
University of Peloponnese
Department of Informatics and Telecommunications

ZenCrypt - Securely Encrypt Files

Orestis Zestas

2022 2020 02006

Supervisor: Nikolaos Tselikas

A thesis submitted in partial fulfillment of the University’s
requirements for the masters degree.

February 12, 2022

Πανεπιστήμιο Πελοποννήσου

Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ανάπτυξη Εφαρμογής Κινητών

Τερματικών για Ασφαλή

Κρυπτογράφηση Αρχείων

Ορέστης Ζέστας

2022 2020 02006

Επιβλέπων: Νικόλαος Τσελίκας - Αναπληρωτής Καθηγητής

Διπλωματική Εργασία

12 Φεβρουαρίου 2022

i

Copyright © Ζέστας Ορέστης, 2022.

Με επιφύλαξη παντός δικαιώματος . All rights reserved.
Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολο-

κλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση

και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την

προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερω-

τήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνο-

νται προς τους συγγραφείς. Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το

έγγραφο εκφράζουν τους συγγραφείς και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν

τις επίσημες θέσεις του Πανεπιστημίου Πελοποννήσου.

ii

Abstract
The technology advances and every day life requirements of the last decade have led
to more and more people replacing computers/laptops with smart phones. As these
devices gained increasing capabilities and better hardware/software, many opportuni-
ties came to light for novel application development. The Android market has reached
an all-time high in application development, with growing demand for applications
that focus on day-to-day tasks as well as communal interaction. This ultimately led to
social media being widely used for user communication and file sharing every second
of every day. Though, in this vast sea of information exchange and data transfers,
the security aspect of such complicated tasks is more than often overlooked. In this
thesis, we will present a new Android application, ZenCrypt, which was developed
having this concern in mind. It stands as a very powerful tool that aims to help the
user handle the security aspect of sharing private files online or securely storing them
offline, as well as doing so with ease. We will also discuss some fundamental principles
when developing an Android application, and analyze the security and functionality of
some of the most common encryption algorithms. Finally, we will briefly comment on
ZenCrypt’s performance, and present some example usages of the application.

Keywords: Encryption Algorithms, Android App Development, Data Security, Kotlin,

Kotlin vs Java, Coroutines, Flows, DES, 3DES, RSA, AES, Brute Forcing, Data Padding,

Scoped Storage, AES Rounds, AES Cipher Block Chaining, PKCS, Native Android Apps,

Android Lifecycle, Android ViewBinding

Revision 0.3

iii

Περίληψη

Η πρόοδος της τεχνολογίας και οι καθημερινές απαιτήσεις της τελευταίας δεκαετίας έχουν

οδηγήσει όλο και περισσότερους ανθρώπους να αντικαθιστούν τους υπολογιστές/φορη-

τούς υπολογιστές με έξυπνα τηλέφωνα. Καθώς αυτές οι συσκευές αποκτούν αυξανόμενες

δυνατότητες και καλύτερο υλικό/λογισμικό, ήρθαν στο φως πολλές ευκαιρίες για ανάπτυ-

ξη νέων εφαρμογών. Η αγορά του Android έχει φτάσει στο υψηλότερο επίπεδο ανάπτυξης
λογισμικού όλων των εποχών, με αυξανόμενη ζήτηση για εφαρμογές που επικεντρώνο-

νται σε καθημερινές εργασίες καθώς και στην κοινωνική αλληλεπίδραση. Τελικά, αυτό

οδήγησε στο να χρησιμοποιούνται ευρέως τα μέσα κοινωνικής δικτύωσης για την επικοι-

νωνία των χρηστών, καθώς και την κοινοποίηση αρχείων, κάθε δευτερόλεπτο της ημέρας.

΄Ομως, σε αυτήν την αχανή έκταση ανταλλαγής πληροφοριών και μεταφοράς δεδομένων,

η πτυχή της ασφάλειας τέτοιων περίπλοκων διαδικασιών συχνά παραβλέπεται. Σε αυτή

τη μεταπτυχιακή διπλωματική εργασία, θα παρουσιάσουμε μια νέα εφαρμογή Android,
την ZenCrypt, η οποία αναπτύχθηκε έχοντας κατά νου αυτή την ανησυχία. Αποτελεί
ένα πολύ ισχυρό εργαλείο που στοχεύει στο να βοηθήσει τον χρήστη να θωρακίσει την

ασφάλεια της κοινής χρήσης ιδιωτικών αρχείων στο διαδίκτυο ή της ασφαλούς αποθήκευ-

σης τους εκτός σύνδεσης, με ευκολία. Θα συζητήσουμε, επίσης, ορισμένες θεμελιώδεις

αρχές κατά την ανάπτυξη μιας εφαρμογής Android και θα αναλύσουμε την ασφάλεια και
λειτουργικότητα ορισμένων από τους πιο κοινούς αλγόριθμους κρυπτογράφησης. Τέλος,

θα σχολιάσουμε εν συντομία την αποδοτικότητα του ZenCrypt και θα παρουσιάσουμε
μερικά παραδείγματα χρήσεων της εφαρμογής.

Λέξεις Κλειδιά: Αλγόριθμοι Κρυπτογράφησης, Ανάπτυξη λογισμικού στο Android, Προ-

στασία Δεδομένων, Kotlin, Kotlin vs Java, Υπορουτίνες, Flows, DES, 3DES, RSA, AES,

Εξαντλητική Επίθεση, Συμπλήρωση Δεδομένων, Εύρος Αποθήκευσης, Γύροι AES, AES Ci-

pher Block Chaining, PKCS, Ανάπτυξη Γηγενών Android Εφαρμογών, Κύκλος Ζωής Android

Εφαρμογών, Android ViewBinding

΄Εκδοση 0.3

Contents

1 Introduction . 1
1.1 Data Security . 1
1.2 Cryptography . 2
1.3 Encryption Algorithms . 4

1.3.1 Data Encryption Standard (DES) 4
1.3.2 Triple Data Encryption Standard (3DES) 6
1.3.3 Rivest-Shamir-Adleman Algorithm (RSA) 7
1.3.4 Advanced Encryption Standard (AES) 8

1.4 Data Padding . 13
1.5 Brute-Forcing . 14
1.6 Thesis Road-map . 14

2 Android App Development . 15
2.1 Mobile Project Types . 15

2.1.1 Native Apps . 15
2.1.2 Web Apps . 16
2.1.3 Hybrid Apps . 17

2.2 Understanding the Android Lifecycle 18
2.2.1 The Role of Lifecycle in Apps 18
2.2.2 The Activity Lifecycle 18
2.2.3 Activity Lifecycle Callbacks 19
2.2.4 The Fragment Lifecycle 21
2.2.5 Fragment Lifecycle Callbacks 21
2.2.6 Store UI Data with ViewModels 22

2.3 Data Storage . 24
2.3.1 Storage Options . 24
2.3.2 Scoped Storage . 27

2.4 Native Languages . 29
2.4.1 Java . 29
2.4.2 Kotlin . 30

2.5 Kotlin Development . 30
2.5.1 Basics . 31
2.5.2 Coroutines . 34
2.5.3 Coroutine context and dispatchers 36

iv

CONTENTS v

2.5.4 Flows . 37
2.5.5 Flow Context . 38
2.5.6 Flow Buffering . 39

3 Developing ZenCrypt . 41
3.1 Decision . 41
3.2 Implementation . 42

3.2.1 Core Functionality . 42
3.2.2 User Interface Handling 49

4 Example Usage . 54
4.1 Encrypting & Sharing a File . 54
4.2 Decrypting a Shared File . 56
4.3 Password Analyzer . 58
4.4 Various Options . 60

5 Performance . 61
6 Online Presence . 63

6.1 Google Play Store . 63
6.2 GitLab . 63

7 Conclusions & Further Development 64

List of Figures

1 Secret Writing . 2
2 The Feistel function of DES . 4
3 DES procedure . 5
4 Structure of 3DES (DES-EDE3) . 6
5 RSA Algorithm . 7
6 AES Algorithm . 8
7 An AES Round . 9
8 AES-ECB Block Scheme . 10
9 AES-CBC Block Scheme . 10
10 AES-CFB Block Scheme . 11
11 AES-OFB Block Scheme . 12
12 AES-CTR Block Scheme . 13
13 Native Apps Scheme . 15
14 Web Apps Scheme . 16
15 Hybrid Apps Scheme . 17
16 Activity Lifecycle States . 19
17 The Activity Lifecycle . 20
18 The Fragment Lifecycle . 22
19 The ViewModel’s Lifecycle . 23
20 Android’s Storage Overview . 26
21 Application Storage Structure . 26
22 Storage Storage’s FUSE Implementation 28
23 Entities in a stream of data . 37
24 Selecting a file to encrypt . 54
25 Successful encryption . 55
26 Selecting a file to decrypt . 56
27 Successful decryption . 57
28 Weak passwords analysis . 58
29 Strong passwords analysis . 59
30 Settings page . 60
31 Encryption/Decryption performance 62

vi

Listings

1 Extension example. 31
2 Nullable extension example. 31
3 Smart cast example 1. 31
4 Smart cast example 2. 32
5 Type inference example. 32
6 Functional programming example 1. 32
7 Functional programming example 2. 33
8 Functional programming example 3. 33
9 Functional programming example 4. 33
10 Null safety example. 33
11 A simple coroutine example. 34
12 Two coroutines in parallel. 35
13 100K coroutines. 35
14 Coroutine dispatcher example. 36
15 Flow example. 37
16 Flow context example. 38
17 Flow context example 2. 38
18 Flow example without buffering. 39
19 Flow example with buffering. 40
20 Encryption method. 42
21 ECResultListener interface. 43
22 Decryption method. 44
23 Fingerprint authentication. 45
24 Settings DataStore. 46
25 ViewBinding leak prevention example. 46
26 In-app purchases implementation. 47
27 In-app purchase error handling. 47
28 Launch a file picking intent. 48
29 Fragment replacement method. 49
30 Populate the list view. 49
31 Settings switch to toggle dark mode. 50
32 XML attribute to counter the force dark option. 51
33 Splash screen theme style. 51

vii

LISTINGS viii

34 Set Splash Activity style. 51
35 The Splash Activity. 52
36 Exit function. 52
37 The measureTimeMillis method. 61

ZenCrypt - Securely Encrypt Files 1

1 Introduction

1.1 Data Security

The rising abuse of computers and increasing threat to personal privacy through data
banks have stimulated much interest in the technical safeguards for data[7]. There are
many safeguards, all of which are studied in a field of computer science, called data
security, that lies under the umbrella of information security. Information security
is an important issue in our information society. To put it into perspective, due to
the increasing amounts of data that users are storing, and the increasingly easier op-
tions to carry data around (via memory sticks, hard drives, cloud hosting and mobile
phones/tablets), it is critical to protect them from various threats that can lead to fun-
damental loss. After all, in the current age of advanced digital technology, embezzling
digital datasets is truly a click away.

Data security is often confused with similar terms like data protection and data
privacy, because they all refer to ways to secure someone’s data. However, the difference
between these terms lies in the reasons for securing that data in the first place, as well
as the methods for doing so. To elaborate:

• Data security refers to protecting data against unauthorized access or use that
could result in exposure, deletion, or corruption of that data. An example of data
security would be using encryption to prevent malicious activities in the event
that the stored information is breached.

• Data protection refers to the creation of backups or duplication of data to
protect against accidental erasure or loss.

• Data privacy refers to concerns regarding how the data is handled; regulatory
concerns, notification, and consent of use, etc.

We can further address data security by identifying its three main elements:

• Confidentiality: Systems and data are accessible to authorized users only.

• Integrity: Systems and data are accurate and complete.

• Availability: Systems and data are accessible when they are needed.

There are a lot of appliances for data security, all with different approaches and
implementations. This thesis focuses on mobile data security, since mobiles impact
nearly every aspect of our lives, from shopping online, to taking care of our medical
and banking needs. In the first half of 2019 alone, mobile attacks hit 150 million [5][1],
and rose another 30% in 2019, according to McAffe’s 2020 Q1 mobile threat report [32].
And as mobile cyber-attacks increase, mobile security becomes an even more critical
part of the general data security strategy.

ZenCrypt - Securely Encrypt Files 2

1.2 Cryptography

One of the main approaches to tackle data security is cryptography. Cryptography is
the science and study of secret writing [38]. A cipher is a secret method of writing,
whereby plaintext is transformed into ciphertext, sometimes called a cryptogram. The
process of transforming plaitext into ciphertext is called encipherment or encryption;
the reverse process of transforming ciphertext into plaintext is called decipherment or
decryption. Both processes are controlled by a cryptographic key or keys (see figure
1).

Figure 1: Secret Writing

Classical cryptography provided secrecy for information sent over channels where eaves-
dropping and message interception was possible. The sender selected a cipher and
encryption key, and either gave it directly to the receiver or else sent it indirectly over
a slow but secure channel.

Modern cryptography protects data transmitted over high-speed electronic lines or
stored in computer systems. There are two principal objectives; secrecy (or privacy),
to prevent the unauthorized disclosure of data; and the authenticity (or integrity), to
prevent the unauthorized modification of data.

The problem with information transmitted over lines, is that they are vulnerable to
passive wire-tapping, which threatens secrecy, and active wire-tapping, which threatens
authenticity. In active wire-tapping, also known as tampering, the attacker modifies
the message stream in order to make arbitrary changes to it, or to replace specific
information, which can lead to false messages.

Encryption protects against message modification and injection of false messages, by
making it infeasible for an attacker to create ciphertext that deciphers into meaningful
plaintext. However, while this can be used to detect message modifications, it cannot
prevent it.

Before continuing to chapter 1.3, there are some terms which should be explained
for the better understanding of encryption algorithms. This terminology is critical to

ZenCrypt - Securely Encrypt Files 3

analyze, since it appears in every algorithm description which is going to be discussed.

• Cryptographic Key: A key is a numeric or alpha-numeric text that is used for
encryption/decryption.

• Key Size: The key size is the measure of length of the key in bits.

• Block Size: Key cipher works on fixed length string of bits. This fixed length
of string in bits is called block size. It depends on the applied algorithm.

• Round: The round of encryption simply refers the same same function being
applied many times over. This is done intentionally to slow down the calculation.
For example, one could use 1000 orunds to derive a key from a password. For
someone that already knows the password, this would mean waiting 1 second
instead of 0.001 seconds. Having to wait 1 second while the system checks your
password is not a lot, and most users don’t even notice it. But, for an adversary
who is trying to brute-force million of passwords per second, using 1000 rounds
would slow down his progress significantly. Instead of a million, he could only
try 1000 passwords per second. This would make a brute-force attack much less
attractive.

• Encryption Types: Cryptography systems can be broadly classified into two
categories.

Symmetric encryption algorithms, that use a single key that both the sender
and recipient have. This key is kept secret among both parties so that no intruder
can intercept the data to be transferred.

Asymmetric encryption algorithms, or public-key systems that use two keys,
a public key known to everyone, and a private key that only the recipient of the
message knows. Compared to symmetric key encryption, this method provides
more security, but is significantly slower [2].

Cryptography has three main goals. Data privacy is the most commonly addressed
goal, and it ensures that the meaning of a message is concealed by encrypting it with
a cryptographic key. Data integrity is the second goal, which ensures that the message
received is the same as the message that was sent. This is done by hashing the original
sent message to create a unique digest, which can be compared later on with the
recipient’s generated digest from the received message. This technique only protects
against unintentional alteration of the message. A variation of this is used to create
digital signatures to protect against malicious alteration. Finally, data authenticity
guarantees that a user or system can prove their identity to another who does not have
personal knowledge of their identity. This is accomplished using digital certificates.

