every single word of the document as keys, and each element points
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Figure 3.2: Data structures for user queries. Query index with word directory WD(Bi).

to a list of attributes d in which the word appears. Each node of the list, stores the

positions of the word within the attribute.

Figure 3.1b shows the linked list DAL(d) which stores the unique attributes of the

document, and these attributes store a list of DWL(A) with the unique words shown

in them.

3.2.1.2 Data structures for queries

The indexing of the queries is accomplished using respective structures in order to

be easier to compare them with the incoming documents. An array of attributes AD

(Attribute Directory) is used, in which each element stores a unique attribute A. Each

AD(A) indexes a set of queries wp (as defined in Section 3.1.2) and for every query it

applies A w wp.

In order to properly arrange the words of a word pattern set (words(wp)), we use an

array of word entries. This word directory, named WD , is a hash table that uses words

as keys and provides fast access to roots of tries in a forest that is used to organize the

sets of words that result from words(wp).

3.2.1.3 Query insertion

We will analyze the process of importing queries and how each is effectively stored for

the match to be completed. An inserted query is of the form:
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k Query Ai w wpj Identifying subsets

1 Ai w information {information}
2 Ai w retrieval ∧ information {information, retrieval}
3 Ai w information ∧ filtering {information, filtering}
4 Ai w models ∧ proximity ∧ operators ∧

retrieval ∧ information
{retrieval, models},
{proximity, operators},
{information, models}

5 Ai w filtering ∧ information ∧ selective ∧
dissemination

{selective, dissemination},
{filtering, information, selective,
dissemination},
{dissemination}, . . .

6 Ai w boolean ∧ information ∧ filtering ∧
dissemination

{boolean}, {dissemination, in-
formation}, . . .

Table 3.1: Identifying subsets examples

A1 w wp1 ∧ · · · ∧ Am w wpm

For each attribute Aj where 1 ≤ j ≤ m, we compute wpj and insert the words in

the forest of tries that stores the words WD(Aj ) (Figure 3.2).

The main idea behind this data structure is to store sets of words compactly by

exploiting their common elements in order to achieve better clustering, that will lead to

better performance in document matching. This way, memory space is better optimized,

as we create fewer nodes, compared with a data structure that does not use common

elements grouping methods.

Definition 8 Let S be a set of non-empty sets of words and s1, s2 ∈ S, where s2 ⊆ s1.

We say that s2 is an identifying subset of s1 if and only if s2 = s1 or there is no r ∈ S

such that r 6= s1 and s2 ⊆ r.

According to the above definition, the sets of identifying subsets of two sets of words

s1 and s2 with respect to a set S is the same if and only if s1 is identical to s2.

Example 8 Table 3.1 shows some examples to make these concepts better understood.

In each line we give a query in the form specified by the AWP model where it applies
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Figure 3.3: BestFitTrie trie example

that A w wpj and some identifying sets of words(wpj) where S = {words(wpk) : 1 ≤

k ≤ j − 1}.

Each query j is represented by a word pattern wp for which A w wpj is consisting

of a set of words words(wpj).

Figure 3.3 shows an example of a trie created by BestFitTrie for the queries of

Table 3.1, together with the Query(n) and Remainder(n) lists. Queries are denoted

with brackets and remainders are shown in parentheses.

The creation and use of the structure Remainder(n) is to allow the delayed creation

of new nodes. This way, we index the words in lists and we wait for other word sets to

appear. This results in new nodes to be placed in a better order, serving both the old

and the newly introduced sets.

A set of words words(wpj) is organized in WD(A) as follows:

Let S be a set of words already stored in WD(A). To insert a new set of words

s, BestFitTrie chooses the most appropriate trie T between the forest of tries of

WD(A). Within this trie, the most appropriate location to insert s is identified, taking

into account the current organization of all the words in the forest (word directory).

The criteria used to make the choice of the location of queries will be presented below.

Each trie T of WD(A) has the following properties:
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• Each node of T stores a set of words and other data items related to this set of

words. We denote as sets-of-words(T ) the set of all words stored in the trie T .

• The root of T is at a depth 0 and it always stores sets of words with an identifying

subset of cardinality one. In general, a node n, located at depth i, stores sets of

words with an identifying subset of cardinality i+ 1.

• Each node n belonging to T , that stores a set of words s, is represented by a data

structure that stores the following fields:

– Word(n): the (i+1)-th word wi of identifying subset {w0, . . . , wi−1, wi} of s,

where w0, . . . , wi−1 are words appearing on the path from the root to node

n.

– Query(n): a linked list that contains the unique identifier of every query

q that is contained in the word pattern wp, for which {w0, . . . , wi} is the

identifying subset of set-of-words(T ).

– Remainder(n): if node n is a leaf, then this field is a linked list of words s

that are not included in {w0, . . . , wi}. If n is not a leaf (all words of s are

contained in {w0, . . . , wi}), Remainder(n) is empty.

– Children(n): a linked list of pairs (wi+1, ptr), where wi+1 is a word of

{w0, . . . , wi, wi+1} and is an identifying subset for the sets of words stored

at wi and ptr is a pointer to the node n′, where Word(n′) = wi+1.

• The sets of words stored in node n of T are equal to {w0, . . . , wn}∪Remainder(n),

where w0, . . . , wn are the words that we find on the path from the root of T to

n. A identifying subset of the words stored at node n is w0, . . . , wn.

To continue with the algorithm for inserting a new set of words s in a word directory,

we will first need to define the concept of clustering ratio.

Definition 9 Let s be a set of words indexed at node n of the trie T . For this set of

words we have that s = {w0, . . . , wn} ∪Remainder(n), where w0, . . . , wn are the words

that we find in the path from the root of T to node n. The clustering ratio of s in T ,
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denoted as ClusteRat(s, T ), is defined as ClusteRat(s, T ) = |{w0,...,wn}|
|s| . {w0, . . . , wn}

denotes the number of words from the root T to node n and |s| denotes the total number

of words in the set s.

ClusteRat(s, T ) is used to quantify how well the set of words s is clustered in trie T . It

practically indicates how many words of set s are going to be indexed in nodes and how

many of them will stay in the list Remainder(n). By definition, clustering ratio takes

values from the interval 0 < ClusteRat(s, T ) ≤ 1. Generally, ClusteRat(s, T ) near 0

indicates that the query is poorly indexed and a lot of words do not create nodes and

remain in the list Remainder(n). A clustering ratio near 1 indicates that the majority

of the words is indexed in nodes.

The algorithm for inserting a new set of words s in a word directory is as follows.

The first set of words that is inserted, will create a new trie root using a randomly

selected word, while the rest will be stored in the Remainder list in order for new

nodes to be created later on. The second set of words will consider being stored at the

existing trie or create a trie of its own. The algorithm BestFitTrie is searching the

forest of WD(A) for every trie with root that belongs to s such that, if s was indexed

there, ClusteRat(s, T ′) would be maximized.

BestFitTrie identifies the optimal node by performing a depth-first search (in

depth |s|−1) in all candidate tries. If many nodes that maximize ClusteRat(s, T ′) are

found, then BFT randomly selects one among them. The path from the root to the

node n is extended by adding new nodes containing the words in τ = (s\{w0, . . . , wn})∩

Remainder(n).

