
2012

University of Peloponnese

Faculty of Science and Technology

Department of Computer Science and Technology

THESIS

PERSONAL INFORMATION MANAGEMENT AND VISUALIZATION
ONTOLOGY-BASED SYSTEM

ROMPA EVGENIA

Supervisors: George Lepouras

Costas Vassilakis

Christos Tryfonopoulos

TRIPOLIS, 2011

Dedicated to my parents,

for their unconditional love,

support and encouragement.

Acknowledgements III

I.ACKNOWLEDGEMENTS

There are many individuals who contributed to the production of this thesis

through their moral support, advice or participation. would like to express my most

sincere gratitude to them all.

First of all, would like to express my appreciation to my advisory committee: Dr.

George Lepouras, Dr. Costas Vassilakis, and Dr. Christos Tryfonopoulos. Thank you for

your guidance, patience, careful supervision and encouragement throughout the years. It

has been both privilege and pleasure to have experienced the opportunity to be

taught by such extraordinary people. sincerely thank you for being the sort of

supervisor every student needs supportive, enthusiastic and inspiring.

would also like to extent my gratitude to the University of Peloponnese.

Through the support offered by granting, have been able to obtain the Master of

Science and travel to remarkable conferences in order to present my research in

progress.

Lastly, would like to thank my family for their understanding, encouragement

and support. They have always been the greatest support through the whole process,

encouraging me to keep going when frustration and other problems drained my

motivation. Their support not only emotionally if not financially as well as their love,

help and encouragement cannot be thanks enough.

March 2012

Evgenia Rompa

II Summary IV

II.SUMMARY

Users nowadays need to manage large amounts of information, including

documents, e-mails, contacts, multimedia and so forth. To facilitate the users’ tasks

regarding the organization, maintenance and retrieval of this information, number of

semantics-based methods have emerged, employing mainly ontologies as an underlying

infrastructure for organizing and querying the information base. However this is not

sufficient as users need tools that would exploit the potential offered by the ontology to

help them perform their information management and retrieval tasks. Mind maps can

offer valuable assistance to users in this context, by graphically representing the

information, focusing on concepts related to the search keywords entered by the user,

and allowing the user to navigate through the semantic links between concepts and

information items.

Within this thesis, we present OntoFM, personal ontology-based file manager,

offering mind map-oriented visualization to support user navigation within the

personal information base. Browsing aids are complemented with search mechanisms,

while the user is also offered with the potential to establish links between ontology

concepts and files-directories, offering thus fully-functional personal information

management tool.

Keywords: Ontology, Mind maps, Protégé, Plug-in, Personal Information

Management

III

III.

e-mail,

OntoFM,

(mind map)

OntoFM

III VI

Protégé.

OntoFM

(i)

(ii)

(iii)

Lucene,

OntoFM

Ontograf plug-in Protégé,

OntoFM

OntoFM

OntoFM

III VII

click

OntoFM

(i)

(ii)

(i) (ii)

(iii)

.),

III VIII

OntoFM

OntoFM.

(vector space model).

OntoFM,

(i)

(ii)