ZenCrypt - Securely Encrypt Files 4

1.3 Encryption Algorithms

An algorithm comprises a sequence of unambiguous instructions required to solve a
problem, i.e. obtaining a required output for any legitimate input in a finite amount of
time. With that said, let’s continue to the analysis of each algorithm. Note, however,
that there are many encryption algorithms available, and we will only be discussing a
selected few.

1.3.1 Data Encryption Standard (DES)

DES was developed by IBM in 1972, and later adopted by the National Bureau of
Standard (NBS) as Federal Information Processing Standard (FIPS) in 1977. It stands
as the earliest symmetric encryption algorithm, and is considered to be highly insecure
in modern cryptography. It uses 64-bit blocks, 8 bits of which are used for parity checks,
to verify the key’s integrity. The rest 56 bits are directly utilized by the algorithm as
key bits and are randomly generated [35]. That means it would take a maximum of 256

attempts to find the correct key. Figure 2 demonstrates the structure of the Feistel

Figure 2: The Feistel function of DES

function (F function) of DES [40]. More specifically:

1. Each block of message will be 64 bits. Do initial permutation on 64 bits data and
divide it in to two halves. The left half which consists of 32 bits and the right
half which is also 32 bits.

ZenCrypt - Securely Encrypt Files 5

2. The right half is expanded to 48 bits.

3. Select 48 bits of the total 64 key bits by permuted choice.

4. The right half 48 bits are XORed with the 48 key bits.

5. Select 32 bits from the previous step by S-box substitution choice.

6. The 32 bits from the previous step are permuted using the P-box.

7. Now, the resulting 32 bits from the right half and the 32 bits form the left half
are XORed.

8. The result from the previous step will be the new right half.

9. The old right half from the first step will be the new left half.

Figure 3: DES procedure

ZenCrypt - Securely Encrypt Files 6

A cycle of DES comprises of the above steps. This is one cycle. There will be 16 of
them, and after completion a final permutation is done one the data bits to get the
decrypted data. Figure 3 graphically demonstrates the whole procedure.

1.3.2 Triple Data Encryption Standard (3DES)

Triple Data Encryption Standard (3DES), also known as Triple Data Encryption Al-
gorithm (TDEA) was also developed by IBM in 1998, and then standardized in ANSI
X9.17. It was proposed as a replacement of DES due to the improvement in the key
length, and essentially applies the DES encryption algorithm three times to each data
block. 3DES uses three times the rounds of simple DES in its computations, resulting

Figure 4: Structure of 3DES (DES-EDE3)

in a total of 48 rounds and a key length of 168 bits. Like DES, 3DES also uses a block
size of 64 bits for encryption. There are the following modes which 3DES can be used:

• DES-EDE3: Encrypt with key 1, decrypt with key 2, and encrypt again with key
3 (as shown if figure 4).

• DES-EEE3: The encrypt operation is encrypt-encrypt-encrypt, and the decrypt
operation is decrypt-decrypt-decrypt, all while using 3 different keys.

• DES-EDE2: There are only 2 keys used here, which remain the same for the first
and last encryption.

ZenCrypt - Securely Encrypt Files 7

• DES-EEE2: Like DES-EDE2, there are only two keys, used for the first and last
encryption.

3DES provides up to 2112 security, and has been classified as legacy since 2014 [6] by
ENISA, which recommends a minimum of 128 bits for encryption. 3DES provides only
112 bits and, whith a 112 bit key, National Institute of Standards and Technology
(NIST) suggests that only provides 80 bits of actual security.

1.3.3 Rivest-Shamir-Adleman Algorithm (RSA)

The Rivest-Shamir-Adleman (RSA) algorithm is the most important public-key cryp-
tosystem. It is an asymmetric algorithm, meaning that it uses a public key and a
private key. As their names state, the public key can be shared with everyone, and the

Figure 5: RSA Algorithm

private key is kept secret, and should not be shared. This algorithm was developed in
1978 [37], and it is based on the factoring problem.

1. The first step to RSA is to select two large prime numbers, P and Q. They need
to be large enough so that it will be difficult for someone else to figure out.

2. Compute n = P ∗Q

3. Compute the totient function, ϕ(n) = (P − 1) ∗ (Q− 1)

4. Choose an integer e such that 1 < e < ϕ(n) and (e,n) are co-prime. Co-prime
are two numbers that their only positive integer that devides them is 1. The pair
(n,e) is the public key.

5. Compute d such that (d∗e) mod ϕ(n) = 1. The pair (n,d) makes up the private
key.

Given a plaintext P, the ciphertext C is calculated as:

C = P e mod n (1)

ZenCrypt - Securely Encrypt Files 8

Conversely, using the private key (n,d) the plaintext can be found using:

P = Cd mod n (2)

The main disadvantage of RSA is its encryption speed, as is with all the asymmetric
key encryption algorithms, due to the use of two asymmetric keys. Thus, it is not rec-
ommended for encrypting files because of their size. On the bright side, RSA provides
a good level of security.

1.3.4 Advanced Encryption Standard (AES)

In 1997, NIST announced an initiative to choose a cipher to implement a new encryp-
tion standard, because of the need for high security and efficiency, since it was time to
replace the existing DES and 3DES encryption algorithms. In 2001, Advanced Encryp-
tion Standard (AES) was selected, developed by Vincent Rijmen and Joan Daeman.
AES is a symmetric block cipher used by the United States government to protect sen-
sitive information, and has since been implemented throughout the world. It stands
as the recent generation block cipher and significantly increases in the block size up to
128 bits with the key sizes being 128 bits, 192 bits and 256 bits. Each cipher encrypts
and decrypts data in blocks of 128 using cryptographic keys of 128 bits, 192 bits and
256 bits respectively. There are 10 rounds for 128-bit keys, 12 rounds for 192-bits keys
and 14 rounds for 256-bit keys. Figure 6 illustrates the AES algorithm.

Figure 6: AES Algorithm

ZenCrypt - Securely Encrypt Files 9

Ks
(words/bytes/bits)

Bs
(words/bytes/bits)

Nr
Rks

(words/bytes/bits)
Eks

(words/bytes)

4/16/128 4/16/128 10 4/16/128 44/176
6/24/192 4/16/128 12 4/16/128 52/208
8/32/256 4/16/128 14 4/16/128 60/240

Table 1: AES Parameters

Table 1 mentions the various numbers of AES parameters, based on the key length.
Those are Key size (Ks), Block size (Bs), Number of rounds (Nr), Round key size
(Rks), and Expanded key size (Eks). Each round (as seen in figure 6) consists of four
layers. The substitute byte, shift rows, mix column and add round key. In the first
layer, each byte is substituted during the forward encryption process (S-box). The
second layer shifts the rows of the state array, and the third layer mixes up the bytes
in each column. Finally, the forth layer XORes the subkey bytes with every byte of the
state array. This operation will be done repeatedly based on the specified key size.

Figure 7: An AES Round

AES is known for its speed and small code footprint, regardless of the platform it’s
running, its simple design, and finally its heavy protection against all known attacks.
AES has five modes of operation, which we will briefly discuss below [20]:

A. Electronic Code Book (ECB)

The Electronic Code Book (ECB) mode is the simplest of all. It has known weak-
nesses, and thus is generally not recommended. The block scheme can be seen in figure
8. The plaintext is divided into blocks, the size of which is the length of an AES block,
i.e. 128 bytes. So, this mode needs to pad data until their size is the same as the
length of the block. Then, the data is encrypted using the same key and algorithm
each time. Two equal plaintexts will result into two equal ciphertexts, meaning that
this mode of operations does not provide a lot of security. Additionally, since the
encryption and decryption processes are independent of each other, the data can be
encrypted/decrypted in parallel. If a block of plaintext or ciphertext is broken, it won’t
affect the other blocks. ECB was often used in databases, where it encrypted tables,
indexes and system catalogs.

ZenCrypt - Securely Encrypt Files 10

Figure 8: AES-ECB Block Scheme

B. Cipher Block Chaining (CBC)

The cipher-block chaining (CBC) mode trumps the ECB mode in hiding away pat-
terns in the plaintext [8]. It achieves this by using an initialization vector (IV), which
has the same size as the block that is encrypted. In general, the IV usually is a ran-
dom number, not a nonce. The IV is XORed with the first plaintext before encryption.
Then, CBC involves block chaining in the sense that every subsequent plaintext block
is XORed with the ciphertext of the previous block. This is better illustrated in figure
9.

Figure 9: AES-CBC Block Scheme

ZenCrypt - Securely Encrypt Files 11

The advantage over ECB is that, with CBC mode, identical blocks do not have the
same cipher, due to the addition of the initialization vector. Hence, same blocks in
different positions will have different ciphers. This also means that CBC is not tolerant
of block losses, and that the process needs to be done sequentially, and not in parallel.
However, decryption can be done in parallel, if all ciphertext blocks are available, and
can tolerate block losses.

C. Cipher FeedBack (CFB)

The Cipher FeedBack (CFB) mode is similar to CBC in the sense that for the en-
cryption of a block, the cipher of the previous block is required. First, CFB will
encrypt the initialization vector, then it will XOR the output with the plaintext to
get the ciphertext. This mode does not require data padding, since it will not encrypt
plaintext directly. CFB does not use a decryption function. In order to decrypt data,
all we have to do is the reverse the plaintext and ciphertext sections, seen in figure 10.
This mode is generally faster than CBC, and is also non-deterministic, which means
that it does not reveal any patterns the plaintext may have. Its disadvantages are, like
CBC, that it can not tolerate block losses, nor can the blocks be encrypted in parallel.

Figure 10: AES-CFB Block Scheme

D. Output FeedBack (OFB)

The Output FeedBack (OFB) mode is similar to CFB, with one key difference. OFB
relies on XORing plaintext and ciphertext blocks with expanded versions of the initial-
ization vector. Like CFB, it enables a block encryptor to be used as a stream encryptor,
and does not need data padding. It also uses a single encryption algorithm for both
encryption and decryption. OFB’s block scheme can be seen in figure 11.

ZenCrypt - Securely Encrypt Files 12

Figure 11: AES-OFB Block Scheme

In OFB, both encryption and decryption of blocks can be done in parallel, once the ex-
panded initialization vectors have been generated. The lack of interconnection means
that OFB is tolerant to block losses. Though, OFB has a major disadvantage, and that
is the repeated encryption of the initialization vector, because it may produce a state
that has already been produced before. While a highly unlikely scenario, it remains a
significant security flaw if it indeed happens, and the result would be that the plaintext
will start to be encrypted with the same data as it was previously.

E. Counter (CTR)

The Counter (CTR) mode enables every step to be done in parallel. It is similar to
OFB, since it also involves XORing a sequence of expanded vectors with the plaintext
and ciphertext blocks. What sets it apart from OFB, is that these expanded vectors
in CTR are generated using the value of a counter as an IV . The counter has the
same size as the used block. Just like OFB and CFB, CTR also makes use of a single
encryption algorithm for both encryption and decryption. It is considered to be very
secure and efficient mode for most purposes. Though, CTR is a synchronous counter
that needs to be maintained both by the sender and the recipient. If this counter is not
synchronized correctly, it could lead to wrong plaintext recovery. CTR’s block scheme
can be seen in figure 12.

ZenCrypt - Securely Encrypt Files 13

Figure 12: AES-CTR Block Scheme

1.4 Data Padding

In cryptography, padding is any of a number of distinct practices which all include
adding data to the beginning, middle, or end f a message prior to encryption [43].
Padding may include the addition of phrases that don’t make sense, to an alphanumer-
ical string, in order to obscure the fact that many messages end in predictable ways.
One padding method available is the PKCS method. The rules for PKCS padding are
simple [21]:

• The padding bytes are added to the plaintext before encryption.

• Each padding byte has a value equal to the total number of padding bytes that
are added.

• The total number of padding bytes is at least one, and is the number that is
required in order to bring the data length up to a multiple of the cipher algorithm
block size.

Two very popular modes for PKCS padding are PKCS#5 and PKCS#7. Their differ-
ence is that PKCS#5 padding is defined for 8-byte block sizes, while PKCS#7 padding
would work for any block size from 1 to 255 bytes. So, fundamentally, PKCS#5 is a
subset of PKCS#7 for 8-byte block sizes. Hence, PKCS#5 cannot be used for AES. It
was only defined for DES and 3DES encryption algorithms in mind. Note, that neither
PKCS#5 nor PKCS#7 is a standard created to describe a padding mechanism. The
padding part is only a small subset of the defined functionality. PKCS#5 is a standard
for Password Based Encryption (PBE) [23], and PKCS#7 defines the Cryptographic
Message Syntax (CMS) [22]. PKCS#7 CMS is a standard for 16-byte block ciphers

ZenCrypt - Securely Encrypt Files 14

such as AES.
In summary:

• PKCS#5: The passing string PS shall consist of 8 − (||M || mod 8) octets all
having value 8− (||M || mod 8) [23].

• PKCS#7: For such algorithms, the method shall be to pad the input at the
trailing end with k − (l mod k) octets all having value k − (l mod k), where l
is the length of the input [22].

1.5 Brute-Forcing

Brute forcing is an attempt to guess a secret, in which the attacker has the ciphertext
and the encryption algorithm used, and performs an exhaustive (brute force) search on
the key space to determine the key that decrypts the ciphertext to obtain the plaintext.
This attack does not require much skill, but requires a powerful enough computer with
sufficient hardware, like CPU, RAM and fast hard drive. The exact requirements vary
depending on the of the job, and the required completion time. The attack can be
executed both online and offline. In the case of an online attack, the attacker needs to
interact with the target system to which he is trying to gain access.

Let’s take AES-256 for an example, that we discussed in section 1.3.4, to see how
long it would take exactly to brute-force this algorithm, without using any padding
and complicated mode of operations. Assume that we have a single high perfor-
mance PC, decrypting AES-256 at around 128MiB/sec per core. On a 4 core machine
with hyperthreading (meaning that there are 8 concurrent threads), that equals to
1024MiB/sec or 230 bytes per second. AES uses a 16-byte block size, so this high per-
formance PC can encrypt 230−4 = 226 blocks per second, i.e. 226 different encryption
keys per second. In a year (31,557,600 seconds), the number of keys tested would be
31, 557, 600 ∗ 226 = 2, 117, 794, 686, 566, 400 keys. Now, let’s assume that one can find
the answer after searching half the key space. This equals to 2255 keys. The total time
to perform this attack is 2255

2,117,794,686,566,400
= 27 trillion trillion trillion trillion trillion

years.

1.6 Thesis Road-map

The thesis is organized as follows. Section 1 was an introductory chapter with some
foundational knowledge. In section 2, we will discuss android app development, along
with its more important aspects. Section 3 will illustrate why we decided to develop
ZenCrypt, and its implementation. Continuing, section 4 will demonstrate some ex-
ample usages of the application. In section 5, we will analyze the performance of
ZenCrypt, and in section 6 we will link its online presence. Finally, section 7 will
present some conclusions and further development.

ZenCrypt - Securely Encrypt Files 15

2 Android App Development

This section will cover some fundamental principles when developing an application
for android, which will help in understanding the later sections.