If s ⊆ {w0, . . . , wn}∪Remainder(n), then the last of these nodes becomes a new leaf

in the trie with Query(l) = Query(n)∪{q} (where q is the new query from which s was

extracted) and Remainder(l) = Remainder(n)\τ . Otherwise, the last of the l nodes

points to two children l1 and l2. Node l1 will contain the words Word(l1 ) = u, where u ∈

Remainder(n)\τ , Query(l1) = Query(n) and Remainder(l1) = Remainder(n)\(τ ∪

{u}). Similarly, the l2 node will have Word(l2 ) = v where v ∈ s\({w0, . . . , wn} ∪ τ ,

Query(l2) = q and Remainder(l2) = s\({w0, . . . , wn} ∪ τ ∪ {u}).

In Figure 3.4, we present the pseudo-code that BestFitTrie uses to index the

26



3.2. ALGORITHMS FOR FILTERING

Algorithm: BestFitTrie
1 match← Null
// for all query attributes

2 foreach attribute A ∈ q do
3 curClusterRat← 0
4 curPosition← Null

// for all candidate tries

5 foreach trie T such that root(T ) ∈ s do
// for all possible storage positions in candidate tries

perform a DFS

6 foreach node n ∈ T such that word(n) ∈ s do
7 calculateclusterRat(s)

// if a better position is found make a note of it

8 if clusterRat(s) > curClusterRat then
9 curClusterRat← clusterRat(s)

10 curPosition← n

// of s cannot be indexed in any existing trie

11 if curPosition = Null then
// create a new trie with a random word from s as a root

12 create a trie T with root(T )← wi ∈ s
13 curPosition← root(T )

// put the rest of the words in s in the

Remainder(curPosition)
14 Remainder(curPosition)← s\{wi}
15 else
16 store s at node curPosition

// put the rest of the words in s in the

Remainder(curPosition)
17 Remainder(curPosition)← s\{w0, . . . , wn}

Figure 3.4: Pseudocode for query insertion under Algorithm BestFitTrie

user’s queries. The time complexity of BestFitTrie is linear in the size of the dictio-

nary.

3.2.1.4 Filtering incoming documents

When a new document d is inserted in the forest, BestFitTrie fills the data structures

previously described. Thus, for each attribute A presented in DAL(d) and for each word

w of DWL(A), an in-depth search is performed in tries WD(A) with root w. Only tries
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Algorithm: Filter
1 match← Null
// for all documents attributes

2 foreach attribute A ∈ DAL(d) do
// for all tries with the distinct words in attribute as roots

3 foreach trie T such that root(T ) = w ∈ DWL(A) do
4 foreach node n ∈ T do

// if the word is contained in d
5 if word(n) ∈ OT (A) then

// if the words of the Remainder(n) (if any) are also

contained in d
6 if remainder(n) ⊆ OT (A) then

// the query ids of this node are added in the

potentially matching queries

7 match← match ∪ query(n)
// traverse the trie in DFS

8 n← children(n)

9 else
// if the word is not contained in d no need to search

the subtree

10 prune n

Figure 3.5: Pseudocode for filtering incoming documents

and their subtrees containing the words belonging to the document’s attribute A(d)

are examined, and by using the hash table OT (d) this is achieved much faster. For

each node n of the trie, the list Query(n) gives us the unique identifiers which are

stored in a data structure. Once the process is completed, the document is checked if

it has matched all the attributes of each query and that their users are notified of the

inserted document. This process is repeated for all the words of DWL(A) and for all

the attributes of DAL(d).

Figure 3.5 shows the pseudo-code for filtering of incoming documents by BestFit-

Trie.
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3.2.2 The Algorithm PrefixTrie

To evaluate the performance of BestFitTrie we chose to implement the Algorithm

PrefixTrie as described in [71, 78]. PrefixTrie, following the logic of Tree [74],

uses tries in order to index queries. This logic was based on the development of SIFT

system, as indicated in work [74], where it was observed that when users subscribe on

systems in the same area or topic, they tend to use the same or similar words and

expressions for their needs. This could lead in a large number of queries created, using

similar words. Thus, PrefixTrie, which is an extension of Tree algorithm [74], uses

alphabetical sorting for the sets of words entering the forest and attempts to put these

sets in tries where they will be stored more compactly. As a result, grouping improved

the overall speed of the process and contributed to saving disk space.

Since PrefixTrie examines only the prefixes of word sequences in lexicographic

order, to identify common parts, it misses many opportunities for clustering.

BestFitTrie constitutes an improved version of PrefixTrie, as it uses the Pre-

fixTrie’s basic idea with some improvements. BestFitTrie handles each query as

a set of words and not as a sorted sequence and searches exhaustively the forest of

tries to discover the best place to introduce a new set of words. Finally, the use of the

Remainder(n) structure offers the possibility of not generating nodes out of words di-

rectly but to wait until a new set of words to be inserted. These heuristic methods, used

by BestFitTrie, offer an organization that mainly depends on the order in which the

queries will enter into the forest. In order to solve this problem we will present two

reorganization methods that are referred in [71] and in [80].

A common assumption between BestFitTrie and PrefixTrie is that queries

will have many words in common. This scenario is realistic given that users may share

similar interests and have submitted their continuous queries to a central server. Ad-

ditionally, important scheduled events (e.g., football finals or elections) or even unex-

pected incidents (e.g., an earthquake or a terrorist act) can also cause the submission

of lots of similar queries, by users interested to subscribe to the flow of information

available for these events. These scenarios make the case for the usage of the trie-

based algorithms even stronger, since they could avoid a significant processing load by
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Figure 3.6: BestFitTrie vs. PrefixTrie for the queries of Table 3.1

exploiting the similarities between queries to provide fast filtering times.

3.2.3 Reorganization

Algorithms BestFitTrie and PrefixTrie use heuristic methods to identify and

cluster similar queries, in order to achieve better performance during the matching of

the incoming documents. These heuristics provide an organization of queries that is

dependent on the order of insertion of the queries in the forest. In this chapter, we will

study methods to improve the queries’ clustering.

3.2.3.1 The order of queries insertion

From the way we organize the queries in the forest (using BestFitTrie), the order in

which these queries are inserted into the forest is of fundamental importance, since it

drastically affects the creation of new tries. These tries will then be used as the basis

on which the upcoming queries will be indexed.

Example 9 Consider the queries shown in Table 3.1. Figure 3.6a presents how the

forest is formed if the queries are introduced in the order listed in Table 3.1. However,

if we change the order of the queries insertion, BestFitTrie would create an entirely

different forest. Inserting queries in the order of Table 3.2, results to the forest of Figure

3.7a.
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Order Queries

1 s5 = {filtering , information, selective, dissemination}
2 s3 = {information, filtering}
3 s6 = {boolean, information, filtering , dissemination}
4 s1 = {information}
5 s4 = {models , proximity , operators , retrieval , information}
6 s2 = {retrieval , information}

Table 3.2: Queries insertion order example

information
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WD(Ai)

[          ]Query ID:1

[          ]Query ID:2

filtering

[          ]Query ID:3
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(b) WD(B) based on Example 10

Figure 3.7: Different query insertion order

As shown in Example 9, for the same set of words but using a different insertion

order, we receive two different forests with different number of nodes, clustering ratio

and therefore different performance results. The problem is to find the order of the

insertion of the queries that optimizes query execution. We will propose two different

ways to address this problem and improve the performance of our algorithms. If we

consider the problem of clustering as a search problem, with the search space represent-

ing all the possible organizations of nodes that can be achieved, then BestFitTrie

provide us with a greedy heuristic witch may not be considered optimal but one of the

acceptable solutions.