click

III IX

OntoFM

OntoFM

: Protégé, Plug-in,

IV Table Of Contents

IV.TABLE O CONTENTS

I. ACKNOWLE DGEMENTS .. III

II. SUMMARY ... IV

III. ..V

IV. TABLE O CONTENTS .. X

V. TABLE O FIGURES ..XII

VI. TABLE O TABLES .. XIII

1 INTRODUCTION ... 1
1.1 Objectives and Motivation...2

1.2 Thesis Structure..3

2 THEORETICAL FRAMEWORK .. 5
2.1 Personal Information Management ..6

2.2 Graphic Representations of Ideas and Information ..9

2.2.1 Concept Maps... 9

2.2.2 Mind Maps .. 11

2.2.3 Concept Maps Versus Mind Maps... 12

2.3 Software Platforms and Languages.. 14

2.3.1 The Protégé Ontology Editor and Knowledge Acquisition System................................. 14

2.3.2 Lucene Information Retrieval Library... 16

2.3.3 Web Ontology Language (OWL).. 18

3 RELATED WORK ...19
3.1 Personal Information Management Related Systems ... 20

3.1.1 MIT Semantic File System (MIT-SFS)... 20

3.1.2 Semantic, Deep Archival File System (SEDAR) ... 21

3.1.3 GoNTogle... 22

3.1.4 NEPOMUK... 25

3.1.5 Semex.. 27

IV Table Of Contents XI

3.1.6 Haystack .. 29

3.1.7 SPONGE.. 29

3.2 Related Ontology Visualizations.. 30

3.2.1 NavigOWL... 31

3.2.2 OWLViz... 31

3.2.3 OntoGraf .. 32

3.3 brief comparison... 33

3.3.1 Comparing Related Personal Information Systems to OntoFM.. 34

3.3.2 Comparing Related Visualizations to OntoFM Visualization.. 35

3.3.3 Comparing Results ... 36

4 PREVIOUS EFFORTS ...38
4.1 Earlier implementation of OntoFM .. 39

4.2 Problems and Solutions ... 40

5 DEVELOPMENT PROCESS ..42
5.1 Assumptions.. 43

5.1.1 General Assumptions.. 43

5.1.2 Visualization Assumptions... 44

5.2 Specifications .. 46

5.3 Architecture... 47

5.4 Implementation ... 49

5.4.1 Platform and tools .. 49

5.4.2 Libraries... 49

6 ONTOFM PLUG-IN PRESENTATION ..51
6.1 Overview ... 52

6.2 Functionality ... 53

6.2.1 Browsing through Catalogues and Ontology Items .. 53

6.2.2 Search and Locate Files ... 56

6.2.3 Advanced Search... 59

6.2.4 Relate File to Items .. 61

7 FUTURE WORK ...66

VII. REFERENCES ..XIV

Table Of Figures XII

V.TABLE O FIGURES

Figure 2-1. Activities inside and outside PIM by (Boardman, 2004)... 7
Figure 2-2. PIM activities viewed as an effort to establish, use, and maintain mapping between
needs and information by (Jones, 2008).. 8
Figure 2-3. Activities inside and outside PIM by (Kljun, Dix, Solina, November 2009) 9
Figure 2-4. concept map example concerning concept maps... 10
Figure 2-5. mind map example concerning mind maps.. 11
Figure 2-6. The Protégé architecture as described in (Gennari, et al., 2003)... 15
Figure 3-1. GoNTogle automatic annotation: System suggests the class
H.2_DATABASE_MANAGEMENT as the most appropriate class for the current document............. 24
Figure 3-2. GoNTogle hybrid search: Find documents relevant to XML annotated with the class
H.2_DATABASE_MANAGEMENT.. 25
Figure 3-3. NEPOMUK architecture ... 26
Figure 3-4. sample screenshot from browsing the Semex database .. 28
Figure 3-5. Image stump from SPONGE's Search gadget .. 30
Figure 3-6. Image stump from the NavigOwl interface.. 31
Figure 3-7. Part of (Pizza ontology) with the OWLViz visualization .. 32
Figure 3-8. Part of the ontology described in (Katifori, et al., 2008) and (Golemati, Katifori,
Vassilakis, Lepouras, Halatsis, 2007) drawn by the OntoGraf plug-in.. 33
Figure 4-1. OntoFM screen with captions Inputting multiple keywords. Entered terms appear
in the related concepts pane along with directly connected concept instances. 39
Figure 5-1. OntoFM architecture scheme.. 48
Figure 6-1. OntoFM initial screen with captions... 52
Figure 6-2. Browsing the file system hierarchy. Contents of the selected folder "University" at
the center and corresponding ontology visualization on the right... 54
Figure 6-3. Browsing the personal ontology Visualizing all relations to "Ontology Visualization
Methods Survey" after browing to the "University" folder .. 55
Figure 6-4. Ontology visualization options Show specific node types.. 56
Figure 6-5. Ontology visualization options Show specific arc types.. 56
Figure 6-6. Autosuggestion feature.. 57
Figure 6-7. Search for "ontology" relevant items in multiple selected folders...................................... 58
Figure 6-8. Search for "ontology iswc" relevant items in multiple selected folders........................... 59
Figure 6-9. Multiple folders selection "University" and "2011 Files" have been both selected to
view their contents... 60
Figure 6-10. Relate by right clicking file to concept/instance dialog with captions 62
Figure 6-11. Candidate relations for “OntoFM Personal Ontology-based File Manager for the
Desktop” file... 63
Figure 6-12. Creating new relation “OntoFM Personal Ontology-based File Manager for the
Desktop” file “acceptedIn” “ISWC 2011” “Conference/Journal” ... 63
Figure 6-13. Relate by drag and drop file to concept/instance dialog .. 65

VI Table Of Tables XIII

VI.TABLE O TABLES

Table 2-1. Summary of the differences between concept and mind mapping....................................... 13
Table 3-1. File formats scanned automatically by Semex... 29
Table 3-2. Summary table concerning the differences among MIT SFS, GoNTogle, NEPOMUK
and, OntoFM (=supported, not supported, ?=not mentioned) ... 35
Table 3-3. Summary table concerning the differences among NavigOWL, OWLViz, OntoGraf and,
OntoFM ontology visualizations (=supported, not supported) ... 36

1
INTRODUCTION

PREVIEW

 Motivation
 Objectives
 Thesis overview

This chapter gives short introduction to this thesis. It describes the motivation, the

background, and the goal of this thesis. thesis overview is included.