2.1 Mobile Project Types

There are many ways that you can go about and develop a mobile application, each
one having its own strengths and weaknesses. There are three basic mobile project
types: native apps, web apps, and hybrid apps. Let’s break down each one of them.

2.1.1 Native Apps

Native apps are developed using the mobile’s default programming language (in an-
droid’s case, java and/or kotlin). These kind of apps are compiled and executed directly
on the device. They have access to a broad range of SKDs (APIs) which let them com-
municate with the operating system at hand, in order to retrieve device data, sensor
values, or load data from an external source using HTTP requests. This puts no limits
an the app usage.

Figure 13: Native Apps Scheme

Since native apps take advantage of the native system’s APIs, they are tightly con-
nected to it. This leads to a number of benefits, the main of which is the performance.

ZenCrypt - Securely Encrypt Files 16

Native apps tend to deliver the highest levels of performance, compared to the other
development types. Since they are also written using native SDKs, it is common for
developers to use frameworks in their native apps, which not only makes development
easier, but it is very helpful for developers that are already familiar with the languages
used. With that said, native apps do not come without drawbacks. For example, they
are not cross platform ready. This means, that native apps can be developed for one
platform at a time, which can be tedious if the target audience is more than just an-
droid phones. They also require a high level of work effort, and advanced knowledge
of the platform’s APIs and language.

2.1.2 Web Apps

Web based applications behave in a very similar fashion to native apps. They require
a certain browser in order to run and are commonly written in CSS, JavaScript and/or
HTML5. Simply put, they are websites viewed on the device through a browser, with
the exception of being designed to fit a mobile screen size. Many websites these days
have one version of their site designed for viewing through a PC, and a one version
designed to be viewed through a mobile device. Another popular approach is the
responsive web design, in which there is a unique app site, that re-flows the viewed
page adjusts to the form factor and screen size of a device, to fit better in both smaller
and larger screens.

Figure 14: Web Apps Scheme

ZenCrypt - Securely Encrypt Files 17

The key selling point of web apps is that they require a minimum of device memory in
order to run. End-users can simply access them from any device that has a functioning
internet connection. Though this also means that since all of the databases are stored
on the server, a poor internet connection equals bad user experience. Web apps are
easy to maintain, require no installation and are cross platform ready. On the other
hand, they have no access to native API calls, and rely on just the APIs provided by
the browser at hand.

2.1.3 Hybrid Apps

Hybrid apps try to implement the best of both worlds. They are essentially web
applications created in a native wrapper, meaning they use elements of both native
apps and web based applications. This wrapper is responsible for the communication
between the native device platform and the web view. This enables the app to have
access to the device, and retrieve data and sensor values. The development of such
apps is possible using tools that have been specifically developed to act as the ”middle
man” between the platform and the web view, such as Apache Cordova. They are not
officially supported by Android (or iOS for that matter), and are third party solutions.

Figure 15: Hybrid Apps Scheme

Hybrid apps, like web apps, are cross platform, and do not require more skill than web
development. They solve the device accessibility problem using the native wrapper,

ZenCrypt - Securely Encrypt Files 18

and are relatively easy to develop. On the other hand, they are bound by the web view
limitations, which results in the lack of speed, performance and overall optimization
compared to native apps. Additionally, in order to make use of certain native API
calls, the developer must install plugins that support those calls, or even develop one
from scratch.

2.2 Understanding the Android Lifecycle

ZenCrypt was developed as a native application, so we will focus on this approach of
Android programming. Let’s start with a fundamental functionality, the app’s lifecycle.

2.2.1 The Role of Lifecycle in Apps

To better understand the lifecycle’s role, we must first discuss some basic operating
system functionality. After all, Android is an operating system, and more specifically
a multi-user Linux system. This means that, most of the time, each application runs
in its own isolated Linux process. Every time an application component needs to be
executed, the OS creates a process to host its functionality. On the other hand, when
no such component is is running, the OS kills that specific process in order to free
up memory for other applications that need to run. To facilitate this, the Android
operating system uses an importance hierarchy to find out which of the processes need
to be executed or be killed. It is based on a categorization of the processes as unique
types, that mainly depend on the app components that are running at the time, as
well as their respective state [3].

2.2.2 The Activity Lifecycle

One of the most common app components is called an Activity. An app can have one
or more of such components. Now, depending on how the end user uses the app, these
activities go through different lifecycle states. This is important to understand, because
the functionality of different components results in a different process lifetime. Failing
to develop correctly these components, can have a major impact on the application,
such as the system killing it when it has still work to do. Figure 16 shows the different
activity lifecycle states. Those are:

• Initialized: The instance of the activity is created along with the initialization
of its necessary properties.

• Created: The activity’s UI is ready to be configured.

• Started: The activity is now visible to the user.

• Resumed: The activity has focus, meaning that the user is likely interacting
with it.

ZenCrypt - Securely Encrypt Files 19

• Destroyed: The activity is destroyed.

There are different callbacks between these states, and the operating system invokes
these callbacks during an activity’s state change. If a developer wants a different
functionality than the default one, these methods can be overridden according to the
desired implementation.

Figure 16: Activity Lifecycle States

2.2.3 Activity Lifecycle Callbacks

In order to monitor the activity lifecycle, we must decide which of the lifetime state(s)
we want to focus on [4]:

• Entire Lifetime: This takes place between the first call to onCreate() and the
final call to onDestroy(). onCreate is responsible for for the activity’s global
setup, and any remaining objects are released in onDestroy().

• Visible Lifetime: This takes place between the onStart() and onStop(). Any
resources that were initialized before can be maintained here, if the developer
chooses to do so.

• Foreground Lifetime: This takes place between the call to onResume() and
the call to onPause(). It is triggered multiple times when, for example, the device
goes to sleep. This means that the code that is executed in these methods must
be relatively lightweight, and not handle tedious tasks.

ZenCrypt - Securely Encrypt Files 20

Figure 17: The Activity Lifecycle

Figure 17 shows the movement of an activity throughout its lifecycle. More specifically:

• onCreate(): When the activity is first created, this methods is called, which
initializes most of the activity’s variables. It is not a killable process. The next
process to be called is always onStart().

• onRestart(): This method is called when the activity is stopped, but before it
starts again. It is not killable, and next is always onStart().

• onStart(): This is called when the activity becomes visible. Next is onResume()
if the activity is brought into foreground, or onStop() if it is hidden from the
user. It is not killable.

• onResume(): This is called when the activity is ready to be interacted with the
user. The activity stack has the current activity on top of its stack. It is not
killable, and next is onPause().

• onPause(): This is called when the system decides that a previous activity is
about to be resumed, or if the user has navigated to a different system screen (for
example pressing the home button). Here, unsaved changes/data are persisted.
This process is killable on android 2.3 and earlier, and next is onResume() if the

ZenCrypt - Securely Encrypt Files 21

activity is brought to the foreground again, or onStop() if the activity becomes
invisible.

• onStop(): This is called when the activity at hand is no longer visible. It’s
followed by onRestart() if the activity is returned to interact with the user, or by
onDestroy() if the activity goes away. This is a killable process.

• onDestroy(): This is the final call before the destruction of the activity. It’s
called when the developer calls the finish() method, or when the system decides
to temporarily destroy the activity to claim back some memory space. In order
to know which of the two events is happening, the developer can make use of the
isFinishing() method, which returns true if the activity is finishing, or false if the
system is killing it.

Remember that the system can kill specific methods unexpectedly, meaning that on-
Destroy() should not be used to do things that are intended to remain after the process
finishes.

2.2.4 The Fragment Lifecycle

Fragments were created to address the problem of putting multiple activities on the
screen at the same time, since Android allows only one activity to be displayed. Using
fragments, you can make use of the bigger screen sizes available, and not waste any
screen real estate, for example in tablets. On top of that, multiple fragments can hold
different views to be displayed at the same time, allowing one to develop a more intuitive
and appealing application design. Fragments are essentially miniature activities, and
every fragment has its own lifecycle. They reside inside activities, and are commonly
used to display data to the user. Though, it’s important to know that a developer must
never perform IO operations on the interface thread (which fragments are running on),
which may result in an ”Application Not Responsive” dialog box to be shown to the
user. Figure 18 demonstrates the fragment lifecycle, which resembles a lot to the
activity lifecycle.

2.2.5 Fragment Lifecycle Callbacks

The following is every lifecycle event that can be triggered in the fragment’s lifecycle:

• onCreate(): This is called when the fragment reaches its Created state. It’s very
similar to the activity’s onCreate() callback.

• onCreateView(): This is called in order to inflate or to create the fragment’s
view.

• onViewCreated(): The fragment’s view is instantiated with a view object that
is NOT null. The view associated with the fragment can be returned from
getView().

ZenCrypt - Securely Encrypt Files 22

Figure 18: The Fragment Lifecycle

• onStart(): This is called when the fragment reached its Started state. The view is
guaranteed to be available and that it’s safe to perform a FragmentTransaction.

• onResumed(): The fragment now enters the Resumed state. This is available
only after any animation and transition effects have completed their work.

• onPause(): This is called when the OS realizes that the user begins to leave the
fragment at hand, while it’s still visible. The fragment now goes back to the
Started state,

• onStop(): The fragment is no longer visible and returns back to the Created state.

• onDestroyView(): This is called when the fragment’s view has been detached
from the screen and all animations and transitions have completed their work.
The garbage collector can now collect the fragment’s view object.

• onDestroy(): This is called when the fragment is removed or when the Fragment-
Manager object is destroyed. Now, the fragment enters the Destroyed state and
has reached the end of its lifecycle.

2.2.6 Store UI Data with ViewModels

The ViewModel object is a class designed to store and manage UI-related data in a
lifecycle conscious way [18]. This information is retained through configuration changes,

ZenCrypt - Securely Encrypt Files 23

such as screen rotations. They are very helpful in a handful of situations. For example,
imagine that the system destroys or re-creates a UI-controler (such as an activity or a
fragment). Any transient UI-related data that is stored in the will be forever lost. For
simple data, an activity can make use of the onSaveInstanceState() method, and later
restore its data from the bundle in onCreate(). Though, this approach is only applicable
when the data set is very small, and when the data can be serialized and de-serialized.
Additionally, it is very common that a UI controller needs to make some asynchronous
calls, which could potentially finish after a while. The controller needs to monitor these
calls and make sure that the OS cleans them up after the main object is destroyed, in
order to avoid serious memory leaks. This requires a lot of code maintenance, and could
potentially break the application in the event of a screen rotation, since the object will
be re-created and restart calls that were already made before. Since UI controllers
are intended to primarily display UI data, and not data loading, for example, from
a database, a developer must not burden them with such tasks, since it bloats the
class. This is where ViewModels come into play, allowing to separate the view data

Figure 19: The ViewModel’s Lifecycle

ZenCrypt - Securely Encrypt Files 24

from the UI controller logic. ViewModel objects are automatically retained during
configuration changes, and the information stored in them is available for the next UI
controller instance. Figure 19 shows the lifecycle of a ViewModel object. These objects
are scoped to the Lifecycle of the ViewModelProvider. They remain in the memory
until their Lifecycle scope goes away permanently. This happens when an activity is
finished, or when a fragment is detached.

2.3 Data Storage

There are many occasions where android applications need to to implement data per-
sistence, either to store user preferences that the app offers, or important/sensitive
information such as files, passwords, account credentials etc. For example, a note tak-
ing app wouldn’t be useful at all if it didn’t save the notes between device restarts, or
even application restarts. This where the Android’s framework, along with the pre-
ferred programming language (Kotlin/Java) come into play. Together they provide a
set of tools to help the developer tackle the problem that is data storage.

2.3.1 Storage Options

The first thing to consider when developing an app that requires data persistence, is the
kind of information that it needs to store. Android provides a variety of places where
one can store data, and its usage depends on how the app is meant to be operated. In
the end, it all comes down to whether or not the app interacts with other applications,
and needs to save information in a public space, where it is easily accessible and
readable. For example, a photo viewing app would possibly store downloaded photos
in a place where they can be also viewed by other applications on the user’s device.
On the other hand, an app that stores sensitive data, such as user credentials, would
encrypt them and place them in a secure, local storage environment, where they are
inaccessible by other installed services. Android provides the following storage options:

• Shared preferences: This stores private data using key-value pairs in XML
files, located in the app’s private working directory (/data/data/app). This in-
formation is inaccessible by other apps and is commonly used to store the user’s
app-related preferences, such as colors/themes, various inputs, favorites, etc. It
is not advised to store sensitive data here, at least unencrypted, since these files
can be easily read from an unlocked/compromised device with root privileges
granted, like any other Linux based system.

• Jetpack DataStore: This is a data storage solution much like the shared pref-
erences described above, but has a few major enhancements. It’s still a key-value
pair system, but it stores these pairs or typed objects using protocol buffers. Pro-
tocol buffers are Google’s language-neutral, platform0neutral, extensible mech-
anism for serializing structured data [16]. It’s faster than XML, smaller and
simpler. The data structure is generated only once, and then the developer can

ZenCrypt - Securely Encrypt Files 25

use any special generated source code to easily write and read them. It is imple-
mented using Kotlin’s coroutines and Flow (more on that later).

• Internal storage: This is a location for storing files on the device’s main stor-
age. By default, information stored here is private to the application, and not
accessible by other services. Note, however, that once the application is unin-
stalled, these data are deleted as well. This solution is commonly used to store
files that do not contain sensitive data, and are only used by the application at
hand. A developer can override the default behavior, and make the files accessi-
ble by other apps, such as a file manager. Though file deletion on app uninstall
cannot be de-activated.

• Local cache: Sometimes an application needs to store cached data, such as
a downloaded image that it is not needed once the app is closed (a common
example are profile photos). These files can be deleted at any time with the help
of getCacheDir() method, available in Context objects in Android.

• External storage: All Android versions support a shared storage for files, like
SD cards, or non-removable internal storage. All the files stored here are public,
and can be modified by any person or application. They provide no security
what so ever, and can be read by a computer using a USB cable. In order to
start working with external storage, the developer must make use of the Envi-
ronment object, which provides methods such as getExternalStorageState() and
GetExternalFilesDir() to help with the task. This is where it gets a little tricky
though. In order to enforce security, and not allow malicious apps to arbitrarily
delete/modify the user’s stored data, Google has introduced Scoped Storage in
Android 11 onwards, which cripples an app’s capability of writing and modifying
files on the external storage. This will be further discussed in section 2.3.2.

• SQLite database: This is the common implementation of the well-known SQLite
database that is available across all platforms. It is fully supported by Android,
and all of its functionality is available through Java/Kotlin.

• Content provider: A content provider is a wrapper that encapsulates data
and provides it to applications. They are offered by a single ContentResolver
interface, and the content provider is only required if it is needed to share data
between multiple applications [13]. A common usage of content providers is to
read and write application data which can be stored in files, or even SQLite
databases. When a request is made through a ContentResolver instance, the
system inspects the authority of the given URI (Uniform Resource Identifier),
and then redirects the request to the provider responsible for handling requests
of that specific authority.

• Remote storage: This refers to any storage that is not stored on the device,
and is located in a remote data source that is accessible. Files from here can be

ZenCrypt - Securely Encrypt Files 26

retrieved by any means necessary, such as the HTTP protocol.

An overview of the android’s storage handling can be seen in figure 20.

Figure 20: Android’s Storage Overview

Moreover, figure 21 displays the above more in depth [31]. The /data/data represents
the app’s internal storage, while the /data/media path provides access to the shared
directory /storage/emulated where an application can store and modify files (given
permission).