An alternative to organizing the user queries in a heuristic fashion is to search over

the space of all possible organizations for the optimal one. When we seek the best
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possible performance in the reorganization process, we must decide the appropriate

criterion used for these reorganizations to occur. It is necessary to define what we will

be reorganizing and how often.

1. Reorganization based on intervals: Surely the simplest approach is to reor-

ganize the index of queries on specific intervals (i.e., after a specific number of

query insertions). This approach can result in a better-formed database as of-

ten as desired, but ignores the clustering criteria, while invoking reorganization

events when not needed.

2. Reorganization based on clustering ratio: Another option is for us to reor-

ganize the forest when the clustering ratio gets below a specific rate.

3. Reducing branching ratio: A third approach would be to consider and reduce

the fan-out (branching ratio) of trie nodes. This would reduce the number of

subtrees and could lead in smaller document filtering times.

Every technique has its advantages and disadvantages. Some of these techniques

are used for both reorganization algorithms (ReTrie and StaR) that we will present

in the next section.

3.2.4 Reorganization using ReTrie

We consider Algorithm ReTrie [71, 78, 80]. ReTrie is a variant of BestFitTrie that

reorganize the queries that have a clustering ratio below a specified threshold. It is a

combination of the above techniques (1 and 2), in order to achieve better reorganization

results. The main idea is as follows, we reorganize our forest when a particular number

Q of queries is reached, but we will individually examine the clustering ratio for each

query and only when it falls below a threshold c that we set, will the reorganization

occur. Before describing ReTrie in more detail, we will determine which queries are

under-clustered, i.e., are considered to be below the clustering ratio limit.
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Definition 10 Let s be a set of words that have been indexed in node n of trie T .

The set s is considered under-clustered iff ClusterRat(s, T ) < c where 0 ≤ c ≤ 1 is a

clustering threshold called the minimum clustering ratio.

In order to record the clustering ratio of each set of words s, ReTrie utilizes a

clustering array (CA) which contains an entry for every set of word of WD(B). Each

CA entry contains a pointer to the positions of s (of WD(B)) and a number that

corresponds to ClusteRat(s, T ). When a new set of words s is indexed in node n of the

trie, then the clustering ratio of s stored in CA is initialized based on the Definition 9.

If the Remainder(n) list is expanded to create new nodes, then the clustering ratios

of the other sets of words stored at n are updated based on CA. If Remainder list is

not expanded, no other update is needed to the array CA.

The pseudo-code of the algorithm ReTrie that is presented in Figure 3.8, searches

and repositions the sets of words that are below threshold c that we have set and are

badly clustered.

All under-clustered sets of words are identified by scanning the CA array. For every s

where ClusterRat(s, T ) < 0, ReTrie is scanning for all the nodes of the forest WD(B)

that could index s and result in a ClusterRat(s, T ) greater than c. Essentially, using

the mechanisms of BestFitTrie and making the insertion from the beginning of the

query, the algorithm also chooses to make the insertion in the new node only when the

node offers a high ClusterRat(s, T ) than the existing clustering ratio. Finally, if there

is a shift of s, an update of CA also occurs, and the set of words is removed from the

previous position that it was indexed at.

Algorithm ReTrie has the potential to improve the clustering of the queries, unlike

BestFitTrie where not all the queries have the same clustering opportunities. This

can be explained as follows: When a set of words s corresponding to formula B w wp

needs to be indexed, the clustering algorithm searches every trie of the forest WD(B)

for a node such that the clustering ratio ClusterRat(s, T ) is maximized.

It is easy to understand that the search for the optimal position is influenced by

the number of tries and nodes. The higher the number of candidate positions to insert

s, the higher the probability that s will be better indexed. This is shown in Figure 3.9.
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Algorithm: ReTrie
// for all document attributes

1 foreach attribute A do
// for all stored sets of words where N is the number of the

sets

2 for i = 0 to N do
// identify under-clustered ones

3 if CA[ı].clusterRat < c then
4 let s be the ı-th set of words

// for all candidate tries

5 foreach trie T such that root(T ) ∈ s do
// for all possible storage positions in candidate

tries

6 foreach node n ∈ T such that word(n) ∈ s do
7 calculateClusterRat(s, T )

// if a better position is found make a note of it

8 if ClusterRat(s, T ) > curClusterRat then
9 curClusterRat← clusterRat(s, T )

10 curPosition← n

// if the best position found is better than the initial

11 if curPosition 6= CA[ı].position then
// move s there

12 move s to curPosition
// and update CA

13 CA[ı].position← curPosition
14 CA[ı].position← curClusterRat

Figure 3.8: Pseudocode for query insertion under Algorithm ReTrie

Consider the forest shown in Figure 3.9a, consisting of a single trie T and indexing

three sets of words:

• s0 = {information}

• s1 = {information, retrieval , filtering}

• s2 = {information, retrieval , dissemination}

When a new set of words s3 = {information, algorithm, operators} is inserted into

the forest, it is clustered only under one word (Figure 3.9b). The clustering ratio of
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Figure 3.9: Query insertions and reorganization achieved by ReTrie

s3 is ClusterRat(s3, T ) = 0.33. Upon arrival of s4 = {algorithm, operators}, a new

trie is created, since s4 cannot be indexed under an existing trie, creating the forest

of tries shown in Figure 3.9c). It is obvious though, that there is a better position

for s3 to be indexed and this position is along with s4, as shown in Figure 3.9d),

where ClusterRat(s3, T ) = 0.66. We notice that the words retrieval and operators

of the forest WD(B), as shown in Figure 3.9c), appear in two nodes each and that

redundancy in nodes is the main problem that slows down the filtering process. After

reorganizing the forest of Figure 3.9d) the redundant nodes of these two words are

removed. Generally, it is impossible to remove all redundant nodes in the forest (e.g.,

the node information), but we focus our efforts on minimizing nodes by reorganization.

35



CHAPTER 3. DATA MODEL AND ALGORITHMS

3.2.5 Reorganization using StaR

Studying ReTrie we understand that the order in which the queries are inserted in

our forest, is an important factor in the organization of the index as shown in Example

9. The tries that will be created in the early stages play a crucial role because they

determine the positions of the following queries. We also observed that as often as we

call ReTrie after a number of queries, it cannot find any position that offers higher

clustering ratio than the existing and the reposition of a large number of queries inside

the forest may damage the clustering of the trie from which they are removed. These

conclusions were derived from studying the perfect choice of parameters for ReTrie

[78].

It is readily understood that the key to the proper clustering of the tries is based

on the correct insertion of the queries.

More precisely, the ReTrie algorithm firstly organises queries into tries and then

maintains a data structure that monitors the number of poorly clustered queries in the

forest. These purely clustered queries are those that are not indexed in the best possible

position according to the existing tries. When a certain threshold of poorly clustered

queries is reached, the reorganisation process is triggered and all poorly indexed queries

are examined and re-indexed. By choosing to reposition only poorly indexed queries,

the ReTrie algorithm misses many available reorganisation options and is bound to

use the existing tries. This means that new trie creation is very rare. On the contrary,

the StaR algorithm reorganises all newly inserted queries by employing query ordering

and word frequency heuristics to avoid exploring all possible query organisations.