Chapter Introduction

1.1 OBJECTIVES AND MOTIVATION

If we live to be 70 years old, we get roughly 613,200 hours to live. That’s 365

days, times 70 years, times 24 hours. This is the time we have to enjoy, to love, to weep,

to learn and to cry. The quest for ‘the good life’ for the meaning, for fulfillment, and

purpose must fit into this average number of hours. But we spend lot of our time doing

other things, things we have little choice in, and so we do not pay much attention to. One

of these things is retrieving information we already found but cannot remember their

location. Assuming we spend minutes each day on finding information we need, we

waste approximately 2,129 hours of our living time trying to retrieve the needed

information. This number gets even bigger as the amount of time we spend on searching

increases. common everyday example that reflects these statistics is trying to locate

paper in our personal information space by knowing only its author or the name of

conference in which it was submitted or accepted. The question which arises is “How

should organize my information so that can find information items needed for later

use and repeated re-use easily?”. Keeping found information found is an essential

challenge of personal information management (PIM).

According to (Jones, 2008) personal information management is not only about

finding, keeping, organizing, and maintaining information but also managing privacy and

the flow of information. more formal definition refers to personal information

management as both the practice and the study of the activities person performs in

order to acquire or create, store, organize, maintain, retrieve, use, and distribute the

information needed to meet life’s many roles and responsibilities. Personal information

management places special emphasis on the organization and maintenance of personal

information collections in which information items, such as paper documents, electronic

documents, email messages, web references, etc. are stored for later use and repeated

re-use.

However, (Jones, Bruce, Dumais, 2001) have reported that personal

information management is frequently chore, as it is poorly supported by existing

technology and many users effort to handle, classify and retrieve the accumulating

information. wide concern is that everyday needs provoke personal information

Chapter Introduction

management problems that have repercussions to work productivity. To name some of

them, computer users are being exposed to more and more information. Increased

storage capacity allows them to collect this information, leading to more management

overheads. Not to forget that, many users are managing information in more than one

places (multiple desktop computers, laptops, tablets, and mobile phones).

(Katifori, Poggi, Scannapieco, Catarci, Ioannidis, 2005) have proposed personal

ontologies as means to support personal information management with the semantic

management of user’s information. Assuming personal ontology system is in use,

new tools have to be developed to exploit the enhanced capabilities of the user interface.

To this end, number of semantics-based methods have emerged employing personal

ontologies as an underlying infrastructure for organizing and querying the personal

information space.

This thesis deals with all these mentioned facts, aspects and questions. It

attempts to explore, analyze and describe the area of personal information management

and existing facilities and tools. The centerpiece of this effort is the OntoFM plug-in for

(Protégé), developed in the context of this thesis with regard to requirements and needs

of common users. OntoFM aims to become an extension of the personal computer,

allowing the management of personal files based on semantic content. The kernel of the

OntoFM plug-in is an existing personal ontology which corresponds to the user’s

personal information space. This ontology is exploited to complement the traditional

hierarchy-based management of personal files with the potential to navigate and search

within the personal information space through the concepts and relationships within the

ontology.

1.2 THESIS STRUCTURE

The following chapter of this thesis, Chapter 2, consists of literature review.

number of academic papers have been reviewed to give an introductory overview of

personal information management, concept and mind mapping techniques, Protégé

functionality and Lucene indexing and searching capabilities. Chapter is about

overview of the systems and visualizations related to our work and comparing OntoFM

with these related approaches. Continuing with Chapter 4, which is presentation of

Chapter Introduction

previous efforts concerning the OntoFM plug-in, followed by list of problems occurred

and solutions proposed to overwhelm them. Chapter analyzes the development

process of the OntoFM plug-in by introducing assumptions and specifications and giving

prototype architecture and description about its components. In chapter 6, an

overview outline and functionality list are described using image stumps to illustrate

the plug-in’s functionality and to better explain the features provided. Finally, chapter

gives the summary of the thesis and reports suggestions for future work.

2
THEORETICAL

FRAMEWORK
PREVIEW

 Personal Information Management (PIM)
 Graphic Representations of Ideas and Information

 Concept Maps, Mind maps
 Software Platforms and Languages

 Protégé, Lucene
 OWL

The following chapter presents more formal introduction of the theoretical and

technological basis of this thesis. Included is brief review of personal information

management, graphic representations of ideas and information, and software platforms

and languages concerning this thesis.