Figure 21: Application Storage Structure

ZenCrypt - Securely Encrypt Files 27

2.3.2 Scoped Storage

Scoped storage was originally (and experimentally) implemented in Android 10, and
later was fully adapted and mandatory in Android 11. Scoped storage aims to provide
improved app and user data protection in external storage. It involves two major
restrictions of file sharing/editing:

1. All application files stored into the app’s specific directory are treated as private
files.

2. All application files stored into shared directories are treated as public files, which
need the user’s consent via the Android’s permission system to be read/shared.
For writing files, an explicit user consent is needed, via the all-files access permis-
sion, which is only granted if the app is vetted before publication via the Google
Play Store.

By default, all applications targeting Android 11, can read and write only their own
files. Additional permissions are needed in order for an application to modify any file,
but only one file at a time, and only for public files that are stored in shared directories.

With all of that said, applications currently have three ways to handle files inside
scoped storage. The existing APIs that Android provides, which result in Posix calls,
the MediaStore API, and the Storage Access Framework (SAF) API.

• MediaStore APIs: Like the File API, MediaStore APIs provide comparable
file control access to that available in pre-scoped storage, but with scoped storage
there is a file access limit, especially for writing. More specifically, the ”Write
External Storage” permission is considered deprecated in scoped storage, thus
resulting in problems in shared directories via the File API. Third party apps
cannot ask users to modify/write files which are owned by other applications
for example. The only exception to this rule is, as discussed above, the all-file
access permission. In order to write a public file which is owned by another app,
the developer must use the new MediaStore API and obtain user consent. Note,
however, that this approach has some limitations. For starters, it cannot be used
with directories that are considered internal storage by other applications, as seen
in figure 21. Also, it cannot be used when the target file is not a media file, like
documents (.pdf).

• Storage Access Framework (SAF): This framework was first introduced in
Android 4.4 (API level 19), and will provide file access to paths that are cho-
sen by the user [14]. An application that requires to implement functionality
for sharing local and/or cloud files, can do so easily by implementing the Doc-
umentsProvider class, which is capable of handling app file requests. In pre-
scoped storage, SAF allowed directory level sharing from external storage, but
since Android 11, scoped storage induced limitations to the SAF. For example,
applications can no longer access the external storage’s Download directory (/s-
torage/emulated/0/Download).

ZenCrypt - Securely Encrypt Files 28

Scoped storage is implemented using an adoption of the FUSE (Filesystem in USERspace)
system for the external storage. It consists of two main entities; the kernel space and
the user space. The kernel space (driver) is invoked by the operating system when an
app tries to access files stored on the external storage, which then passes the request
to the user space. The user daemon then retrieves the said request and tries to find
the file owner from the MediaProvider, in order to check for sufficient permissions. If
all goes well, the operation is performed on the EXT4 file system and the application
is finally able to retrieve the result. This process is demonstrated visually in figure 22.

Figure 22: Storage Storage’s FUSE Implementation

The bind mount operation is responsible for blocking third-party application access,
using UNIX-DAC (Discretionary Access Control) permissions [31]. This method refers
to file access in app-specific directories. To facilitate access enforcement for shard di-
rectories, a more tedious process takes place. Whenever an application is granted write
access to a shared directory, and a new file is created, the MediaProvider takes this
file and processes its owner and MIME (Multipurpose Internet Mail Extension) type,

ZenCrypt - Securely Encrypt Files 29

which then stores in its database. The only requirement here is that the MIME type
must strictly match the target folder’s intended MIME type (for example, pictures
must be stored in the Pictures folder). If this is not the case, then the operation will
be stopped. MediaProvider can then be used by other apps to check for file instances,
and if they own the specific file, the MediaProvider can grant them access. On the
other hand, if the requested file is stored on a shared directory, it must either already
have the ”Read External Store” permission granted for reading, or prompt the user to
allow the ”Read External Storage” permission for both reading and writing.

Keep in mind that applications that heavily rely on storing files on the external
shared storage, i.e. require the all-file access permission, are currently at a dead-
end, since Google has paused app vetting on the Google Play Store. The only real
alternative here is to comply with the scoped storage policy and store files on the
internal app-specific storage.

2.4 Native Languages

There are many languages that can be used when developing Android applications.
These include Basic, Kotlin, Java, Lua, C, C++ and C#. Though, in this thesis we
will only focus on Kotlin and some Java.

2.4.1 Java

Java is the main language used by Android to communicate with the OS. It allows the
developers to create programs that run on almost any platform, and it works seamlessly
with most types of devices. Its robust code is built on top of object-oriented technology,
and it prevents corruption or compromise of data from other applications. Java was
originally crated by Sun Microsystems (which is now owned by Oracle), and is open-
source. This enables the developer to take advantage of the many third party libraries
available without worrying about safety, since many of them are maintained by trusted
corporations like Apache and Google. While Kotlin is more robust and complex, Java
is still very easy to use and compiles without hassle. This is why Java was the preferred
Android language for years.

Though, there are some shortcomings when using Java, which led to many devel-
opers preferring Kotlin. For starters, Java is not able to access certain functionality
when the user’s device and/or equipment is incompatible. It is also not easy to take
advantage of the functionality that the newer Java versions offer, since many of those
are not available in mobile development. Additionally, a common issue that many
Java developers face, is that Java is very cumbersome when it comes to API design,
and there are many occasions where it will cause problems that take a lot of time to
troubleshoot. Finally, Java is slower than most other programming languages, and is
very memory hungry. This, especially in mobile development, is a major issue.

ZenCrypt - Securely Encrypt Files 30

2.4.2 Kotlin

Kotlin is a programming language that simplifies the work of developers by making
it less verbose and less prone to bugs. It compiles code to a byte code, which can be
executed in the JVM (like Java). This means that any libraries and frameworks written
in Java are ready to be implemented and run in a Kotlin application. It is also safe
against NullPointerException, faster to compile, and very lightweight while maintaining
small application size. Kotlin also offers coroutines, which can have a significant impact
on the application’s fluidity and speed, and make the user interaction more pleasant
when heavy tasks need to run in the background.

There are only a few downsides to using Kotlin as the main application language,
and all of them are based on the fact that Kotlin is a relatively newly developed
language. This results in a development community that is limited compared to Java’s
community for example. There are fewer tutorials and libraries available, and has a
steep learning curve because of its condensed syntax, which can be a real challenge for
someone not familiar with these types of languages. This also reflects the fact that
companies and start-ups need to search quite a bit before finding experienced Kotlin
developers.

A brief comparison between the two can be seen in table 2 [12].

Parameter Java Kotlin

Compilation Bytecodes Virtual Machine
Null Safety - +

Lambda Expression - +
Invariant Array - +

Non-private Fields + -
Smart Casts - +

Static Members + -
Wildcard Types + -

Singletons Objects + +

Table 2: Java vs Kotlin

2.5 Kotlin Development

Kotlin is the clear winner when it comes to Java vs Kotlin [19], mainly because of its
backwards compatibility, declarative style with less code, and the fact that it inter-
works with Java by default. ZenCrypt was developed mainly in Kotlin, so that’s what
we will focus on. Let’s start by discussing some Kotlin basics, and then moving on to
coroutines.

ZenCrypt - Securely Encrypt Files 31

2.5.1 Basics

Kotlin offers a variety of tools that make the development of an application easy while
maintaining a readable and straight-forward source. We will take a look at some of
these tools below:

A. Extension Functions

Kotlin allows the developer to extend the functionality of a class without using any de-
sign patterns or inheritance for that matter [28]. For example, one can implement new
functions for a class that is not modifiable. In order to write an extension function, we
must first declare the receiver type as its name prefix, followed by the function name.
An example swap() extension method of MutableList<Int > can be seen in listing 1.

1 // ----

2 fun Mutab l eL i s t<Int >. swap (f i r s t : Int , second : I n t) {
3 v a l tmp = t h i s [f i r s t] // ’this ’ points to the list

4 t h i s [f i r s t] = t h i s [second]
5 t h i s [second] = tmp
6 }
7 // ---- which can later be used as:

8 v a l my l i s t = mutab l eL i s tO f (5 , 6 , 7)
9 my l i s t . swap (1 , 0) // ’this ’ inside ’swap()’ will hold the value of ’my_list ’

Listing 1: Extension example.

Extension functions can also have a nullable receiver, as seen in listing 2. That way, the
extension method is responsible for the null check, and is ready to be called directly.

1 fun Any ? . t o S t r i n g () : S t r i n g {
2 i f (t h i s == n u l l) r e t u r n "null"

3 // after the null check , ’this ’ is autocast to a non -null type ,

4 // so the toString () below

5 // resolves to the member function of the Any class

6 r e t u r n t o S t r i n g ()
7 }

Listing 2: Nullable extension example.

B. Smart Casts

Kotlin allows the developer to safely and automatically cast immutable values and
inserts casts without needing to use explicit cast operators [30]. For example:

1 fun demo(x : Any) {
2 i f (x i s S t r i n g) {
3 p r i n t (x . l e n g t h) // x is automatically cast to String

4 }
5 }

Listing 3: Smart cast example 1.

Additionally, the compiler is clever enough when a cast is safe, even if a negative check
needs to be returned:

ZenCrypt - Securely Encrypt Files 32

1 // x is automatically cast to String on the right -hand side of ‘||‘

2 i f (x ! i s S t r i n g | | x . l e n g t h == 0) r e t u r n
3

4 // x is automatically cast to String on the right -hand side of ‘&&‘

5 i f (x i s S t r i n g && x . l e n g t h > 0) {
6 p r i n t (x . l e n g t h) // x is automatically cast to String

7 }

Listing 4: Smart cast example 2.

C. Type Inference

Kotlin allows to define variable types both explicitly and not explicitly. The com-
piler automatically identifies the data type of each variable, by the initializer. That
means, if we initialize the value in the declaration, it is not needed to define the data
type explicitly. But, if we want to initialize the value of a variable later on, then the
data type must be defined explicitly, and the concept of type inference does not apply.
This can be seen in the example below:

1 // ---- not explicitly defined

2 fun main (a r g s : Array <St r ing>) {
3 v a l t e x t = 10
4 p r i n t l n (t e x t)
5 }
6 // ---- explicitly defined

7 fun main (a r g s : Array <St r ing>) {
8 v a l t e x t : I n t = 10
9 p r i n t l n (t e x t)

10 }

Listing 5: Type inference example.

D. Functional Programming

Functional programming is a programming paradigm where programs are constructed
by applying and composing functions [42], i.e. writing applications using only pure
functions and immutable values. This helps squash bugs easily, since we know what
task each functions performs. Pure functions help in achieving a safer way of program-
ming [11]. This is one of the most important things Kotlin has to offer, since it greatly
increases the performance when compared to Java. As an example, let’s say that we
need to filter out negative numbers from a given collection:

1 fun main (a r g s : Array <St r ing>) {
2 v a l numbers = a r r a y L i s tO f (15 , −5, 11 , −39)
3 v a l nonNegat iveNumbers = numbers . f i l t e r
4 {
5 i t >= 0
6 }
7 p r i n t l n (nonNegat iveNumbers)
8 }

Listing 6: Functional programming example 1.

The output of listing 6 will be: 15,11.

ZenCrypt - Securely Encrypt Files 33

Additionally, we can create functions that take other functions as a parameter and
also return function. Consider the following:

1 fun alphaNum (func : () −> Unit) {}

Listing 7: Functional programming example 2.

Here, the func is the parameter’s name and () ->Unit is the type of the function. In
other words, we are defining a function func that won’t receive any parameters, and
will also no return any value.

We can also take the above a step further and use a Lambda expression, i.e. a
function literal, to calculate a result. Lambda expressions are functions which are not
declared somewhere, but can be passed immediately as an expression:

1 v a l sum : (Int , I n t) −> I n t = {
2 x ,
3 y −> x + y
4 }

Listing 8: Functional programming example 3.

Listing 8 simply declares a variable sum that has two integers as input, and returns
their total as an integer. The above can also be declared in an anonymous function:

1 fun (x : Int , y : I n t) : I n t = x + y
2 // ---- OR

3 fun (a : Int , b : i n t) : I n t {
4 r e t u r n a + b
5 }

Listing 9: Functional programming example 4.

E. Null Safety

Kotlin is safe against NullPointerExceptions. This is great because Kotlin simply will
not compile if it detects that somewhere in the source code a null parameter is assigned
or returned:

1 // the following won ’t compile ,

2 // since a null parameter tries to be assigned.

3 v a l name : S t r i n g = n u l l b a s i c s
4 // this also won ’t compile ,

5 // since a null parameter tries to be returned.

6 fun getName () : S t r i n g = n u l l

Listing 10: Null safety example.

ZenCrypt - Securely Encrypt Files 34

2.5.2 Coroutines

Kotlin, by default, provides very few low-level APIs in its standard library. In order
to utilize coroutines, we must make use of other libraries that provide keywords such
as await,async,launch and others. A library that provides rich coroutine functionality
is kotlinx.coroutines which is developed by JetBrains. Kotlin also provides suspending
functions that offer safe and asynchronous operations.

Let’s dive further in. Coroutines are essentially instances of a suspendable compu-
tation [27]. It is very similar to threading, in such a way that it executes a block of
code concurrently with the rest of the code. The only difference is that a coroutine can
pause and resume its execution on different threads, and not a single particular one.
Listing 11 demonstrates a simple Kotlin coroutine:

1 import k o t l i n x . c o r o u t i n e s .∗
2

3 fun main () = runB lo ck i ng { // this: CoroutineScope

4 l aunch { // launch a new coroutine and continue

5 de l a y (1000L) // non -blocking delay for 1 second (default time unit is ms)

6 p r i n t l n ("World!") // print after delay

7 }
8 p r i n t l n ("Hello") // main coroutine continues while a previous one is delayed

9 }

Listing 11: A simple coroutine example.

The result of the above will be:

Hello
World!

In essence, this is what listing 11 does:

• runBlocking : runBlocking ensures that the thread that is executing the code
inside the curly braces, gets blocked for the duration of the call. Once all the
coroutines inside this block finish their task, then the thread gets unblocked.
Here, everything will be executed in the main thread. Keep in mind, though,
that threads need to be blocked as few as possible in the application’s lifetime,
since they are one expensive resource. runBlocking is a coroutine builder.

• launch: This launches a newly created coroutine in parallel with the rest of the
application code. It is also a coroutine builder. If the runBlocking is removed,
then launch is not recognized as a valid keyword, since it is missing its declared
scope, which is the coroutineScope.

• delay : This suspends the coroutine for a given amount of time. It’s called a sus-
pending function that does not block the thread, while allowing other coroutines
to be executed on said thread.

ZenCrypt - Securely Encrypt Files 35

Another example of a coroutineScope builder can be seen in listing 12. It can reside in
any suspending function and can be used to execute as many coroutines as needed (in
parallel).

1 import k o t l i n x . c o r o u t i n e s .∗
2

3 // my_function will run followed by "Finished"

4 fun main () = runB lo ck i ng {
5 doWorld ()
6 p r i n t l n ("Finished")
7 }
8

9 // Concurrently executes both sections

10 suspend fun my func t i on () = co rou t i n eScope {
11 l aunch {
12 de l a y (3000L)
13 p r i n t l n ("My Fynction 2")
14 }
15 l aunch {
16 de l a y (2000L)
17 p r i n t l n ("My Function 1")
18 }
19 p r i n t l n ("Started"
20 }

Listing 12: Two coroutines in parallel.