For that reason, we used the algorithm StaR [71, 80], that can affect the order of

the queries insertion in the forest. The main idea behind the algorithm is as follows:

The forest accepts queries without being aware of the significance of the words inserted.

It would be useful if we could delay the creation of the tries until a good sample of

the significance of the words could be provided. Then, by exploiting the information

for the significance of the words, the forest would proceed to the appropriate index

reorganization.

In the first stage, StaR gets the queries and indexes them in the same way as
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keyword k freq(k)

information 6

retrieval 2

filtering 3

models 1

proximity 1

operators 1

selective 1

dissemination 2

boolean 1

Table 3.3: Statistics Table. Scoring Example in Table 3.4

BestFitTrie but in a temporary forest. The purpose of the temporary forest is to

index the queries until they pass to the final forest. This way, both users that have

their queries in the final forest and those who have recently introduced queries in the

forest but they are not have passed to the final stage of the organization, will be kept

informed. Additionally, we maintain the matching speed at the same level as with

BestFitTrie until we have the final forest resulting from the StaR algorithm. Along

with the insertion of new queries in the forest, StaR maintains a hash table named

Statistics which stores the number of appearances (frequency) for each unique word

(keyword) of the set of word patterns, that have appeared in the forest by this time.

An example of a statistics table can be seen in Table 3.3 below.

The query itself is also stored in another table in the memory in order to be rated

at a later time, without having to search the entire forest to recover it.

Before describing the second phase of the algorithm, we will give the definition for

the scoring that every s is receiving based on the statistics of words.

Definition 11 Let s = {w0, . . . , wn} be a set of words and freq(w) be the frequency of

appearances of a word. The score of s is denoted as:

scores =
∑n

i=0 freq(wi)

Practically, score is the sum of the word appearances of the set of words s as this is
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Query Score

s1 = {information} 6

s2 = {retrieval , information} 8

s3 = {information, filtering} 9

s4 = {models , proximity , operators , retrieval , information} 11

s5 = {filtering , information, selective, dissemination} 12

s6 = {boolean, information, filtering , dissemination} 12

Table 3.4: Scoring of queries in Table 3.1

stored in table Statistics.

In the second phase after a number of Q queries have been inserted into the forest,

wherein Q is a parameter that sets the beginning of the operation, StaR starts im-

porting them in the final forest. Using the statistics table, StaR calculates the score of

each query as indicated by Definition 11, sorts the terms based on the Statistics table

and organizes its insertion order to the final stage. The insertion order and the cluster-

ing of the terms can be made either in descending or ascending order of score. StaR

may insert first the queries with low rating (i.e., with low frequency) and then those

higher rating (i.e., with higher frequency). Alternatively, it can first enter the queries

with the highest score, i.e., those containing words that appear more often in the entire

dictionary. In Chapter 4 we will further analyze the advantages and disadvantages of

the ascending and descending insertion order and how this choice affects the creation

of the forest.

Previously, we mentioned that except for the queries we also sort their terms in

order to create better tries. Thus, the creation of any new root for a trie T in WD(B)

is not random; when creating a new trie we always set the first word as root (even if

this word represents a word with the lowest frequency of the higher one), while the

way new tries are created is affected by the terms order in the Remainder(n) list. So

when the list Remainder(n) is about to create more than one new nodes, it creates

them reflecting their in-between ranking in the hierarchy of parent-child nodes. Finally,

StaR inserts the queries exactly in the manner described earlier for BestFitTrie.
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Algorithm: StaR
1 queryCounter ← 0 // query counter

2 tempForest← Null // create temporary forest

3 finalForest← Null // create final forest

// for each inserted query

4 foreach wp do
// if buffer is not full

5 if queryCounter%bufferSize then
// add the query in the temporary forest exactly as

BestFitTrie

6 tempForest.add(wp) // update the Statistics array

7 Statistics.add(wp) // store the query in order to score it

later

8 queryTable.add(wp) // update the counter that another query

has been inserted in the temporary forest

9 queryCounter + +

10 else
11 Sort(queryTable, Statistics) // Sort the queries based on

Statistics

12 finalForest← queryTable // insert the queries to the final

forest

13 tempForest← Null // empty the temporary forest

Figure 3.10: Pseudocode for query insertion under Algorithm StaR

The pseudo-code of the algorithm Star is presented in Figure 3.10.

Example 10 In Example 9 we saw that the order of insertion is essential for the cre-

ation of the trie. If we use StaR to insert the queries of Example 9 in the same order,

then Figure 3.7a is representing the temporary forest. While the table of statistics is

formed as follows:

StaR is able to sort the set of words s of each query in ascending or descending

order, based on the Statistics hash table 3.3 (i.e., the frequency of appearances of each

word, leads to the creation of two variations of algorithm StaR identified as StaR-F,

StaR-R), and must choose to organize the insertion order of all queries in the final

forest in ascending or descending order of Scores (i.e., the score of queries leads to the

creation of two variations of algorithm StaR identified as StaR-H, StaR-L). This

gives us four possible combinations for the query organization before they enter the final
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forest (StaR-H StaR-F, StaR-H StaR-R, StaR-L StaR-F, StaR-L StaR-R).

In this example, we choose to sort the words of each query in descending order

of appearances while we insert queries in descending order of Score (i.e., StaR-F,

StaR-H). Based on the above we have the following order of insertion:

• s6 = {information, filtering , dissemination, boolean}

• s5 = {information, filtering , dissemination, selective}

• s4 = {information, retrieval ,models , proximity , operators}

• s3 = {information, filtering}

• s2 = {information, retrieval}

• s1 = {information}

Having described our problem and the algorithms used, we can now analyze the

algorithms performance in the next chapter.

3.2.6 Parallelization of the indexing and filtering process

An elegant way of enhancing the performance of all algorithms is by parallelizing the

filtering process. Such an improvement is critical as filtering algorithms are expected

to process high volumes of incoming information as efficiently as possible. Here we

identify one proof-of-concept parallelization variation for all Algorithms described.

Document parallelization (MtF) is a straightforward solution where each one of

the available threads ϑd is assigned to execute the filtering process for a sub-set of

incoming documents {Dj, . . . , Dm}. The filtering procedure is executed as described

in Algorithm 3.5. Thus, the forest can be searched simultaneously by more than one

threads.

In the same spirit, we also used query parallelization (MtP) where each one of

the available threads ϑp is assigned to execute the indexing process for a sub-set of

queries {Pj, . . . , Pm}. The indexing procedure is executed as described in Figure 3.4.

The indexing of the queries though, cannot be executed simultaneously because the

forest of tries is actually one global variable that can be manipulated only by the

current active thread. Mutual exclusion was used, in order to prevent race conditions.
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Chapter 4

Experimental evaluation

In this chapter, we discuss the experimental evaluation of the Algorithms BestFit-

Trie [71, 78], described in Section 3.2.1, PrefixTrie [74] described in Section 3.2.2,

Retrie [71] and StaR [71, 80], presented in Section 3.2.4 and Section 3.2.5 respec-

tively. At first, we are going to demonstrate the data and the parameters used in our

evaluation process, the technical configuration of our algorithms and the implementa-

tion of the experiments. Finally, we present and analyze the results obtained from the

evaluation of the algorithms.