Chapter Theoretical Framework

In this chapter, brief overview about personal information management and

graphic representations of ideas and information, such as concept maps and mind maps

is given. Later, Protégé software platform, Lucene information retrieval library and OWL

language are discussed.

2.1 PERSONAL INFORMATION MANAGEMENT

In perfect, ideal world, we would always have the right information in the right

place, in the right form, and of sufficient completeness and quality to meet our current

need. However, in the real world, we do not always find the right information in the

right place, or the information arrives too late to be useful, or even worse, information is

never found.

Personal Information Management (PIM) intends to make the world, or even

better in this case, our workspace better place for finding, keeping, organizing and

maintaining information. PIM is about the use of information to manage precious

resources such as our time, make good decisions and carry out successfully everyday

tasks. From time to time, various researchers have tried to dismember PIM activities in

order to understand how PIM is performed.

(Barreau, 1995) views PIM system as file hierarchy centered system. He

divided PIM in sub-activities as acquisition organization and storage maintenance

retrieval and output To start with acquisition, it is about defining, labeling and grouping

the information we decided to be included in our information space. After acquisition

the next sub-activity is organization and storage which includes classifying, naming,

grouping and placing information in the right place for later retrieval. These two sub-

Chapter Theoretical Framework

activities are determinant; however they would have no value if there was not the third

sub-activity, maintenance. Maintaining information systems is an important function as

the out-of-date information is updated by moving or deleting information from the

information space so that it corresponds to each current state. Moving to the next sub-

activity, retrieval takes over finding information for re-use and finally, output is about

visualizing the information space based on users’ needs and objectives.

(Boardman, 2004) based his classification on (Barreau, 1995) describing PIM as

four sub-activity procedure. As shown in Figure 2-1, he kept the first four Barreau’s sub-

activities and rejected the output activity as he believes that visualizing is done by

computers. His division focuses on computer as set of several PIM systems that allow

user to manage collection of personal information.

Figure 2-1. Activities inside and outside PIM by (Boardman, 2004)

(Jones Teevan, 2007) had different, more general than Boardman's and

Barreau's prospective of PIM, which includes the whole users' personal information

space. As shown in Figure 2-2, they divided all PIM activities in three groups as keeping

finding and re-finding and, meta-level activities Keeping activities are about deciding

about the future needs and future availability for single information; finding and re-

finding activities are conducted by the user’s needs for information; and last but not

least, meta-level activities include maintaining and organizing the personal information

collections within the personal information space, managing privacy, evaluating

personal space of information, making sense of information and information

distribution.

Chapter Theoretical Framework

Figure 2-2. PIM activities viewed as an effort to establish, use, and maintain mapping between needs and
information by (Jones, 2008)

(Kljun, Dix, Solina, November 2009) PIM framework is based on Boardman. It

includes four PIM sub-activities (acquiring, organizing, maintaining and retrieving) but

in authors’ prospective these activities overlap Overlapping is due to the fact that PIM

activities rarely take place one after another. As shown in Figure 2-3, information

organization overlaps with all other activities. Performing PIM activities can result in

changes of the organizational structure of user’s personal information space as such

activities include some organization as well.

Chapter Theoretical Framework

Figure 2-3. Activities inside and outside PIM by (Kljun, Dix, Solina, November 2009)

These four approaches are not the only ones. Each person has different

estimation on how PIM activities should be divided. However, each one of them believes

that PIM has great importance in managing precious resources, making good decisions

and carrying out successfully everyday tasks.

2.2 GRAPHIC REPRESENTATIONS OF IDEAS AND INFORMATION

The value of graphics can hardly be underestimated. Graphs, charts and diagrams

are like pictures: they can “speak thousand words”. They are useful for expressing

information clearly and simply, and they can be used as visual-thinking tool. This

subsection lists some graphic representations of ideas and information such as concept

and mind maps.

2.2.1 CONCEPT MAPS

Concept maps are graphical tools for exploring knowledge and gathering and

sharing information. They can be used to describe ideas about some topic in pictorial

Chapter Theoretical Framework 10

form. In concept map, each word or phrase is connected to another and linked back to

the original idea, word or phrase. Concept maps are way to develop logical thinking

and study skills by revealing connections and helping users see how individual ideas

form larger whole.

concept map consists of nodes or cells that contain concept, item or question

and relationships between these concepts indicated by connecting line with an arrow

symbol denoting the linking direction of the two concepts. The arrow describes the

direction of the relationship and reads like sentence. Each linking line has word or

phrase, referred to as linking words or linking phrases, which specify the relationship

between the two concepts. Figure 2-4 shows an example of concept map that describes

the structure of concept maps and illustrates the above characteristics.