The output of the above will be:

Started
My Function 1
My Function 2
Finished

Since both launch blocks are executed concurrently, the first to finish will print My
Function 1 after 2 seconds, then after a total of three seconds from the start, the
second launch block will finish and print My Function 2. Then, once the my function
returns, the text Finished will be printed.

Kotlin coroutines are surprisingly light weight. Consider the following code:

1 import k o t l i n x . c o r o u t i n e s .∗
2

3 fun main () = runB lo ck i ng {
4 r e p e a t (100 000) { // launch a lot of coroutines

5 l aunch {
6 de l a y (5000L)
7 p r i n t (".")
8 }
9 }

10 }

Listing 13: 100K coroutines.

What listing 13 does, is that it executes 100.000 coroutines, each one printing a dot
after 5 seconds. This will run without any problems or out-of-memory errors.

ZenCrypt - Securely Encrypt Files 36

2.5.3 Coroutine context and dispatchers

Coroutines in Kotlin are always executed in a context. This context is always rep-
resented using a value of the CoroutineContext type [26]. Each coroutine context
comprises of various elements, the main of which are its job and its dispatcher. The
job refers to a background job which is usually cancellable and is created with the
launch builder that we described above. The dispatcher is what determines the thread
or threads that a coroutine will use for its execution, and it can:

• Execute a coroutine in a specific thread

• Dispatch the coroutine to a thread pool

• Let the coroutine run unconfined

Dispatchers are a parameter that can be defined in all coroutine builders. For example:

1 import k o t l i n x . c o r o u t i n e s .∗
2

3 fun main () = runB lock ing<Unit> {
4 l aunch { // context of the parent , main runBlocking coroutine

5 p r i n t l n ("main runBlocking: Running in ${Thread.currentThread (). name}")
6 }
7 l aunch (D i s p a t c h e r s . Unconf ined) { // not confined -- will work with main thread

8 p r i n t l n ("Unconfined: Running in ${Thread.currentThread (). name}")
9 }

10 l aunch (D i s p a t c h e r s . De f au l t) { // will get dispatched to DefaultDispatcher

11 p r i n t l n ("Default: Running in ${Thread.currentThread (). name}")
12 }
13 l aunch (newS ing l eThreadContex t ("my_thread")) { // will get its own new thread

14 p r i n t l n ("newSingleThreadContext: Running in " +
15 + "${Thread.currentThread (). name}")
16 }
17 }

Listing 14: Coroutine dispatcher example.

The output of listing 14 will be the following:

Unconfined: I’m working in thread main
Default: Running in DefaultDispatcher-worker-1
newSingleThreadContext: Running in MyOwnThread
main runBlocking: Running in main

The order of which the messages are printed might be different on separate execu-
tions.

The difference between a confined and an unconfined dispatcher is: the Dispatch-
ers.Unconfined dispatcher will execute a coroutine in the caller thread, until the first
suspension point. After that, the coroutine will be resumed in a thread which is de-
cided by the invoked suspending function. On the other hand, a confined dispatcher
(the coroutine’s context was inherited from runBlocking for example), will reside on
the main thread, and will continue to execute in that thread until it finishes.

ZenCrypt - Securely Encrypt Files 37

2.5.4 Flows

In Kotlin’s coroutines, suspend functions can only return a single value. If we wanted
to implement a functionality that were to emit more than one values sequentially, then
we would have to use a flow type [15]. Essentially, flows are streams of data which are
computed in a asynchronous fashion. There are three entities in a stream of data, as
seen in figure 23:

Figure 23: Entities in a stream of data

• The producer produces the necessary data which is added to the data stream.
This can also be done asynchronously with the help of coroutines.

• There may also be intermediaries, which will take the data, modify them if
necessary, and return them to the stream. They may also modify the data stream
itself.

• Finally, the consumer is able to read and consume the data from the data stream.

1 import k o t l i n x . c o r o u t i n e s .∗
2 import k o t l i n x . c o r o u t i n e s . f l ow .∗
3

4

5 fun my func t i on () : Flow<Int> = f l ow { // flow builder

6 f o r (i i n 5 . . 7) {
7 de l a y (100) // some background work

8 emit (i) // emit next value

9 }
10 }
11

12 fun main () = runB lock ing<Unit> {
13 // Launch a concurrent coroutine to check if the main thread is blocked

14 l aunch {
15 f o r (k i n 5 . . 7) {
16 p r i n t l n ("Not blocked $k")
17 de l a y (100)
18 }
19 }
20 // Collect the flow

21 my func t i on () . c o l l e c t { v a l u e −> p r i n t l n (v a l u e) }
22 }

Listing 15: Flow example.

ZenCrypt - Securely Encrypt Files 38

An example of flow usage in Kotlin can be seen in listing 15 [25]. Here, we can notice
a few things. First of all, the function that builds a Flow is called flow. All the code
inside it (flow { ... }), is able to suspend, which is why the simple() function does
not need the suspend modifier. Finally, the values are emitted using the emit() func-
tion, and later on collected using the collect() function. The output of listing 15 will be:

Not blocked 5
5
Not blocked 6
6
Not blocked 7
7

Each number is printed every 100ms, all while the main thread remains unblocked.
We can verify that this is the case, using a separate coroutine on the main thread, that
prints the ”Not blocked” message.

2.5.5 Flow Context

Flow collections will always happen in the calling coroutine’s context. For example:

1 wi thContex t (c on t e x t) {
2 my func t i on () . c o l l e c t { v −>
3 p r i n t l n (v) // this runs in the specified context

4 }
5 }

Listing 16: Flow context example.

The above code will will run the simple flow in the developer’s specified context, even
if the simple flow says otherwise. This is called context preservation [25], which means
by default, flow { ... } will run in the same context as the one provided by the collector
of that specific flow. Consider the following example:

1 import k o t l i n x . c o r o u t i n e s .∗
2 import k o t l i n x . c o r o u t i n e s . f l ow .∗
3

4 fun l o g (message : S t r i n g) = p r i n t l n ("[${Thread.currentThread (). name}] $message")
5

6 fun my func t i on () : Flow<Int> = f l ow {
7 l o g ("Started flow")
8 f o r (i i n 5 . . 7) {
9 emit (i)

10 }
11 }
12

13 fun main () = runB lock ing<Unit> {
14 my func t i on () . c o l l e c t { v −> l o g ("Finished processing $v") }
15 }

Listing 17: Flow context example 2.

ZenCrypt - Securely Encrypt Files 39

If we were to run listing’s 17 code, we would have produced the output:

main@coroutine#1 Started flow
main@coroutine#1 Finished processing 5
main@coroutine#1 Finished processing 6
main@coroutine#1 Finished processing 7

This is because the collect() method is being called form the main thread, just like
the code inside simple() function’s body. This results in fast executions and asyn-
chronous code, that do not block the calling thread.

2.5.6 Flow Buffering

A flow can be executed in separate coroutines in order to reduce the overall time it
takes to be collected. Such functionality is extremely important, especially when a long
running asynchronous task needs to run. Let’s demonstrate this. Take, for example,
listing 18:

1 import k o t l i n x . c o r o u t i n e s .∗
2 import k o t l i n x . c o r o u t i n e s . f l ow .∗
3 import k o t l i n . system .∗
4

5 fun my func t i on () : Flow<Int> = f l ow {
6 f o r (i i n 5 . . 7) {
7 de l a y (100) // waiting for 100 miliseconds

8 emit (i) // emit next value

9 }
10 }
11

12 fun main () = runB lock ing<Unit> {
13 v a l ms = measu r eT imeMi l l i s {
14 my func t i on () . c o l l e c t { v a l u e −>
15 de l a y (300) // some background work

16 p r i n t l n (v a l u e)
17 }
18 }
19 p r i n t l n ("Finished in $ms ms")
20 }

Listing 18: Flow example without buffering.

This code features a slow simple flow, emitting values every 100ms, and a slow collec-
tor, which processes the values every 300ms. The output is:

5
6
7
Finished in 1222 ms

A total of about 1200 ms to complete, which is correct since there were three numbers,
with 400ms for each one. Now, we can use a buffer operator inside a flow, which will

ZenCrypt - Securely Encrypt Files 40

emit the values from the simple flow in parallel with the collecting code (instead of
sequentially):

1 import k o t l i n x . c o r o u t i n e s .∗
2 import k o t l i n x . c o r o u t i n e s . f l ow .∗
3 import k o t l i n . system .∗
4

5 fun my func t i on () : Flow<Int> = f l ow {
6 f o r (i i n 5 . . 7) {
7 de l a y (100) // waiting for 100 miliseconds

8 emit (i) // emit next value

9 }
10 }
11

12 fun main () = runB lock ing<Unit> {
13 v a l ms = measu r eT imeMi l l i s {
14 my func t i on ()
15 . b u f f e r () // buffer emissions , don ’t wait

16 . c o l l e c t { v a l u e −>
17 de l a y (300) // some background work

18 p r i n t l n (v a l u e)
19 }
20 }
21 p r i n t l n ("Finished in $ms ms")
22 }

Listing 19: Flow example with buffering.

The output now is:

5
6
7
Finished in 1070 ms

Essentially, we have created a faster processing pipeline, where we only have to wait
100ms for the first number to be printed, followed by 300ms for processing each next
number.

ZenCrypt - Securely Encrypt Files 41

3 Developing ZenCrypt

3.1 Decision

As we discussed in section 1.1, data security is very important, and failing to achieve
it stands as a very real threat to a person’s finances, privacy, as well as well-being.
The unwanted disclosure of personal information (especially on social media) can lead
to identity theft and/or other personal harm, and there is no sign that this trend will
slow.

We decided to develop ZenCrypt having taken into consideration the above con-
cerns. An application that will allow users to easily and safely encrypt images, pass-
words, voice recordings, documents and, in general, any sort of file that they seem fit,
in order to exchange them without worrying about the sharing platform ”collecting”
that private information. At the time of writing, there are no applications available on
the Google Play Store that will cover all of the following criteria:

1. Strong encryption with the latest secure standards for Android.

2. File encryption and not only text/password inputs.

3. Storing of encrypted files in a fashion that is easy to display to the user, and
decrypt with one-click.

4. Password analyzer with hints, for stronger passwords used when encrypting files
[36].

5. Encryption using fingerprints.

6. Friendly, slick, and intuitive user interface, respecting Android’s material design
guidelines.

7. Lifecycle aware development with minimum memory usage.

8. Fast encryption with very little overhead.

9. No internet permission required, so that the user feels comfortable with his/hers
inputs to the app not being sent anywhere.

10. Free & Open-source.

ZenCrypt offers all of the above packaged in a single modern application, which the
user can download and use straight away.

ZenCrypt - Securely Encrypt Files 42

3.2 Implementation

An application that facilitates such functionality needs to be designed in such a way
so that the user needs the minimum amount of interaction in order to encrypt and
share a file. ZenCrypt is designed exactly this way, and its implementation will be
discussed in this section. It will be broken down into segments, depending whether the
functionality at hand is about UI elements or core application actions.

3.2.1 Core Functionality

Let’s start by analyzing ZenCrypt’s kernel functions.

A. Encryption

The most important function of the application is the encrypt function (listing 20)
[41]. ZenCrypt uses the AES-256 cipher with CBC mode of operations (section 1.3.4),
along with PKCS#7 block padding (section 1.4) for encryption.

1 @JvmOverloads
2 fun <T> en c r yp t (@NotNull i n pu t : T,
3 @NotNull password : St r ing ,
4 @NotNull e r l : ECRe su l t L i s t e n e r ,
5 @NotNull o u t p u t F i l e : F i l e = F i l e (Cons tan t s . DEF ENCRYPTED FILE PATH)) {
6 Globa lScope . async (D i s p a t c h e r s . De f au l t) {
7

8 v a l tPas s = password . t r im ()
9

10 when (i n pu t) {
11

12 i s S t r i n g −> en c r yp t (i n pu t . a sByteAr ray () , password , e r l , o u t p u t F i l e)
13

14 i s CharSequence −>
15 en c r yp t (i n pu t . t o S t r i n g () . a sByteAr ray () , password , e r l , o u t p u t F i l e)
16

17 i s ByteAr ray InputSt ream −> en c r yp t (i n pu t . r eadByte s () , password , e r l , o u t p u t F i l e)
18

19 i s F i l e −> {
20 i f (! i n pu t . e x i s t s () | | i n pu t . i s D i r e c t o r y) {
21 e r l . o n F a i l u r e (Cons tan t s . ERR NO SUCH FILE , NoSuchF i l eExcep t i on (i n pu t))
22 r e tu rn@async
23 }
24 v a l e n c r y p t e d F i l e =
25 i f (o u t p u t F i l e . ab so l u t ePa th == Cons tant s . DEF ENCRYPTED FILE PATH)
26 F i l e (i n pu t . ab so l u t ePa th + Cons tant s . ECRYPT FILE EXT)
27 e l s e o u t p u t F i l e
28 en c r yp t (i n pu t . i nputSt ream () , password , e r l , e n c r y p t e d F i l e)
29 }
30

31 e l s e −> pe r fo rmEnc ryp t . i n voke (input , tPass , c i ph e r ,
32 { pass , s a l t −> getKey (pass , s a l t) } , e r l , o u t p u t F i l e)
33 }
34 }
35 }

Listing 20: Encryption method.

ZenCrypt - Securely Encrypt Files 43

The above method symmetrically encrypts the input data using AES algorithm in
CBC mode with PKCS7Padding padding, and posts the response to [ECResultLis-
tener.onSuccess] if successful or posts error to [ECResultListener.onFailure] if failed.
Encryption progress is posted to [ECResultListener.onProgress]. The Result can be a
String or a File depending on the data type of [input] and parameter [outputFile]. The
parameter T can be either of [String], [CharSequence], [ByteArray], [InputStream],
[FileInputStream], or [File]. The rest of the parameters are:

• input data to be encrypted.

• password string used to encrypt input.

• erl listener interface of type [ECResultListener] where result and progress will be
posted.

• outputFile optional output file. If provided, result will be written to this file.

Furthermore, this method can throw the following exceptions:

• InvalidKeyException if password is null or blank.

• NoSuchFileException if input is a File which does not exists or is a Directory.

• InvalidParameterException if input data type is not supported.

• IOException if cannot read or write to a file.

• FileAlreadyExistsException if output file is provided and already exists.

• IllegalBlockSizeException if this cipher is a block cipher, no padding has been
requested (only in encryption mode), and the total input length of the data
processed by this cipher is not a multiple of block size; or if this encryption
algorithm is unable to process the input data provided.

This method is essentially a coroutine, which uses the async method from the Glob-
alScope scope (section 2.5.2), running on the Dispatchers.Default context (section
2.5.3). The [ECResultListener] is a very simple interface shown in listing 21.

1 /**

2 * Interface to listen for result from encryption , decryption , or hashing

3 */

4 i n t e r f a c e ECRe s u l t L i s t e n e r {
5 /**

6 * @param newBytes count processed after last block

7 * @param bytesProcessed count from total input

8 */

9 fun onProg r e s s (newBytes : Int , b y t e sP r o c e s s e d : Long , t o t a l B y t e s : Long) {}
10

11 /**

12 * @param result on successful execution of the calling method

13 */

ZenCrypt - Securely Encrypt Files 44

14 fun <T> onSucces s (r e s u l t : T)
15

16 /**

17 * @param message on failure

18 * @param e exception thrown by called method

19 */

20 fun o nF a i l u r e (message : St r ing , e : Excep t i on)
21 }

Listing 21: ECResultListener interface.