4.1 Data and query sets

To evaluate the proposed algorithms, sets of incoming documents are required. For our

experiments, we use two sets of documents described in the following sections.

4.1.1 The DBpedia corpus

The first set of documents used in our experiments is based on the DBpedia corpus.

It consists of a wide and thematically unfocused set of documents, contains more than

3.7M documents, has a total vocabulary of 3.14M words and its average document

size is 53 words. Each document is an extended Wikipedia abstract downloaded from

the DBpedia website (http://wiki.dbpedia.org/Downloads39). Table 4.1 summarizes

some key characteristics of the DBpedia corpus.
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Description Value

Vocabulary size 3.14M

Average document size (words) 53

Maximum document size (words) 14.425

Minimum document size (words) 1

Maximum word size (letters) 57

Minimum word size (letters) 1

Table 4.1: Characteristics of the DBpedia corpus.

These documents topics, in the DBPedia collection, are of general content but they

will help us evaluate how documents from different topics are clustered in a forest.

The collection of words follows a Zipf distribution, i.e., few words have high fre-

quency of appearance in the collection and most of the words have small frequency

of appearance. The Zipf distribution appears in most collections of natural language

texts, thus, the DBpedia corpus is a very good choice.

4.1.2 The neural networks corpus

The second set of documents is composed of research papers in the area of Neural

Networks and we will refer to them as the NN corpus. The set is downloaded from

ResearchIndex and it was originally used in [29]. The NN set is composed of 10400

documents and contrary to DBpedia is a collection of documents of the same area and

interest. Table 4.2 provides some key characteristics of the NN collection. NN collection

also follows the Zipf distribution.

4.2 Queries creation

There is not a public available set of queries for the sets of documents. Thus, we created

a set of queries in order to use them as users queries. To this end, we edited the two

corpuses (DBpedia, NN ), removing the most common words along with everything that

it could be considered as noise (e.g., very long, rare or misspelled words).
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Description Value

Vocabulary size 323.902

Average document size (words) 3.151

Maximum document size (words) 56.434

Minimum document size (words) 1

Maximum word size (letters) 35

Minimum word size (letters) 1

Table 4.2: Some of NN set’s characteristics

After editing these collections, we end up with vocabularies that were used for the

creation of different users queries, in order to test different filtering scenarios for our

algorithms. For every collection, we chose random terms from the available vocabularies

for user queries and for every set of queries we created different subsets with different

average length of terms.

Using this procedure, we have created 3 Million queries.

4.2.1 First query collection

The first query collection contains queries formed by conjunctions of different terms;

each term conjunct is selected equiprobably among the set of words forming the DB-

pedia corpus vocabulary (3.14M) and the set of wikipedia document titles. Due to the

nature of the DBpedia corpus and the corresponding vocabulary size, the constructed

queries are expected to cover a wide variety of topics and, thus, share few common

words between them. This restricts clustering opportunities and makes this setting a

stress test for the filtering performance of the algorithms, as they are forced to iden-

tify and exploit the few commonalities between the indexed queries. For this query

set, we select 500K documents’ extended abstracts from DBpedia and use them as the

incoming documents.
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Collection

Description First Second

Vocabulary size 650K 551K

Words 25M 15M

Average query length 3− 5 3− 5

Complex terms per 50% 0%

query length

Table 4.3: Characteristics of first and second query collections.

4.2.2 Second query collection

The second query collection is constructed by selecting 50K thematically related ex-

tended abstracts from DBpedia. As these queries become more focused and the vocab-

ulary of the query database is restricted, more clustering opportunities appear. In this

setting, the performance of the different algorithms is expected to be similar, as all

will exploit the many clustering opportunities offered. Notice that the 500K incoming

documents utilized in this section are the same ones used in the first query collection,

since we aim to study the behavior of our algorithms when varying the query set.

4.2.3 Third query collection

The aim of third and final collection is to measure how the algorithms behave when

using a great volume of irrelevant terms (noise) along with very specific terms and how

each algorithm will perform.

This collection collection consists of queries from the dictionary resulting from the

NN documents and has 62K unique words. Based on this, we created 1.5M queries

without using complex terms. Subsequently we created an additional 1.5M queries

with common words from the DBpedia collection. The size of this single dictionary is

13, 910. Finally, these 3M queries were indexed and we matched all of the NN collection

of documents, namely 10, 400 documents related exclusively to the neural networks.
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4.3 Evaluation criteria

The criterion that summarizes our algorithms’ performance is the time the incoming

documents need to be matched. The measurements were performed in order to deter-

mine the performance of the Algorithms BestFitTrie, PrefixTrie, ReTrie and

StaR, in single-core and multi-core environments. We also use the size of incoming

queries and documents and the number of threads in order to evaluate the performance

of each algorithm when those variables are altered.

The time shown in the graphs is wall-clock time and the results of each experiment

are averaged over 5 executions to eliminate any fluctuations in time measurements.

Thus, we will present our results focusing on the time difference in indexing and filtering

processes between sequential and parallel execution and between our algorithms.

In addition, we are going to present the variation resulting to the optimal perfor-

mance per thread in relation to the overall improvement in the filtering process.

4.4 Experimental setup

All the algorithms shown in the experiments of this section were implemented in C++.

For the parallelization of the indexing and filtering process, we used the <thread> C++

library. We used a Blade server with 4 Xeon 2.13GHz processors, 8 cores, 64 threads

and a main memory of 264GB running Debian Linux. The time shown in the graphs

is wall-clock time and the results of each experiment are averaged over 5 executions to

eliminate any fluctuations in time measurements.

4.4.1 Algorithm parameters and configuration

There is a number of parameters, which affect the performance of the presented al-

gorithms that have to be determined and set. For our evaluation, we use a clustering

ratio of 0.8 for ReTrie, while query reorganization for under-clustered queries is in-

voked every IP = 125K query insertions. Regarding StaR, in our experiments we are

going to use the StaR-LR variation and the reorganization will be always occurring
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Parameter Description Baseline value Range

IP Number of incoming queries 500K 500K − 3M

ID Number of incoming documents 500K 500K

DB Number of queries indexed 3M 500K − 3M

in the database

ϑ Number of threads used for 1 1− 80

the indexing and filtering process

Table 4.4: Parameters’ description, their baseline values and their range.

at 500K queries. All the above parameters were selected based on the measurements

of [78]. Finally, for the parallelization of the indexing and filtering process we utilized

a set of 4, 16, 25, 50 and 80 threads.

The baseline values for each tunable parameter in the experimental evaluation are:

1. The number of incoming queries IP = 500K

2. The number of incoming documents ID = 500K

3. The query database size DB = 3M

4. The threads used in the filtering process ϑ = 1

Table 4.4 summarizes the parameters examined in our experimental evaluation. For

more details about the parameter setting we refer the interested reader to [71, 74].

4.5 Results for first collection

In this section, we are going to discuss the results we received from our first collection.