Figure 2-4. concept map example concerning concept maps

Concept maps have hierarchical format with the most general concepts at the

top and the more specific, less general concepts arranged hierarchically below. Apart

from concepts, concept maps could also contain specific examples of events or objects

that help to clarify the meaning of given concept. Normally these are not included in

ovals or boxes, since they are specific events or objects and do not represent concepts.

Chapter Theoretical Framework 11

Finally, concept maps are used to define the ontology of computer systems, for

example with the object role modeling or Unified Modeling Language formalism.

2.2.2 MIND MAPS

Mind mapping is powerful graphical technique for visualizing connections

between several of ideas, words, tasks, or other items by using words, lines, logic, colors,

and images. Each item is written down and then linked by lines or curves to its major or

minor item. Mind maps are known as means to help humans to structure their

knowledge, and to construct structure in their minds. They are used to generate,

visualize, structure, and classify ideas, and as an aid to studying and organizing

information, problem solving, making decisions, and writing.

Figure 2-5. mind map example concerning mind maps

As shown in Figure 2-5, mind maps have basic tree format with central

keyword, idea or question in the middle branching out, and dividing again and again.

The elements of given mind map are arranged intuitively according to the importance

Chapter Theoretical Framework 12

of the concepts, and are classified into groupings, branches, or areas, aiming to represent

semantic or other connections between portions of information. Even though the tree

format is hierarchical structure, the radial arrangement disrupts the prioritizing of

concepts. (Buzan, 1991) claimed that by presenting these connections in radial,

graphical, non-linear manner, encourages brainstorming.

Mind mapping software can be used to organize large amounts of information,

combining spatial organization, dynamic hierarchical structuring and node folding. The

mind mapping concept can be extended by allowing individuals to map more than

thoughts and ideas with information on computers and the internet, like documents,

images and e-mails.

2.2.3 CONCEPT MAPS VERSUS MIND MAPS

Concept maps can be contrasted to mind maps. Although the two visualization

techniques are both very useful for visualizing and understanding ideas and

information, they are not exactly the same. Table 2-1 summarizes the differences

between the two forms of mapping as mentioned in (Davies, 2011) and (Eppler, 2006).

Concept Maps Mind Maps

Thumbnail

Representation

Purpose Relations between concepts
Associations between ideas,

topics or things

Structure
Hierarchical

Tree-like

Non-linear

Organic

Radial

Level of

Abstraction
Medium generality High generality

Chapter Theoretical Framework 13

Nodes Boxes or Bubbles with text

Pictures

Words

Diagrams

Linking devices Arrow

Lines

Line Thicknesses

Colors

Shading

Linking words
Relational phrases

(i.e. “related to”, “is author of”)

Associative words

(i.e. “use”, “links”)

Language register

and “granularity”
Medium Loose

Reading direction Top-down Center-out

Extensibility Limited Open

Memorability Low Medium to High

Understandability High Low

Table 2-1. Summary of the differences between concept and mind mapping

Starting from the basic difference, concept maps help visualizing the

relationships between different concepts within central focus, while mind maps

associate words and ideas with central governing key word or concept. Concept maps

can take variety of forms ranging from hierarchical, to non-hierarchical, allowing even

recursion and permit spatial node and arc arrangement. On the other hand, mind maps

are predominantly bifurcating and clustering is implemented by color or line thickness.

As far as precision and formality are concerned, the above statements lead to the

conclusion that concept maps are more structured and formal contrariwise to mind

maps which are less formal and structured. Finally, concept maps lead to deeper

understanding, but they are not very easy to remember. However, mind maps are not as

understandable as concept maps but they are easier to remember.

Chapter Theoretical Framework 14

2.3 SOFTWARE PLATFORMS AND LANGUAGES

This subsection is brief review of software platforms, languages and

development tools concerning this thesis. Protégé software platform, Lucene

information retrieval library and OWL language are discussed.

2.3.1 THE PROTÉGÉ ONTOLOGY EDITOR AND KNOWLEDGE ACQUISITION
SYSTEM

Protégé is free, open-source ontology editor/creator and knowledge-base

framework, developed by the SMI (Stanford Medical Informatics) group at Stanford

University. It is based on Java, is extensible, and provides plug-and-play environment

that makes it flexible base for rapid prototyping and application development. The

Protégé platform supports two main ways of modeling ontologies via the Protégé-

Frames and Protégé-OWL editors. Ontologies can be exported into variety of formats

including RDF(S), OWL and, XML Schema.

Due to the fact that Protégé is the most widely-used ontology creation tool of the

market with lots of support and wealth of plug-ins, it was proposed for this thesis as

means to interact with the personal ontology. For this reason, the following subsections

focus in Protégé architecture and knowledge model.