B. Decryption

The decryption method is quite similar to that of encryption (listing 22):

1 @JvmOverloads
2 fun <T> de c r yp t (@NotNull i n pu t : T,
3 @NotNull password : St r ing ,
4 @NotNull e r l : ECRe su l t L i s t e n e r ,
5 @NotNull o u t p u t F i l e : F i l e = F i l e (Cons tan t s . DEF DECRYPTED FILE PATH)) {
6 Globa lScope . async (D i s p a t c h e r s . De f au l t) {
7

8 v a l tPas s = password . t r im ()
9

10 when (i n pu t) {
11

12 i s S t r i n g −> {
13 t r y {
14 de c r yp t (i n pu t . fromBase64 () . i nputSt ream () , password , e r l , o u t p u t F i l e)
15 } catch (e : I l l e g a lA r g umen tE x c e p t i o n) {
16 e r l . o n F a i l u r e (Cons tan t s . ERR BAD BASE64 , e)
17 }
18 }
19

20 i s CharSequence −> {
21 t r y {
22 de c r yp t (i n pu t . t o S t r i n g () . fromBase64 () . i nputSt ream () ,
23 password , e r l , o u t p u t F i l e)
24 } catch (e : I l l e g a lA r g umen tE x c e p t i o n) {
25 e r l . o n F a i l u r e (Cons tan t s . ERR BAD BASE64 , e)
26 }
27 }
28

29 i s ByteArray −> de c r yp t (i n pu t . i nputSt ream () , password , e r l , o u t p u t F i l e)
30

31 i s F i l e −> {
32

33 i f (! i n pu t . e x i s t s () | | i n pu t . i s D i r e c t o r y) {
34 e r l . o n F a i l u r e (Cons tan t s . ERR NO SUCH FILE , NoSuchF i l eExcep t i on (i n pu t))
35 r e tu rn@async
36 }
37

38 v a l d e c r y p t e d F i l e =
39 i f (o u t p u t F i l e . ab so l u t ePa th == Cons tant s . DEF DECRYPTED FILE PATH)
40 F i l e (i n pu t . a b s o l u t e F i l e . t o S t r i n g () . r emoveSu f f i x (Cons tant s . ECRYPT FILE EXT))
41 e l s e o u t p u t F i l e
42

43 de c r yp t (i n pu t . i nputSt ream () , password , e r l , d e c r y p t e d F i l e)
44 }
45

46 e l s e −> pe r fo rmDecrypt . i n voke (input , tPass , c i phe r ,
47 { pass , s a l t −> getKey (pass , s a l t) } , e r l , o u t p u t F i l e)
48 }
49 }

ZenCrypt - Securely Encrypt Files 45

50 }

Listing 22: Decryption method.

Apart from the different implementations, this method can throw an additional excep-
tion:

• BadPaddingException if this cipher is in decryption mode, and (un)padding
has been requested, but the decrypted data is not bounded by the appropriate
padding bytes.

C. Fingerprint Authentication [24]

ZenCrypt enables (as a PRO feature) users to optionally encrypt files through a bio-
metric authentication, in this case, their fingerprint.

1 p r i v a t e fun s t a r t F i n g e r p r i n t A u t h () {
2 v a l biometr icPromptCompat = Biometr icPromptCompat . Bu i l d e r (
3 Biomet r i cAuthReques t (B i ome t r i cAp i .AUTO, Biomet r i cType . BIOMETRIC FINGERPRINT) ,
4 t h i s
5)
6 . s e t T i t l e (i f (i n t e n tA c t i o n == ZenCryptConstants .ACTION ENCRYPT)
7 g e t S t r i n g (R . s t r i n g . e n c r yp t) e l s e g e t S t r i n g (R . s t r i n g . d e c r yp t))
8 . s e t S u b t i t l e (resu l tName)
9 . s e tNega t i v eBu t t on (g e t S t r i n g (and ro i d .R . s t r i n g . c a n c e l) , n u l l)

10 . b u i l d ()
11

12 biometr icPromptCompat . a u t h e n t i c a t e (ob j e c t : Biometr icPromptCompat . R e s u l t {
13 o v e r r i d e fun onSucceeded (con f i rmed : Set<Biometr icType >) {
14 s t a r tZ enC r yp tAc t i o n ()
15 }
16

17 o v e r r i d e fun onCance led () {
18 enab l eBut ton s ()
19 }
20

21 o v e r r i d e fun onFa i l e d (r ea son : Au t h e n t i c a t i o nF a i l u r eR e a s o n ?) {
22 enab l eBut ton s ()
23 SnackBarHe lper . showSnackBarError ("Error : $reason" , t h i s @A c t i o nA c t i v i t y)
24 i f (ZenCryptSe t t i ng sMode l . v i b r a t i o n . v a l u e) v i b r a t e ()
25 }
26 })
27 }

Listing 23: Fingerprint authentication.

Listing 23 demonstrates the authentication functionality. Its based on Google’s Bio-
metricPrompt API, which is a new approach declaring that the system takes care of a
unified way to use different biometric identification methods.

D. Settings Model

One of the main features that nearly every application should have, is a way for the
user to customize the way the app works and feels. ZenCrypt comprises many cus-
tomization options, such as the application’s theme (dark-PRO/light), whether or not

ZenCrypt - Securely Encrypt Files 46

to delete the original unencrypted files after encryption, change the output file’s ex-
tension, enable fingerprint authentication (PRO), and more. So, an implementation
is needed that not only hosts this functionality, but ensures that these options are re-
tained after each app exit, and that won’t reset on launch. To achieve this, ZenCrypt
uses the Jetpack DataStore (discussed in section 2.3.1) [33], and the model is as follows
(listing 24):

1 ob j e c t ZenCryptSe t t i ng sMode l :
2 Se t t i ng sMode l (DataSto r eS to rage (name = "zencrypt_settings")) {
3 // -------

4 v a l darkTheme by boo lP r e f (f a l s e)
5 v a l v i b r a t i o n by boo lP r e f (t rue)
6 v a l e x t e n s i o n by s t r i n g P r e f (".zen")
7 v a l f i n g e r p r i n t a u t h by boo lP r e f (f a l s e)
8 v a l cu s tom pas s ha sh by s t r i n g P r e f ("")
9 v a l d e l e t e o r i g i n a l u n e n c r y p t e d by boo lP r e f (t rue)

10 v a l i s P r oU s e r by boo lP r e f (f a l s e)
11 v a l ve r s i onCode by i n t P r e f (−1)
12 // -------

13 }

Listing 24: Settings DataStore.

E. Avoiding Memory Leaks Using ViewBinding

A major issue with Android applications is views leaking their content when the app is
not visible to the user, or even when the user has navigated to a different page within
the app. This happens by default in Android’s views/contexts, and it needs to be ad-
dressed by the developer. One way to go by doing this, is to use View Binding (section
2.2.6) [39]. This is a feature that generates a binding class for each XML layout file
present in that module [17]. Though, the developer must manage the ViewBinding
lifecycle and clear reference it in order to prevent memory leaks. A Sample usage can
be seen in listing 25:

1 c l a s s Pro f i l e F r a gmen t : Fragment (R . l a y o u t . p r o f i l e) {
2

3 // Using reflection API under the hood and ViewBinding.bind

4 p r i v a t e v a l v i ewB ind ing : P r o f i l e B i n d i n g by v i ewB ind ing ()
5

6 // Using reflection API under the hood and ViewBinding.inflate

7 p r i v a t e v a l v i ewB ind ing : P r o f i l e B i n d i n g
8 by v i ewB ind ing (createMethod = CreateMethod . INFLATE)
9

10 // Without reflection

11 p r i v a t e v a l v i ewB ind ing by v i ewB ind ing (P r o f i l e B i n d i n g : : b ind)
12 }

Listing 25: ViewBinding leak prevention example.

The viewBinding object can now access all the child views in a safe and memory
leak-free way. Note that the viewBinding variable must be set to true in the app’s
build.gradle file, inside the buildFeatures section.

ZenCrypt - Securely Encrypt Files 47

F. In-app Billing v4

Some of the features that ZenCrypt offers, namely the dark theme and the finger-
print encryption, require for the user to pay a small amount of money in order to
unlock them. To facilitate this, we need to implement Google’s in-app billing library
[34], and code the different outcomes that may occur from the new purchase (such
as error, success, item already owned, and more). For example, a successful purchase
leads to enabling the PRO version, as shown in listing 26

1 fun i n i t B i l l i n g C o n n e c t o r (a c t i v i t y : AppCompatAct iv i ty) : B i l l i n gC o n n e c t o r {
2 v a l b i l l i n g C o n n e c t o r = B i l l i n gC o n n e c t o r (
3 a c t i v i t y ,
4 Bu i l dCon f i g . ApiKey)
5 . se tNonConsumable Ids (l i s t O f ("zencrypt_pro"))
6 . autoAcknowledge ()
7 . autoConsume ()
8 . e nab l eLogg i ng ()
9 . connect ()

10

11 b i l l i n g C o n n e c t o r . s e t B i l l i n g E v e n t L i s t e n e r (ob j e c t : B i l l i n g E v e n t L i s t e n e r {
12 o v e r r i d e fun onProduct sFetched (@NonNull s k uD e t a i l s : L i s t<SkuIn fo >) {
13 i f (b i l l i n g C o n n e c t o r . i sPu r cha s ed (s k uD e t a i l s . f i r s t ()) == Purcha s edResu l t . YES)
14 a c t i v i t y . l i f e c y c l e S c o p e . l aunch {
15 ZenCryptSe t t i ng sMode l . i sP r oU s e r . update (t rue)
16 }
17 }
18

19 o v e r r i d e fun onPurchasedProduct sFetched (@NonNull pu r cha s e s : L i s t<Purcha s e In f o >) {
20 /* Provides a list with fetched purchased products */

21 }
22

23 o v e r r i d e fun onProductsPurchased (@NonNull pu r cha s e s : L i s t<Purcha se In f o >) {
24 a c t i v i t y . l i f e c y c l e S c o p e . l aunch {
25 ZenCryptSe t t i ng sMode l . i sP r oU s e r . update (t rue)
26 }
27 SnackBarHe lper . showSnackBarLove ("Thank you for purchasing ZenCrypt pro!")
28 FragmentHe lper . r ep laceFragmentWithDe lay (Se t t i ng sF ragment ())
29

30 }

Listing 26: In-app purchases implementation.

After a successful purchase has been made, we need to update the PRO status of the
user within the app. Since we are using DataStorage for storing options, this needs
to be done in a way that respects the app’s lifecycle, i.e. use Kotlin’s flows (section
2.5.4). This is why we launch a coroutine using the main activity’s lifecycle scope, and
use the update() method to store the respective setting to true. On the other hand, if
an error occurs, we need to handle it properly (listing 27).

1 o v e r r i d e fun o nB i l l i n g E r r o r (
2 @NonNull b i l l i n g C o n n e c t o r : B i l l i n gConn e c t o r ,
3 @NonNull r e s pon s e : B i l l i n gR e s p o n s e
4) {
5 /* Callback after an error occurs */

6 when (r e s pon s e . e r r o rType) {
7 ErrorType . CLIENT NOT READY −> { }
8 ErrorType . CLIENT DISCONNECTED −> { }

ZenCrypt - Securely Encrypt Files 48

9 ErrorType . SKU NOT EXIST −> { }
10 ErrorType .CONSUME ERROR −> { }
11 ErrorType .ACKNOWLEDGE ERROR −> {
12 a c t i v i t y . l i f e c y c l e S c o p e . l aunch {
13 ZenCryptSe t t i ng sMode l . i sP r oU s e r . update (f a l s e)
14 }
15 }
16 ErrorType .ACKNOWLEDGE WARNING −> {
17 a c t i v i t y . l i f e c y c l e S c o p e . l aunch {
18 ZenCryptSe t t i ng sMode l . i sP r oU s e r . update (f a l s e)
19 }
20 }
21 ErrorType .FETCH PURCHASED PRODUCTS ERROR −> { }
22 ErrorType . BILLING ERROR −> {
23 SnackBarHe lper . showSnackBarError ("Billing error!")
24 a c t i v i t y . l i f e c y c l e S c o p e . l aunch {
25 ZenCryptSe t t i ng sMode l . i sP r oU s e r . update (f a l s e)
26 }
27 }
28 ErrorType .USER CANCELED −> SnackBarHe lper . showSnackBarError ("Payment cancelled.")
29 ErrorType . SERVICE UNAVAILABLE −> { }
30 ErrorType . BILLING UNAVAILABLE −> { }
31 ErrorType . ITEM UNAVAILABLE −> { }
32 ErrorType .DEVELOPER ERROR −> { }
33 ErrorType .ERROR −> {
34 SnackBarHe lper . showSnackBarError ("Something went wrong.")
35 a c t i v i t y . l i f e c y c l e S c o p e . l aunch {
36 ZenCryptSe t t i ng sMode l . i sP r oU s e r . update (f a l s e)
37 }
38 }
39 ErrorType . ITEM ALREADY OWNED −> {
40 a c t i v i t y . l i f e c y c l e S c o p e . l aunch {
41 ZenCryptSe t t i ng sMode l . i sP r oU s e r . update (t rue)
42 }
43 }
44 ErrorType . ITEM NOT OWNED −> {
45 a c t i v i t y . l i f e c y c l e S c o p e . l aunch {
46 ZenCryptSe t t i ng sMode l . i sP r oU s e r . update (f a l s e)
47 }
48 }
49 n u l l −> { }
50 }
51 }

Listing 27: In-app purchase error handling.

G. Launch a File Picker Instance

Finally, to enable the user to pick a file for encryption/decryption (respecting what we
discussed in section 2.3.2), we need to create a file picking intent, as seen below (listing
28):

1 p r i v a t e fun s e l e c t F i l e () {
2 v a l i n t e n t = I n t e n t (I n t e n t .ACTION OPEN DOCUMENT)
3 i n t e n t . addCategory (I n t e n t .CATEGORY OPENABLE)
4 i n t e n t . t ype = "*/*"

5 s t a r t F o r R e s u l t . l aunch (i n t e n t)
6 }

Listing 28: Launch a file picking intent.

ZenCrypt - Securely Encrypt Files 49

3.2.2 User Interface Handling

The interface of ZenCrypt is rather simple, in order to be as straight-forward as possi-
ble. It comprises several fragments and activities, as well as a simple animated bottom
navigation.

A. Fragment Transactions

An interesting thing to address, is how the transaction between fragments is made
possible (listing 29).

1 fun r ep laceFragmentWithDe lay (f ragment : Fragment , t i m eM i l l i s : Long = 350) {
2 mAct i v i t y . l i f e c y c l e S c o p e . launchWhenStarted {
3 de l a y (t i m eM i l l i s)
4 v a l backStateName = fragment . j a v aC l a s s . name
5 v a l f ragmentPopped =
6 mAct i v i t y . supportFragmentManager . popBackStackImmediate (backStateName , 0)
7

8 i f (! f ragmentPopped &&
9 mAct i v i t y . supportFragmentManager . f indFragmentByTag (backStateName) == n u l l) {

10 // fragment not in back stack , create it.