More specifically, we will evaluate BestFitTrie, PrefixTrie, ReTrie and StaR

algorithms using the DBpedia collection as described in Section 4.1.1. We will present

the indexing and filtering times of the algorithms for both serial and multithreading

versions.
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We also present the most important results to understand how the algorithms per-

form when using threads and without them. For more information regarding the way

the algorithms create the forest you can refer to [78].

4.5.1 Evaluating indexing time

This section presents the time every algorithm requires to index 3 million queries.

As expected, the time needed for indexing is increased as the number of queries is

increasing.

In all our experiments we found that despite the number of threads created for

indexing the queries, almost all our algorithms took noticeably more time to index

the number of queries compared to their serial versions (Figure 4.2). This is a logical

consequence of the manner that the four algorithms are inserting the queries in the

forest, which is in fact one global variable. That means that only one thread at a time

can manipulate this variable. By using mutual exclusion (mutexes), in order to prevent

race conditions and to ensure the integrity of the final results, the forest of queries is

locked by each thread every time queries are inserted in the forest, essentially making

the various threads waiting for the occasional active thread to finish its work, resulting

in worse insertion times than a serial insertion of queries. Our results showed from

almost identical times, up to 2 times slower indexing when using multiple threads.

The only exception was ReTrie, were we actually had a mediocre improvement in

most of the variations of the algorithm, especially when using 4, 16, 25, and 50 threads.

The indexing performance in ReTrie increased from 23, 43% to 41, 26% compared to

the serial version of the algorithm. In Figure 4.2 we can see all the algorithms serial

times compared to their multithreading versions when indexing 3 million queries at

once. In Figure 4.1 we can see a comparison of all algorithms per number of threads

used. ReTrie is also the algorithm that takes the most time to index the specific

queries due to the reorganization process, followed by StaR and BestFitTrie. On

the other hand, due to the usage of alphabetical sorting, PrefixTrie is the algorithm

with the smallest time difference and indexing time amount in general but this also

results in having the worse filtering times from all the other algorithms.
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Figure 4.1: Evaluating indexing time for several number of threads (ϑ ∈
{1, 4, 16, 25, 50, 80}), when varying the database size from 0.5M to 3M and IP = 500K.
In all cases, PrefixTrie has the fastest performance, BestFitTrie and StaR are
very close while ReTrie by far is the slowest.
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Figure 4.2: Evaluating indexing time for several number of threads (ϑ ∈
{1, 4, 16, 25, 50, 80}), when varying the database size from 0.5M to 3M and IP = 500K.
In most cases, a single thread (ϑ = 1) has the fastest performance. Increasing the num-
ber of threads leads to slower performance for all algorithms but ReTrie.

4.5.1.1 Indexing speedup and efficiency

Speedup and efficiency are two performance metrics used in parallel applications

(R.Rocha and F. Silva). Speedup S(ϑ) is a measure of performance. It measures the

ratio between the sequential execution time and the parallel execution time. Speedup

S(ϑ) is defined as follows:

S(ϑ) =
T (1)

T (ϑ)

where T (1) is the execution time with one processing unit and T (ϑ) is the execution

time using ϑ number of threads.
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Figure 4.3: Comparing speedup and efficiency of indexing, for several number of threads
(ϑ ∈ {1, 4, 16, 25, 50, 80}), when varying the database size from 0 to 3M and IP = 3M .

Efficiency E(ϑ) is a measure of the usage of the computational capacity. It measures

the ratio between performance and the number of resources available to achieve that

performance. Efficiency E(ϑ) is defined as follows:

E(ϑ) =
S(ϑ)

ϑ
=

T (1)

ϑ ∗ T (ϑ)

where S(ϑ) is the speedup for ϑ number of threads.

In Figure 4.3 we present speedup and efficiency for the indexing process of all

algorithms and for a several number of threads. In Figure 4.3a we can see that the

only algorithm exceeding speedup 1 is ReTrie, who had a mediocre improvement

in most of the variations of the algorithm. All the other algorithms are presenting a

speedup of less than 1, indicating that the serial version of the algorithms had the best

performance most of the times.

In Figure 4.3b we can see that the efficiency of all the algorithms is declining while

the number of threads is increasing, suggesting that the serial version of the algorithms

had the best efficiency.

4.5.2 Evaluating filtering time

This section discusses the results of the filtering time required to match an incoming

document against a database of queries as well as the optimal number of threads
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Filtering Time Improvement - 80 Threads

Algorithm
Min
Improvement

Max
Improvement

Speedup
(Min)

Speedup
(Max)

BestFitTrie 96,22% 97,93% 26,46 48,41

PrefixTrie 96,89% 97,84% 32,18 46,23

ReTrie 96,56% 98,28% 29,08 58,12

StaR 96,53% 97,41% 28,84 38,62

Table 4.5: Filtering time improvement and speedup (times faster) for all algorithms.

providing the best algorithms’ performance.

In order to compare the filtering time of the original algorithms with their mul-

tithreading versions, we will use our results from all the algorithms variations, using

the number of threads providing the lowest filtering times and the best speedup and

efficiency.

Our experiment was conducted using 4, 16, 25, 50 and 80 threads. Although hard-

ware concurrency function suggested that the number of threads supported was 64

threads (as a hint), we have found that using a number of 80 threads had the best

filtering times in our system in almost all cases.

Figure 4.4 shows the filtering time of all algorithms per number of threads and

Figure 4.5 shows the filtering time per algorithm when varying the number of threads

ϑ (ϑ = 1 refers to the serial version of the algorithm).

Table 4.5 shows how much the filtering time was improved when using 80 threads

for all our algorithms. It also showcase the minimum and maximum time improvement

and how many times faster (speedup) each algorithm completed the filtering process.
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Figure 4.4: Evaluating filtering time efficiency for several number of threads (ϑ ∈
{1, 4, 16, 25, 50, 80}), when varying the database size from 0.5M to 3M and IP = 500K.
In most cases, StaR has the fastest performance, followed by BestFitTrie, ReTrie
and PrefixTrie.
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Figure 4.5: Evaluating filtering time, of all algorithms, when varying the size of query
database DB and ϑ.

BestFitTrie algorithm filtering time was improved between 96, 22% and 97, 93%

(26, 4 to 48, 4 times faster execution respectively, see Figure 4.5a), compared to its serial

version and PrefixTrie showed an improvement between 96, 89% and 97, 84% (32, 2

to 46, 2 times faster, see Figure 4.5b). ReTrie algorithm filtering time was improved

between 96, 56% and 98, 28% (29 to 58, 1 times faster, see Figure 4.5c). StaR algorithm

filtering time was improved between 96, 53% and 97, 41% (28, 8 to 38, 6 times faster,

see Figure 4.5d).

We observe that the filtering time that all algorithms consume when using threads,

is not noticeably affected as the number of queries increasing from 500K to 3 million.

On the contrary, on the serial version of the algorithms, we can clearly see that the
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Figure 4.6: Evaluating speedup and efficiency for several number of threads (ϑ ∈
{1, 4, 16, 25, 50, 80}) in filtering, when varying the database size from 0 to 3M and
IP = 3M .

number of queries used for matching, dramatically affects the system when increased.

StaR is the algorithm with the lowest filtering time in general. Algorithms serial

execution also provides the same results regarding the filtering time, due to the way the

algorithms are indexing the queries and create the forest. For example, PrefixTrie

uses alphabetical sorting for the queries entering the system and by using tries to

store queries compactly misses clustering opportunities and thus creates a final forest

that needs more time to be traversed, eventually affecting the filtering time in both

scenarios.