2.3.1.1 Architecture

(Gennari, et al., 2003) reviewed the development of Protégé and evaluated its

adopted architecture, which is shown in Figure 2-6. On the top of the architecture,

developers are allowed to add features they want or need by customizing the user

interface or build new one to interact directly with the knowledge model. This can be

implemented by extending Protégé with plug-ins.

The plug-in architecture provides flexible and powerful mechanism for

extending Protégé in many ways. Plug-ins, usually *.jar files located below the «plugins»

subdirectory, are loaded at Protégé startup. The system creates an instance of each plug-

in, and arranges for the invocation of the appropriate plug-in methods as needed.

Chapter Theoretical Framework 15

Figure 2-6. The Protégé architecture as described in (Gennari, et al., 2003)

There are several types of plug-ins, such as:

 TabWidget plug-in used for functionality/application extensions to

appear on new tab in the Protégé user interface

 SlotWidget plug-in for user interface extensions to the group of

components that support slot value entry

 KnowledgeBaseFactory plug-in etc.

2.3.1.2 Knowledge Model

Protégé’s knowledge model is frame-based and OKBC compatible. (Noy,

Fergerson, Musen, 2000) describe four basic modeling components including classes

and instances slots facets, and axioms Starting with classes, which stand for the domain

concepts and can be concrete or abstract, they can be organized in class hierarchies

where multiple inheritances are permitted. Instances stand for case of concept, and

each one inherits all the attributes and relations of the concept. Slots, which represent

attributes or properties of the domain concepts, may have the same name but they stand

for different attributes in different classes. Facets represent constraints of slots as they

define restrictions and finally, axioms specify additional constraints.

Chapter Theoretical Framework 16

2.3.2 LUCENE INFORMATION RETRIEVAL LIBRARY

Apache (Lucene) is free and open source information retrieval software library

with full text indexing and searching capabilities. While suitable for any application

which requires full text indexing and searching capability, Lucene has been widely

recognized for its utility in the implementation of internet search engines and local,

single-site searching. At the core of Lucene's logical architecture is the idea of

document containing fields of text. This flexibility allows Lucene's API to be independent

of the file format. Text from PDF, HTML, Microsoft Word, and OpenDocument

documents, as well as many other (except images), can all be indexed as long as their

textual information can be extracted.

2.3.2.1 Indexing

Lucene stores all of the necessary information in indexes in order to improve

search efficiency. Each index contains sequences of documents, which themselves

consist of sequences of fields. Inverted indexing technique is used for storing

information as indexes list which documents contain each term. Fields may also be

tokenized and placed into the index as individual tokens or placed into the index as

single literal term.

2.3.2.2 Searching

2.3.2.2.1 Querying

Lucene searches are implemented by user queries processed by lexical

analyzer, named Lucene Query Parser Queries are made up of two primary components,

terms and operators Terms may consist of both individual terms as well as phrases

which combine group of terms enclosed by double quotation marks. In addition to

basic terms, fielded data may be stored in Lucene index. This feature is particularly

useful as it allows users to search specific fields, such as title or author. Among the

advanced search features are not only field searches but also wildcard searches, ranges

searches and boolean operators, such as “AND”, “OR”, “NOT”, “+” and “-”.

Starting with wildcard searches the user can replace one or more symbols in

query term by changing them with the special wildcard characters “?” or “*”. In case she

Chapter Theoretical Framework 17

replaces with “?”, the symbol may be substituted for single character, while in case she

replaces with “*”, the symbol may be substituted for multiple characters. Fuzzy searches

are conducted by applying “~” symbol to the end of search term. By doing so, terms

similar in spelling to the original term will be found. Adding value between and

allows for the user to define the threshold level of similarity for terms returned by

fuzzy search.

Range searches conducted by enclosing two field values in square or curly

brackets, may be used to locate documents whose ranges lie within certain upper and

lower bound. Search terms may be further modified by variety of means including

wildcard and fuzzy searches.

Finally, boolean operators may be used to retrieve different search results using

the same query terms depending on the operator used. Each of them has different

meaning. Starting with the “AND” operator, it may be inserted between terms or phrases

to indicate that both should be located. Similarly, the “OR” operator indicates that either

should be located. Inserting the “NOT” operator between two terms or phrases excludes

the second term or phrase from the search results but includes the first. If the “+”

operator precedes term or phrase then it must be included in the results. However, if

the “-”precedes term or phrase then it must be excluded from the results. Finally,

parentheses may be used to group terms, phrases, or field values.