11 v a l f r a gmen tTran sa c t i on = mAct i v i t y . supportFragmentManager . b e g i nT r an s a c t i o n ()
12 f r a gmen tTran sa c t i on . r e p l a c e (R . i d . c on t a i n e r , f ragment) ;
13 f r a gmen tTran sa c t i on . s e t T r a n s i t i o n (FragmentTransac t ion .TRANSIT FRAGMENT FADE) ;
14 f r a gmen tTran sa c t i on . addToBackStack (backStateName) ;
15 f r a gmen tTran sa c t i on . commit () ;
16 }
17 }
18 }

Listing 29: Fragment replacement method.

Keep in mind that it’s very important to use launchWhenStarted {...} here. If we were
to use launch {...}, then the isStateSaved variable would be false and the transaction
would be considered NOT safe to commit. This results in app crashes due to the il-
legalStateException exception. Using launchWhenStarted {} ensures that the state is
saved and the transaction is safe to commit.

B. File Listing

The main concept of the app is to act as a private and secure file ”vault”, which the
user can see its content and read them. So, a basic file List View must be implemented,
which will be populated with either encrypted or decrypted files, depending on what
page the user has navigated to. List views need to be attached to an adapter so that
they can be later populated with information. To further reduce memory consumption,
we use a RecyclerViewAdapter (listing 30):

1 p r i v a t e fun loadDataAndPopulateCardView () {
2 b u i l d P r o g r e s sD i a l o g ()
3 l i f e c y c l e S c o p e . l aunch {
4 whenStar ted {
5 p r o g r e s sD i a l o g . show ()
6 v a l data = withContex t (D i s p a t c h e r s . IO) {
7 v a l e n c r y p t e d F i l e I t em s : A r r a yL i s t<F i l e I t em> = Ar r a y L i s t ()

ZenCrypt - Securely Encrypt Files 50

8 e x t e r n a l F i l e s D i r . walkTopDown () . f i l t e r { f i l e −> ! f i l e . i s D i r e c t o r y } . f o rEach
9 { f i l e −> . . . }

10 r e tu rn@w i thCon t ex t e n c r y p t e d F i l e I t em s
11 }
12

13 . . .
14

15 v a l r e c y c l e rV i ew : Recyc l e rV i ew = b i nd i n g . c a r d L i s t R e c y c l e rV i ew
16 r e c y c l e rV i ew . s e tHa sF i x e dS i z e (t rue)
17 v a l l ayoutManager : Recyc l e rV i ew . LayoutManager = LinearLayoutManager (c on t e x t)
18 r e c y c l e rV i ew . layoutManager = layoutManager
19 r e c y c l e rV i ew . adap t e r = Enc r y p t e dF i l e sE xpandab l eRe c y c l e rAdap t e r (data)
20

21 . . .
22

23 p r o g r e s sD i a l o g . d i sm i s s ()
24 }
25 }
26 }

Listing 30: Populate the list view.

C. Settings Menu

To create the settings menu view with ease, we have used the MaterialPreferences
library [33], which offers a DSL for defining view settings elements. For example, to
create a switch that toggles the dark mode throughout the app, while checking if the
user has purchased the PRO version (which is required to toggle this option), we can
do the following (listing 31):

1 . . .
2

3 sw i t c h (ZenCryptSe t t i ng sMode l . darkTheme) {
4 t i t l e = g e t S t r i n g (R . s t r i n g . dark theme) . asText ()
5 i c on = R . drawab le . i c b a s e l i n e s t y l e 2 4 . a s I c on ()
6 summary = g e t S t r i n g (R . s t r i n g . c h o o s e b e tw e e n l i g h t a n d d a r k) . asText ()
7 badge = "PRO" . asBatch ()
8 canChange = {
9 i f (! ZenCryptSe t t i ng sMode l . i sP r oU s e r . v a l u e)

10 SnackBarHe lper . showSnackBarError (g e t S t r i n g (R . s t r i n g . z e n c r y p t p r o i s r e q u i r e d))
11 ZenCryptSe t t i ng sMode l . i sP r oU s e r . v a l u e
12 }
13 onChanged = {
14 p r i n t l n ("Dark Theme Settings Listener called: $it")
15 // recreate ()

16 Ma inAc t i v i t y . themeChanged ()
17 AppCompatDelegate . s e tDe fau l tN ightMode (i f (i t) AppCompatDelegate .MODE NIGHT YES
18 e l s e AppCompatDelegate .MODE NIGHT NO)
19 }
20 }
21

22 . . .

Listing 31: Settings switch to toggle dark mode.

As a side note, toggling between AppCompatDelegate.MODE NIGHT NO and App-
CompatDelegate.MODE NIGHT YES will not work smoothly across all Android de-
vices and versions available. For example, devices running Android API 29 (version
10) and newer, can force a system-wide dark mode which affects all apps, even if a

ZenCrypt - Securely Encrypt Files 51

specific app does not support it. This leads to unexpected graphical glitches, and even
text being colored gray on a dark background, which makes it unreadable. To counter
this problem, we can define the following code inside the styles.xml file for both the
night and light themes (listing 32):

1 . . .
2

3 // <!-- fix for force dark environmental variable -->

4 <i t em name="android:forceDarkAllowed" t o o l s : t a r g e tAp i="29">f a l s e </item>
5

6 . . .

Listing 32: XML attribute to counter the force dark option.

D. Splash Screen

There are many ways to create a splash screen for an application, the most popu-
lar being:

1. Using Timers (the wrong way)

2. Using a Launcher Theme (the right way)

The first approach is not ideal. It will give rise to cold starts, which inevitably makes
the application slow and thus the user experience bad. These cold starts occur since
the application takes time to load the layout file of the Splash Activity. To tackle
this problem, we can use the second approach, which is the absolute correct way to
implement a splash screen. The Application theme is instantiated before the layout is
created, so the overall procedure is quite fast. The first step is to declare the theme
style inside res/values/themes.xml (listing 33):

1 . . .
2

3 < s t y l e name="SplashTheme" pa r en t="Theme.MaterialComponents.DayNight.NoActionBar">
4 <i t em name="android:windowBackground">@drawable / sp l a sh backg round </item>
5 <i t em name="colorPrimary">@co lo r / co l o rP r ima r y </item>
6 <i t em name="colorPrimaryDark">@co lo r / co lo rPr imaryDark</item>
7 <i t em name="colorAccent">@co lo r /ZenCryptPr imary</item>
8 <i t em name="android:statusBarColor">@co lo r /ZenCryptDark</item>
9 <i t em name="android:navigationBarColor">@co lo r /ZenCryptDark</item>

10 </ s t y l e>
11

12 . . .

Listing 33: Splash screen theme style.

After the overall customization, we have to set this specific style for the Splash Activity,
inside the AndroidManifest.xml (listing 34):

1 . . .
2

3 <a c t i v i t y
4 and ro i d : name=".activities.SplashActivity"
5 and ro i d : theme="@style/SplashTheme"
6 and ro i d : e xpo r t ed="true">
7 < i n t e n t − f i l t e r >

ZenCrypt - Securely Encrypt Files 52

8 <a c t i o n and ro i d : name="android.intent.action.MAIN" />
9 <c a t e go r y and ro i d : name="android.intent.category.LAUNCHER" />

10 </ i n t e n t − f i l t e r >
11 </ a c t i v i t y >
12

13 . . .

Listing 34: Set Splash Activity style.

Finally, we can implement the Splash Activity class (listing 35):

1 . . .
2

3 @Suppre s sL in t ("CustomSplashScreen")
4 c l a s s S p l a s hA c t i v i t y : AppCompatAct iv i ty () {
5 o v e r r i d e fun onCreate (s a v e d I n s t a n c e S t a t e : Bundle ?) {
6 super . onCreate (s a v e d I n s t a n c e S t a t e)
7 v a l i n t e n t = I n t e n t (t h i s @S p l a s hA c t i v i t y , Ma i nAc t i v i t y : : c l a s s . j a v a)
8 s t a r t A c t i v i t y (i n t e n t)
9 f i n i s h ()

10 }
11 }

Listing 35: The Splash Activity.

We suppress the lint ”CustomSplashScreen”, because the latest Android version 12
offers an in-built functionality specifically designed for creating splash screens. So, the
system detects that we have implemented our own way for coding a splash screen,
and throws this warning. Ultimately, when migrating to Android 12, this way will be
considered as deprecated.

F. Exiting the App

Correctly exiting an application in Android is a very debatable subject in its com-
munity. ZenCrypt tries to approach this task without interfering with the OS and its
order of killing processes. In other words, ZenCrypt exits respecting the Android’s app
lifecycle, and letting the system decide when it is time for the application process to
be killed. This means faster opening times, and no brute-forcing techniques for app
exiting. Listing 36 demonstrates the exit() method that ZenCrypt uses when the user
decides to leave the app.

1 p r i v a t e fun e x i t () {
2 v a l i n tentOBJ = I n t e n t (I n t e n t . ACTION MAIN)
3 i n tentOBJ . addCategory (I n t e n t .CATEGORY HOME)
4 i n tentOBJ . addF lags (I n t e n t . FLAG ACTIVITY CLEAR TOP)
5 i n tentOBJ . f l a g s = I n t e n t . FLAG ACTIVITY NEW TASK
6 s t a r t A c t i v i t y (in tentOBJ)
7 }

Listing 36: Exit function.

ZenCrypt - Securely Encrypt Files 53

The above approach clears the top of the activity stack, essentially moving the
application task to the back. This mimics the ”home” button press, and does not
kill the process. It’s recommended to use this approach instead of, for example, Sys-
tem.exit(0). The System.exit() method is very intrusive and forces the application to
be killed instantly by the OS. This has many drawbacks, one of which being that it
may not facilitate the desired functionality that the user wants when leaving the app.
For example, say that the user is encrypting a file, i.e. a coroutine is launched that
is doing some heavy work. If the back button is pressed, then the application will be
killed while the process is still running and did not finish its task. This can lead to
major issues with the integrity of the user’s private files, like significant data loss.

ZenCrypt - Securely Encrypt Files 54

4 Example Usage

4.1 Encrypting & Sharing a File

ZenCrypt is a very powerful tool that utilizes the latest secure standards for Android,
in order to encrypt files. Let’s demonstrate how an end user can use the app in order
to securely share a file that contains personal information. After launching ZenCrypt,
the first step is to click on the ”+” icon located at the bottom right of the main page
(figure 24a). After clicking on ”Encrypt File”, a file picker instance will fire up asking
the user to select a file (figure 24b). As an example, we will encrypt a test image taken
from the Android emulator.

(a) ZenCrypt’s
main page

(b) File picker
instance

Figure 24: Selecting a file to encrypt

ZenCrypt - Securely Encrypt Files 55

Next, ZenCrypt will ask the user the means with witch he wishes to encrypt the file.
This is either of two things, a fingerprint or a password. In this example, fingerprint
encryption is enabled, so a dialog asking to verify the user’s fingerprint will show
(figure 25a). After a successful authentication, the encryption process will start. If
all goes well, a ”Operation completed successfully” message will appear, and the newly
encrypted file will be added to the list. This now gives us three options, to delete,
share, or decrypt the file. If we click on ”share”, the Android’s default share dialog
will open, and we can select any app with which we can share that specific file.

(a) Fingerprint
authentication

dialog

(b) Main page after
successful
encryption

Figure 25: Successful encryption

ZenCrypt - Securely Encrypt Files 56

4.2 Decrypting a Shared File

After a user has received an encrypted file (which was previously encrypted using
ZenCrypt), he can decrypt it with the password that both parties agreed. This can
be done, again, by clicking on the ”+” button, but this time selecting the ”Decrypt
Custom File” option. Then, the file picker instance will be shown, where the user
can select the previously shared file (figure 26a). Keep in mind, that ZenCrypt offers
picking files from cloud providers as well (such as Google Drive). Finally, the input
password dialog is displayed (figure 26b).

(a) File picker
instance

(b) Password input

Figure 26: Selecting a file to decrypt

ZenCrypt - Securely Encrypt Files 57

If all goes well, i.e. the password used to encrypt that file is the same as the input
used for decryption, a success message will appear, and the newly decrypted file will be
listed in the ”decrypted” fragment view. Again, there are three options when selecting
this file entry. The user can delete the file, open and view it with an application of
choice, or encrypt it again.

(a) Decrypting
dialog

(b) Main page after
successful
decryption

Figure 27: Successful decryption

ZenCrypt - Securely Encrypt Files 58

4.3 Password Analyzer

An additional functionality that ZenCrypt has baked in, is the password analyzer. This
is a particularly helpful tool that can analyze in real-time a given input password, and
display to the user various information about it, such as online and offline brute-force
times, warnings etc. It will also display how much time it took to calculate this data
for that password. For example, a weak password analysis can be seen in figure 28.

(a) Straight row
password

(b) Common
password

Figure 28: Weak passwords analysis

ZenCrypt - Securely Encrypt Files 59

On the other hand, a strong password analysis can be seen if figure 29. These
passwords include letters, symbols and numbers, while being mostly random and not
easy to guess. The progress bar below the password input graphically illustrates the
password strength, just as the online and offline brute-force times do in textual form.

(a) Strong password
example

(b) Even stronger
password example

Figure 29: Strong passwords analysis

ZenCrypt - Securely Encrypt Files 60

4.4 Various Options

Closing this chapter, we can briefly take a look at the various options that the user
can tinker with while using ZenCrypt. Starting off, the first option enables the user to
optionally pay a small amount of real money to unlock extra functionality throughout
the app. This includes a dark theme, and the option to encrypt using a fingerprint.
Next, there are various configurations such as a toggle for vibration, which by default
occurs after any successful/failed action (encryption/decryption), an option to delete
the original unencrypted file after it has been successfully encrypted, and configurable
file extension name. Finally, there are the fingerprint related settings, such as the toggle
for fingerprint encryption itself, and an input to be used as the password. Note that
this text input is not parsed in raw format, but is rather hashed using the SHA-256
hashing function.

(a) Cosmetic &
configuration

(b) Fingerprint &
about

Figure 30: Settings page

ZenCrypt - Securely Encrypt Files 61

5 Performance

In order to measure ZenCrypt’s performance, we can take advantage of Kotlin’s mea-
sureTimeMillis function [29]. It essentially executes the given block of code and returns
elapsed time in milliseconds. An example is shown in listing 37:

1 . . .
2

3 v a l t i m e I nM i l l i s = measu r eT imeMi l l i s {
4 //Start the encryption process

5 s t a r t E n c r y p t i n g ()
6 // Alternatively , we could measure the decryption time

7 // startDecrypting ()

8 }
9

10 p r i n t l n ("(The operation took $timeInMillis ms)")
11

12 . . .

Listing 37: The measureTimeMillis method.

Furthermore, the only parameters that must be taken in consideration while measuring
such tasks are, the hardware, and the file size. For all of our testing, we used the
following:

1. Various file ranges: 5 MiB, 10 MiB, 20 MiB, 100 MiB, 250 MiB, 500 MiB, 1 GiB.

2. Snapdragon 865 CPU.

3. 8GB RAM LPDDR4X.