4.5.3 Filtering speedup and efficiency

Examining the performance of the algorithms for a different number of threads, we

observe that although best overall filtering times were achieved by increasing the num-

ber of threads, the efficiency of the algorithms dropped as the number of threads was

increasing (Figure 4.6). In addition, the percentage of the total filtering improvement

is logarithmic and constantly decreases as the number of threads increases, suggesting

that maximum performance is reached for the specific system (Figure 4.7).

Table 4.6 presents the efficiency of ReTrie when IP = 2.5M for all values of ϑ.

For example, ReTrie filtering time results, when using 4 threads in total, showed
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Thread Performance in ReTrie

No. of threads Speedup(Max) Efficiency
Time
Improvement

4 6,00 150,00% 83,35%

16 27,91 174,43% 96,42%

25 34,02 136,07% 97,06%

50 52,43 104,86% 98,09%

80 58,12 72,63% 98,28%

Table 4.6: Speedup, efficiency and filtering time improvement of ReTrie for a query
database of DB = 2.5M .
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Figure 4.7: Comparing efficiency and filtering time improvement of ReTrie, when
varying the number of threads ϑ, for a query database of DB = 2.5M .

83, 35% improvement in total time but the efficiency was increased up to 150, 00% (by

the assumption that 4 threads can ideally and theoretically complete the same task

4 times faster than 1 main thread), resulting in completing the task 6 times faster

(speedup).

When efficiency is exceeding 100%, this is called super-linear speedup. One possible

reason for super-linear speedup, in low-level computations, is the cache effect resulting

from the different memory hierarchies of a modern computer. In parallel computing, not
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only do the numbers of processors change, but so does the size of accumulated caches

from different processors. With the larger accumulated cache size, more or even all of

the working set can fit into caches and the memory access time reduces dramatically,

which causes the extra speedup in addition to that from the actual computation. An

analogous situation occurs when searching large data sets [12].

The usage of 16 threads showed 96, 42% faster filtering times and 174, 43% improve-

ment in efficiency, resulting in 27, 91 times faster execution of the filtering process. The

usage of 25 threads presented an improvement of 97, 06%, executing the filtering task

34, 02 times faster. From this point on, all our next measurements, using 50 and 80

threads, show that efficiency is declining (104, 86% and 72, 63% respectively) and the

total time improvement is similar (98, 09% and 98, 28%) near 98%.

These results show that the best efficiency was achieved when using 16 threads.

The use of 25 threads constitutes an intermediate solution, combining good filtering

times with great efficiency, for this particular system.

4.6 Results for the Second Collection

In this section, we are going to discuss the results we received from our second collec-

tion, presenting the indexing and filtering times of the algorithms for both serial and

multithreading versions.

The results from the second collection show that when the dictionary is small and

the number of queries is high, there is no high variation in the time improvement

between the algorithms. This is due to the high repetition of terms in the queries,

leading to the creation of similar forests.
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Figure 4.8: Evaluating indexing time of the Second Collection, for several number of
threads (ϑ ∈ {1, 4, 16, 25, 50, 80}), when varying the database size from 0.5M to 3M
and IP = 500K. In all cases, PrefixTrie has the fastest performance followed by
BestFitTrie. StaR and ReTrie are the slowest.
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Figure 4.9: Evaluating indexing time for several number of threads (ϑ ∈
{1, 4, 16, 25, 50, 80}) of the Second Collection, when varying the database size from
0.5M to 3M and IP = 500K. In all cases, (ϑ = 1) has the fastest performance.
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Figure 4.10: Comparing speedup and efficiency of indexing of the Second Collection,
for several number of threads (ϑ ∈ {1, 4, 16, 25, 50, 80}), when varying the database
size from 0 to 3M and IP = 3M .

4.6.1 Evaluating indexing time

Despite the number of threads used, all algorithms took more time to index the queries.

ReTrie was the slowest, followed by StaR, BestFitTrie and PrefixTrie. Compar-

ing indexing time for several number of threads, we find that especially BestFitTrie

and PrefixTrie took from 64% to 112% more time, depending on the number of

threads used, compared to their serial versions. ReTrie and StaR took from 7% to

20% more time, compared to their serial versions.

In Figure 4.8 we can see all the algorithms indexing times per number of threads

used. In Figure 4.9 we can see all algorithms indexing times, compared to their multi-

threading versions when indexing 3 million queries at once.

Speedup and efficiency of the indexing process of the Second Collection, is pre-

sented in Figure 4.10. In Figure 4.10a we can see that StaR and ReTrie have the

best speedup, followed by BestFitTrie and PrefixTrie. Efficiency, as presented

in Figure 4.10b, is similar for all algorithms and drops dramatically as the number of

threads increases.
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4.6.2 Evaluating filtering time
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Figure 4.11: Evaluating filtering time efficiency for several number of threads (ϑ ∈
{1, 4, 16, 25, 50, 80}) of the Second Collection, when varying the database size from
0.5M to 3M and IP = 500K. The performance of all algorithms is similar.
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Figure 4.12: Evaluating filtering time, of all algorithms the Second Collection, when
varying the size of query database DB and ϑ.

The filtering time needed was drastically decreased on all algorithms. The filtering time

of the algorithms showed an improvement between 91, 78% to 96, 48%. The only excep-

tion was when the algorithms used 4 threads. Then the filtering time improved from

70, 09% to 72, 76% on all algorithms. We also noticed that filtering performance was

almost identical regardless of the algorithms used, with BestFitTrie and ReTrie

completing the process slightly faster in most cases. Figure 4.11 presents all algorithms

filtering time efficiency per number of threads. In Figure 4.12 we can see the comparison

of filtering times when varying ϑ per algorithm. Figure 4.13 presents filtering speedup

and efficiency of all algorithms.

Table 4.7 shows how much the filtering time was improved when using 80 threads
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Figure 4.13: Evaluating speedup and efficiency for several number of threads (ϑ ∈
{1, 4, 16, 25, 50, 80}) of the Second Collection, in filtering, when varying the database
size from 0 to 3M and IP = 3M .

Filtering Times Improvement - 80 Threads

Algorithm
Min
Improvement

Max
Improvement

Speedup
(Min)

Speedup
(Max)

BestFitTrie 92,94% 96,24% 14,17 26,58

PrefixTrie 92,74% 96,24% 13,77 26,56

ReTrie 93,00% 96,30% 14,29 27,06

StaR 94,11% 96,48% 16,98 28,44

Table 4.7: Filtering time improvement and speedup for all algorithms - Second Collec-
tion

for all our algorithms, using the second query collection.

4.6.3 Filtering speedup and efficiency

Examining the speedup and efficiency, we observe that the efficiency is similar to the

first collection. Efficiency is also declining as the total number of threads is increasing.

Table 4.8 and Figure 4.14 present the efficiency and time improvement of algorithm

StaR when varying ϑ.

These results show that the best efficiency was achieved when using 4 threads.