2.3.2.2.2 Scoring

Lucene scoring uses combination of the Vector Space Model (VSM) of

Information Retrieval and the Boolean model to determine how relevant given

Document is to user's query. In general, the idea behind the Vector Space Model is the

more times query term appears in document relative to the number of times the

term appears in all the documents in the collection, the more relevant that document is

to the query. Lucene uses the Boolean model to first narrow down the documents that

need to be scored based on the use of boolean logic in the Query specification. Finally,

even if it adds some capabilities and refinements onto this model to support boolean and

fuzzy searching, it essentially remains Vector Space Model based system.

Chapter Theoretical Framework 18

2.3.3 WEB ONTOLOGY LANGUAGE (OWL)

The Web Ontology Language (OWL, 2005) is family of knowledge

representation languages for authoring ontologies. Like Protégé, OWL is used to

describe concepts. However, it also provides new facilities as it has richer set of

operators (intersection, union and negation). It is based on different logical model

which among other features provides reasoner offering checking whether or not all

of the statements and definitions in the ontology are mutually consistent. Moreover, the

reasoner helps recognizing which concepts fit under which definitions helping in this

way to maintain the hierarchy correctly when dealing with cases where classes can have

more than one parent.

2.3.3.1 OWL Components

As mentioned above, OWL ontologies are similar to Protégé frame based

ontologies leading to the fact that they have similar components. However, the

terminology used to describe these components is slightly different as an OWL ontology

consists of individuals classes and properties

Starting from individuals, which are also known as instances they represent

objects in the domain. Classes, which are also known as concepts are groups of

individuals which can be organized into superclass-subclass hierarchy, also known as

taxonomy Finally, properties represent relationships and can be either characterized as

object or datatype properties. While object properties are relationships between two

individuals, datatype properties describe relationships between an individual and data

values.

To make OWL and Protégé component correspondence more clear, OWL

ontology consists of individuals, properties, and classes, which roughly correspond to

Protégé frames instances, slots and classes.

3
RELATED WORK

PREVIEW
 Personal Information Management systems

 MIT SFS, GoNTogle, SEDAR, NEPOMUK, SEMEX, HAYSTACK,
SPONGE

 Relevant ontology visualizations
 NavigOwl, OWLViz, OntoGraf

This chapter is an overview of the systems related to our work. These systems were

important while designing our personal information management system. Moreover,

some ontology visualizations implemented as Protégé plug-ins compatible with Protégé-

OWL 4.0 are presented. Finally, brief comparison with these related approaches is

included.

Chapter Related Work 20

The following subsections include descriptions of systems and visualizations

related to our work. Starting with 3.1 subsection, we present several personal

information management systems such as MIT SFS, GoNTogle, SEDAR, NEPOMUK,

SEMEX, HAYSTACK, and SPONGE while 3.2 subsection presents the three most well-

known ontology visualizations implemented as Protégé plug-ins compatible with

Protégé-OWL 4.0. Finally, 3.3 subsection summarizes and compares these related

systems and visualizations to OntoFM’s functionality and look.

3.1 PERSONAL INFORMATION MANAGEMENT RELATED SYSTEMS

Some related PIM systems will be described in this section. Instead of giving full

description of every system, we have described the systems exploring similar concepts,

as the one implemented for this thesis.

3.1.1 MIT SEMANTIC FILE SYSTEM (MIT-SFS)

(Gifford, Jouvelot, Sheldon, O'Toole, 1991) have developed semantic file

system which provides access to both file contents and metadata by extracting

attributes using transducers through the file system.

Files stored are interpreted by transducers, which act like plug-ins and are file

type specific, in order to produce set of descriptive attributes. To make that more clear,

transducer is filter that takes as input the file’s contents and outputs the file’s entities

and their corresponding attributes. transducer could be either (i) simple by treating

an input file as single entity and use the file’s unique words as attributes or (ii)

complex by performing type reconstruction on an input file, identifying each procedure

as an independent entity and using attributes to record their reconstructed types. An

attribute is pair consisting of field which is file property such as “author”, “owner”,

“date”, “type”, etc., and value which may be string or an integer. Each file may have

many attributes with some of them having the same field name but different value.

Finally, unit of associative access is called entity and may consist of an entire file, an

object within file, or directory.

Chapter Related Work 21

Through querying the semantic file system the user can retrieve set of files

and/or directories containing the entities described in the query. Queries are boolean

combinations of attributes, allowing the user to narrow down the number of retrieved

results by inputting desired attributes’ values. However, it is also possible to retrieve all

values of given field.