4. UFS 3.1 2-LANE storage.

5. Final application built with release flag instead of debug, for extra speed.

The results can be seen in figure 31 and table 3 below:

File Size Encryption time (seconds) Decryption time (seconds)

5 MiB 0.0445 0.347
10 MiB 0.0841 0.688
20 MiB 0.1709 1.279
100 MiB 0.843 6.865
250 MiB 1.804 14.113
500 MiB 3.806 31.599
1 GiB 6.907 75.894

Table 3: Encryption/Decryption performance (table)

ZenCrypt - Securely Encrypt Files 62

Figure 31: Encryption/Decryption performance

Taking a look at the results, we can immediately notice that the encryption process
is much faster than the decryption process. This is a very interesting find, and raises the
question as to why is this exactly happening. Aren’t AES encryption and decryption
processes identical, with just the steps in reverse order? Well, it seems that there is
a valid reason behind this. AES block encryption is actually faster than AES block
decryption, because of the following [9]:

• MixColumns [44] uses a matrix which has smaller coefficients than InvMixColumns [44],
this is simpler to compute. This is particularly true for purely software imple-
mentations, hardware implementations sometime use the same number of cycles.

• During encryption, subkeys are needed in the order they are produced from the
key, but during decryption that order is reversed, therefor on implementations
(including hardware) that start decryption with the pristine key as input, some
preliminary work is necessary before decryption can start (there is actually no
known shortcut [10]).

ZenCrypt - Securely Encrypt Files 63

6 Online Presence

6.1 Google Play Store

ZenCrypt’s binary can be directly downloaded from the Google Play Store:

Updates are pushed on the stable channel, and there is no way to modify the way the
app behaves.
(https://play.google.com/store/apps/details?id=com.zestas.cryptmyfiles)

6.2 GitLab

Additionally, ZenCrypt’s source code is available on GitLab:

The GitLab version does not contain the binary, and it needs to be built from scratch.
Though, this version contains the bleeding edge changes before they appear on the
Play Store, and since the source is open and downloadable, a developer can clone the
project and modify it to accommodate the desired functionality.
(https://gitlab.com/Kelsios/zencrypt)

https://play.google.com/store/apps/details?id=com.zestas.cryptmyfiles&pcampaignid=pcampaignidMKT-Other-global-all-co-prtnr-py-PartBadge-Mar2515-1
https://play.google.com/store/apps/details?id=com.zestas.cryptmyfiles
https://gitlab.com/Kelsios/zencrypt
https://gitlab.com/Kelsios/zencrypt

ZenCrypt - Securely Encrypt Files 64

7 Conclusions & Further Development

The era of mobile device interaction started in the past years and has now overwhelmed
our every day lives. The vigorous development around Android has led to applications
evolving at a meteor pace providing users with more and faster ways to fulfill their
every day social (and personal) needs. One of the main concerns that comes to mind
when using a mobile device, is the security of any actions taken. From logging in to
website or bank, to storing personal information and expecting that its impossible for a
third party to read, the safety of such tasks is very important to a person’s well-being.
ZenCrypt is a tool that helps the user to easily encrypt personal information such
as sensitive files, passwords, voice messages, or any given input in general, and either
securely store it offline on the device, or share the encrypted file in any way that he/she
seems fit. This thesis presented some basic encryption analysis, along with some of the
most common algorithms from the bibliography. We also demonstrated the basics of
developing an Android application, such as respecting the app’s lifecycle, followed by
the actual development behind ZenCrypt. Furthermore, we presented some example
usages of what is possible when working with this application, and how to easily encrypt
and share a single file. In the end, ZenCrypt’s performance was measured, which
led to some interesting results. The app is encrypting at a very rapid rate, but the
decryption process is relatively slow; this mainly happens due to the encryption matrix
(MixColumns) having smaller coefficients than that of the decryption (InvMixColumns)
matrix. All in all, ZenCrypt is a well optimized, memory efficient, leak-free Android
application that can securely encrypt any sensitive data. Though, there is still room for
improvement. For example, it only allows the encryption/decryption of a single item
at a time, and requires user interaction to proceed to the next one. This can be dealt
with in the future, simply by launching a file picker instance that allows multiple file
selection, and implementing the necessary methods to host the desired functionality.
Finally, the application could possibly circumvent the severe limitations that come with
scoped storage, once Google re-enables app vetting on the Google Play Store and we
can submit ZenCrypt for approval.

Bibliography

[1] auth0. What is data security, top threats and best practices. https://auth0.

com/blog/what-is-data-security/.

[2] Rajdeep Bhanot and Rahul Hans. A review and comparative analysis of various
encryption algorithms. International Journal of Security and Its Applications,
9:289–306, 04 2015.

[3] Denis Buketa. Android lifecycle. https://www.raywenderlich.com/

21382977-android-lifecycle.

[4] Michael Burton. Android App Development For Dummies, 3rd Edition. Wiley
Brand, USA, 2015.

[5] Businesswire. Mobile fraud reaches 150 million global attacks in first half
of 2018. https://www.businesswire.com/news/home/20180912005231/en/

Mobile-Fraud-Reaches-150-Million-Global-Attacks.

[6] cryptosense. Is triple des secure. https://cryptosense.com/blog/

is-triple-des-secure.

[7] Dorothy E. Denning and Peter J. Denning. Data security. ACM Comput. Surv.,
11(3):227–249, September 1979.

[8] Anusheh Zohair Mustafeez Educative. What is cbc. https://www.educative.

io/edpresso/what-is-cbc.

[9] Stack Exchange. Aes decryption vs encryption speed.
https://crypto.stackexchange.com/questions/27872/

aes-decryption-vs-encryption-speed.

[10] Stack Exchange. On-the-fly computation of aes round keys for de-
cryption. https://crypto.stackexchange.com/questions/5603/

on-the-fly-computation-of-aes-round-keys-for-decryption.

[11] Navdeep Singh Gill. Functional programming. https://www.xenonstack.com/

insights/functional-programming.

65

https://auth0.com/blog/what-is-data-security/
https://auth0.com/blog/what-is-data-security/
https://www.raywenderlich.com/21382977-android-lifecycle
https://www.raywenderlich.com/21382977-android-lifecycle
https://www.businesswire.com/news/home/20180912005231/en/Mobile-Fraud-Reaches-150-Million-Global-Attacks
https://www.businesswire.com/news/home/20180912005231/en/Mobile-Fraud-Reaches-150-Million-Global-Attacks
https://cryptosense.com/blog/is-triple-des-secure
https://cryptosense.com/blog/is-triple-des-secure
https://www.educative.io/edpresso/what-is-cbc
https://www.educative.io/edpresso/what-is-cbc
https://crypto.stackexchange.com/questions/27872/aes-decryption-vs-encryption-speed
https://crypto.stackexchange.com/questions/27872/aes-decryption-vs-encryption-speed
https://crypto.stackexchange.com/questions/5603/on-the-fly-computation-of-aes-round-keys-for-decryption
https://crypto.stackexchange.com/questions/5603/on-the-fly-computation-of-aes-round-keys-for-decryption
https://www.xenonstack.com/insights/functional-programming
https://www.xenonstack.com/insights/functional-programming

BIBLIOGRAPHY 66

[12] Navdeep Singh Gill. Kotlin vs java: Which is better for android app development.
https://www.xenonstack.com/blog/kotlin-andriod.

[13] Google. Content provider. https://developer.android.com/reference/

android/content/ContentProvider.

[14] Google. Document provider. https://developer.android.com/guide/topics/
providers/document-provider.

[15] Google. Kotlin flows on android. https://developer.android.com/kotlin/

flow.

[16] Google. Protocol buffers. https://developers.google.com/protocol-buffers.

[17] Google. View binding. https://developer.android.com/topic/libraries/

view-binding.

[18] Google. Viewmodel overview. https://developer.android.com/topic/

libraries/architecture/viewmodel.

[19] Daniela Gotseva, Yavor Tomov, and Petko Danov. Comparative study java vs
kotlin. In 2019 27th National Conference with International Participation (TELE-
COM), pages 86–89, 2019.

[20] Shawn Wang High Go. The difference in five modes in the
aes encryption algorithm. https://www.highgo.ca/2019/08/08/

the-difference-in-five-modes-in-the-aes-encryption-algorithm/.

[21] IBM. Pkcs padding method. https://www.ibm.com/docs/en/zos/2.4.0?topic=
rules-pkcs-padding-method.

[22] B. Kaliski. Pkcs5, cryptographic message syntax. https://www.ietf.org/rfc/

rfc2315.txt.

[23] B. Kaliski. Pkcs5, password-based cryptography specification. https://www.

ietf.org/rfc/rfc2898.txt.

[24] Sergey Komlach. Advanced biometricpromptcompat. https://github.com/

sergeykomlach/AdvancedBiometricPromptCompat.

[25] kotlinlang. Asynchronous flow. https://kotlinlang.org/docs/flow.html.

[26] kotlinlang. Coroutine context and dispatchers. https://kotlinlang.org/docs/
coroutine-context-and-dispatchers.html.

[27] kotlinlang. Coroutines basics. https://kotlinlang.org/docs/

coroutines-basics.html#your-first-coroutine.

https://www.xenonstack.com/blog/kotlin-andriod
https://developer.android.com/reference/android/content/ContentProvider
https://developer.android.com/reference/android/content/ContentProvider
https://developer.android.com/guide/topics/providers/document-provider
https://developer.android.com/guide/topics/providers/document-provider
https://developer.android.com/kotlin/flow
https://developer.android.com/kotlin/flow
https://developers.google.com/protocol-buffers
https://developer.android.com/topic/libraries/view-binding
https://developer.android.com/topic/libraries/view-binding
https://developer.android.com/topic/libraries/architecture/viewmodel
https://developer.android.com/topic/libraries/architecture/viewmodel
https://www.highgo.ca/2019/08/08/the-difference-in-five-modes-in-the-aes-encryption-algorithm/
https://www.highgo.ca/2019/08/08/the-difference-in-five-modes-in-the-aes-encryption-algorithm/
https://www.ibm.com/docs/en/zos/2.4.0?topic=rules-pkcs-padding-method
https://www.ibm.com/docs/en/zos/2.4.0?topic=rules-pkcs-padding-method
https://www.ietf.org/rfc/rfc2315.txt
https://www.ietf.org/rfc/rfc2315.txt
https://www.ietf.org/rfc/rfc2898.txt
https://www.ietf.org/rfc/rfc2898.txt
https://github.com/sergeykomlach/AdvancedBiometricPromptCompat
https://github.com/sergeykomlach/AdvancedBiometricPromptCompat
https://kotlinlang.org/docs/flow.html
https://kotlinlang.org/docs/coroutine-context-and-dispatchers.html
https://kotlinlang.org/docs/coroutine-context-and-dispatchers.html
https://kotlinlang.org/docs/coroutines-basics.html#your-first-coroutine
https://kotlinlang.org/docs/coroutines-basics.html#your-first-coroutine

BIBLIOGRAPHY 67

[28] Kotlinlang. Extensions. https://kotlinlang.org/docs/extensions.html.

[29] kotlinlang. measuretimemillis. https://kotlinlang.org/api/latest/jvm/

stdlib/kotlin.system/measure-time-millis.html.

[30] Kotlinlang. Type checks and casts. https://kotlinlang.org/docs/typecasts.
html.

[31] Yu-Tsung Lee, Haining Chen, and Trent Jaeger. Demystifying android’s scoped
storage defense. IEEE Security Privacy, 19(5):16–25, 2021.

[32] McAffe. Mcafee mobile threat report. https://www.mcafee.com/content/dam/
consumer/en-us/docs/2020-Mobile-Threat-Report.pdf.

[33] MFlisar. Materialpreferences. https://github.com/MFlisar/

MaterialPreferences.

[34] moisoni97. Google in-app billing library v4. https://github.com/moisoni97/

google-inapp-billing.

[35] Muhammad Mushtaq, Sapiee Jamel, Abdulkadir Disina, Zahraddeen Pindar, Nur
Shakir, and Mustafa Mat Deris. A survey on the cryptographic encryption algo-
rithms. International Journal of Advanced Computer Science and Applications,
8:333–344, 11 2017.

[36] nulab. zxcvbn4j. https://github.com/nulab/zxcvbn4j.

[37] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital sig-
natures and public-key cryptosystems. Commun. ACM, 21(2):120–126, February
1978.

[38] Dorothy Elizabeth Robling Denning. Cryptography and Data Security. Addison-
Wesley Longman Publishing Co., Inc., USA, 1982.

[39] Kirill Rozov. Viewbindingpropertydelegate. https://github.com/

androidbroadcast/ViewBindingPropertyDelegate.

[40] Vijayalakshmi v, Ii Mahalakshmi, and Iii Thamizharasan. Data encryption hiding
technique in non-standard cover files. Advanced Research in Computer Science
and Technology, 03 2014.

[41] Priyank Vasa. Easycrypt. https://github.com/pvasa/EasyCrypt.

[42] Wikipedia. Functional programming. https://en.wikipedia.org/wiki/

Functional_programming.

[43] Wikipedia. Padding (cryptography). https://en.wikipedia.org/wiki/

Padding_(cryptography).

https://kotlinlang.org/docs/extensions.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.system/measure-time-millis.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.system/measure-time-millis.html
https://kotlinlang.org/docs/typecasts.html
https://kotlinlang.org/docs/typecasts.html
https://www.mcafee.com/content/dam/consumer/en-us/docs/2020-Mobile-Threat-Report.pdf
https://www.mcafee.com/content/dam/consumer/en-us/docs/2020-Mobile-Threat-Report.pdf
https://github.com/MFlisar/MaterialPreferences
https://github.com/MFlisar/MaterialPreferences
https://github.com/moisoni97/google-inapp-billing
https://github.com/moisoni97/google-inapp-billing
https://github.com/nulab/zxcvbn4j
https://github.com/androidbroadcast/ViewBindingPropertyDelegate
https://github.com/androidbroadcast/ViewBindingPropertyDelegate
https://github.com/pvasa/EasyCrypt
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Padding_(cryptography)
https://en.wikipedia.org/wiki/Padding_(cryptography)

BIBLIOGRAPHY 68

[44] Wikipedia. Rijndael mixcolumns. https://en.wikipedia.org/wiki/Rijndael_
MixColumns#MixColumns.

https://en.wikipedia.org/wiki/Rijndael_MixColumns#MixColumns
https://en.wikipedia.org/wiki/Rijndael_MixColumns#MixColumns

	Introduction
	Data Security
	Cryptography
	Encryption Algorithms
	Data Encryption Standard (DES)
	Triple Data Encryption Standard (3DES)
	Rivest-Shamir-Adleman Algorithm (RSA)
	Advanced Encryption Standard (AES)

	Data Padding
	Brute-Forcing
	Thesis Road-map

	Android App Development
	Mobile Project Types
	Native Apps
	Web Apps
	Hybrid Apps

	Understanding the Android Lifecycle
	The Role of Lifecycle in Apps
	The Activity Lifecycle
	Activity Lifecycle Callbacks
	The Fragment Lifecycle
	Fragment Lifecycle Callbacks
	Store UI Data with ViewModels

	Data Storage
	Storage Options
	Scoped Storage

	Native Languages
	Java
	Kotlin

	Kotlin Development
	Basics
	Coroutines
	Coroutine context and dispatchers﻿
	Flows
	Flow Context﻿
	Flow Buffering﻿

	Developing ZenCrypt
	Decision
	Implementation
	Core Functionality
	User Interface Handling

	Example Usage
	Encrypting & Sharing a File
	Decrypting a Shared File
	Password Analyzer
	Various Options

	Performance
	Online Presence
	Google Play Store
	GitLab

	Conclusions & Further Development