All the algorithms had similarly decreased their performance when using more than 4
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Thread Performance in StaR

No. of threads Speedup(Max) Efficiency
Time
Improvement

4 3,67 91,79% 72,76%

16 13,27 82,92% 92,47%

25 20,35 81,40% 95,08%

50 25,37 50,74% 96,06%

80 27,98 34,97% 96,43%

Table 4.8: Thread performance and filtering time efficiency of StaR, for a query data-
base of DB = 3M - Second Collection.
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Figure 4.14: Comparing thread performance and filtering time efficiency of StaR,
when varying the number of threads ϑ, for a query database of DB = 3M of the
Second Collection.

threads. The percentage of the total filtering time is also logarithmic and constantly

decreases as the number of threads increases (Figure 4.14).

63



CHAPTER 4. EXPERIMENTAL EVALUATION

4.7 Results for the Neural Networks Collection

In this section, we are going to discuss the results we received from our third collection,

presenting the indexing and filtering times of the algorithms for both serial and multi-

threading versions. This is a focused data set about the same topic, against a collection

of queries with a small vocabulary and a lot of noise.

4.7.1 Evaluating indexing time

ReTrie was again the algorithm that took the most time in indexing, followed by

StaR, BestFitTrie and PrefixTrie. However, BestFitTrie and PrefixTrie

where the algorithms having the worst performance in indexing, when compared to

their serial versions. Both algorithms were slower than their serial version, taking from

20, 49% to 46, 16% more time to index the queries. On the contrary, ReTrie performed

close to its serial version and one of the variations (IP = 1M and ϑ = 4) presented

an improvement of 3, 23%. StaR was the algorithm with the best indexing times

performing from −2, 57% to 3, 80% in comparison with its serial version.

In Figure 4.15 we can see all the algorithms indexing times per number of threads

used. In Figure 4.16 we can see all algorithms indexing times, compared to their mul-

tithreading versions when indexing 3 million queries at once.

Speedup and efficiency of the indexing process of the Neural Networks Collection, is

presented in Figure 4.17. In Figure 4.17a we can see that StaR and ReTrie have the

best speedup, followed by BestFitTrie and PrefixTrie. Efficiency is similar for all

algorithms, as presented in Figure 4.17b and dramatically decreases as the number of

threads increases.
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Figure 4.15: Evaluating indexing time of the Neural Networks Collection, for several
number of threads (ϑ ∈ {1, 4, 16, 25, 50, 80}), when varying the database size from
0.5M to 3M and IP = 500K. In all cases, PrefixTrie has the fastest performance
followed by BestFitTrie. StaR and ReTrie are the slowest.
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Figure 4.16: Evaluating indexing time for several number of threads (ϑ ∈
{1, 4, 16, 25, 50, 80}) of the Neural Networks Collection, when varying the database
size from 0.5M to 3M and IP = 500K. In all cases, a single thread (ϑ = 1) has the
fastest performance.

4.7.2 Evaluating filtering time

The performance of the algorithms in the filtering process, showed a similar time im-

provement When using 4 threads, all the algorithms minimized the time needed 71, 50%

in average. While the number of threads increased, the filtering time needed decreased

between 91, 37% and 98, 19% for all algorithms. Finally, ReTrie was the algorithm

that completed, almost always, the filtering process faster than the other algorithms

due to the nature of this collection.

Figure 4.18 presents all algorithms filtering time efficiency per number of threads. In

Figure 4.19 we can see the comparison of filtering times when varying ϑ per algorithm.
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Figure 4.17: Comparing speedup and efficiency of indexing of the Neural Networks
Collection, for several number of threads (ϑ ∈ {1, 4, 16, 25, 50, 80}), when varying the
database size from 0 to 3M and IP = 3M .

Filtering Times Improvement - 80 Threads

Algorithm
Min
Improvement

Max
Improvement

Speedup
(Min)

Speedup
(Max)

BestFitTrie 94,69% 95,84% 18,84 24,04

PrefixTrie 94,72% 95,81% 18,95 23,87

ReTrie 94,86% 95,85% 19,44 24,12

StaR 97,00% 98,19% 33,34 55,18

Table 4.9: Filtering Time Improvement - Neural Networks Collection

Figure 4.20 presents filtering speedup and efficiency of all algorithms.

Table 4.9 shows how much the filtering time was improved when using 80 threads

for all our algorithms, using the Neural Networks Collection.
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4.7.3 Filtering speedup and efficiency
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(c) ϑ = 16
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Figure 4.18: Evaluating filtering time efficiency for several number of threads (ϑ ∈
{1, 4, 16, 25, 50, 80}) of the Neural Networks Collection, when varying the database size
from 0.5M to 3M and IP = 500K. The performance of all algorithms is similar.
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Figure 4.19: Evaluating filtering time, of all algorithms the Neural Networks Collection,
when varying the size of query database DB and ϑ.

The best speedup and efficiency was achieved when using 4 threads. All the algorithms,

except StaR, had a similar increase in speedup and efficiency. StaR was the algorithm

with remarkably better speedup and efficiency in all cases (Figure 4.21). The rest of the

algorithms had a similar efficiency between 70% to 73% when using 4 threads. Also,

efficiency drops significantly as the number of threads increases.

Table 4.10 and Figure 4.21 present the efficiency and time improvement of algorithm

StaR when varying ϑ.
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Figure 4.20: Evaluating speedup and efficiency for several number of threads (ϑ ∈
{1, 4, 16, 25, 50, 80}) of the Neural Networks Collection, in filtering, when varying the
database size from 0 to 3M and IP = 3M .

Speedup and Efficiency in StaR

No. of threads Speedup (Max) Efficiency
Time
Improvement

4 6,99 174,87% 85,70%

16 17,53 109,60% 94,30%

25 26,04 104,16% 96,16%

50 46,74 93,48% 97,86%

80 53,01 66,26% 98,11%

Table 4.10: Thread performance and filtering time efficiency of StaR, for a query
database of DB = 2.5M - Neural Networks Collection.
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Networks Collection.
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Chapter 5

Conclusions

In the final chapter of this thesis, we will present an overview of the research conducted,

we will highlight our main contributions and provide possible directions for future

research.

5.1 Summary

In this thesis, we studied the problem of information filtering, given a database of user

queries, in a publish/subscribe system.

In this publish/subscribe system, users can be enrolled in a server, expressing their

interests in form of queries. When a document is published in the system, all the con-

tinuous queries that match the incoming document are located through the matching

process and all the appropriate clients are notified.

By using parallelization techniques and by extending indexing algorithms, our goal

is to effectively solve the problem of the information filtering parallelization in each

individual server. The indexing algorithms were presented in Chapter 3. In Chapter 4

we evaluated our algorithms performance by comparing their serial and multithreading

form/variation.

Due to its nature, the process of indexing the queries seemed to luck any noticeable

improvement in decreasing the time needed to complete its operation. On the other

hand, filtering time was reduced significantly in all our algorithms, in proportion with
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the way each algorithm structures its forest of tries. Finally, we investigated the usage

of multi threaded solutions to enhance the filtering performance of the algorithms

BestFitTrie, PrefixTrie,ReTrie and StaR. We identified and assessed one proof-

of-concept parallelization scenario, in order to increase the filtering performance of the

algorithms.

5.2 Future directions

Interesting directions for future research involve (i) the adaptation of automata/graph-

based techniques as in [59, 66] to Boolean information filtering and their comparison

against trie-based approaches, (ii) the construction of information filtering ontology

systems that will be able to filter ontology data in a streaming fashion.
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