Queries are performed by using virtual directories, which are indistinguishable

from ordinary directories. The query facilities of semantic file system appear as virtual

directories at each level of the directory tree. field virtual directory is named by field,

and has one entry for each possible value of its corresponding field. Thus in “/sfs”, the

virtual directory “/sfs/owner: corresponds to the “owner: field. The field virtual

directory “/sfs/owner: has one entry for each owner that has written file in

“/sfs”. For example:

% ls -F /sfs/owner:

jones/ root/ smith/

Value virtual directories are entries in field virtual directory which have one entry for

each entity described by field-value pair. Thus the value virtual directory

“/sfs/owner:/smith contains entries for files in “/sfs that are owned by Smith.

Each entry is symbolic link to the file. For example:

% ls -F /sfs/owner:/smith

bio.txt@ paper.tex@ prop.tex@

3.1.2 SEMANTIC, DEEP ARCHIVAL FILE SYSTEM (SEDAR)

(Mahalingam, Tang, Xu, 2003) developed similar system to MIT Semantic File

System named Sedar. Sedar is peer-to-peer archival file system offering semantic

retrieval by using semantic vectors extracted from the file contents. Each time file is

modified and closed, Sedar creates new instance of the file followed by different

version number. Even though, metadata is not versioned, virtual snapshot using

timestamps allows accessing the namespace arbitrary back in time. Moreover,

Chapter Related Work 22

semantic-based interface is provided allowing clients to locate files according to the

semantics available.

Sedar consists of five main components:

(i) NFS loop-back server

(ii) Catalogue, containing an index of the files based on vectors of file type

specific features extracted from file contents, named semantic vectors

(iii) an Extractor registry, which is an external plug-in either deriving the

semantic vectors in case the data types are known or deriving features

using statistical analysis in case of unknown types,

(iv) Sedar distributed storage (SDS), providing basic support for storing and

retrieving files, directories and the catalogue, and finally

(v) Sedar semantic utility, offering semantic-based retrieval capabilities as it

interacts with the file system to generate materialized views of query

results in order users to access them as regular file system objects.

Sedar has similar directory structure to UNIX based system. Each directory

entry contains the name and type of the object and unique identifier called “Inode” that

references to the object. Even though directory Inode does not contain version

information, file Inode contains all file’s versions. To condense storage utilization

based on the semantic vector of document, Sedar employs novel technique called

semantic hashing Rather than storing the semantic vector for each file version, it uses

representative semantic vector for several files having close semantic vectors.

Sedar supports operations like the “create” operation, where the user may create

new file or directory or the “lookup” functionality which returns the Inode of the object

and its latest version number. Finally, while the “read” operation is used for viewing

file, the “write” operation is implemented as soon as the file is closed in order to update

the metadata and the semantic vector.

3.1.3 GONTOGLE

(Giannopoulos, Bikakis, Dalamagas, Sellis, 2010) developed desktop search

engine named GoNTogle, which provides advanced document annotation and search

Chapter Related Work 23

facilities. GoNTogle allows the user to annotate several types of documents (*.doc, *.pdf,

*.rtf, *.txt, *.odt) either manually or automatically by annotating suggestions based on

textual similarity and previous document annotations. Moreover, it combines keyword

and semantic-based searching, offering in this way advanced ontology query facilities to

the users.

GoNTogle is built on top of Lucene and Protégé, using indexing, searching and

visualization libraries. It consists of four basic components:

(i) Semantic Annotation Component which consists of (a) Document

Viewer, (b) an Ontology Viewer and (c) an Annotation Editor and

provides facilities regarding the semantic annotation of documents,

(ii) an Ontology Server Component that stores the semantic annotations of

documents in the form of OWL ontology instances

(iii) an Indexing Component for indexing the documents using an inverted

index, and

(iv) Search Component that allows searching for documents using both

textual (keyword search) and semantic (ontology search) information.

Through the application the user is able to index documents and annotate

semantically either whole document, or parts of its text, using concepts of loaded

ontology. Annotations are stored on the Ontology Server Component as instances that

belong to one or more ontology classes. All the essential annotation information

attached to those instances is stored as ontology properties. In case of an automatic

annotation, the GoNTogle search engine suggests annotations using weighted kNN

classification that exploits user annotation history and textual information. The training

data include document annotations extracted from manual annotations implemented by

the user. Figure 3-1 shows an implemented hybrid search.

Chapter Related Work 24

Figure 3-1. GoNTogle automatic annotation: System suggests the class H.2_DATABASE_MANAGEMENT as the
most appropriate class for the current document.

GoNTogle’s other primary functionality is searching either by inputting keywords

and retrieving documents based on textual similarity, or by navigating through classes

and retrieving documents semantically annotated to them. The user may also combine

these types of searches, implementing hybrid search by searching for documents using

keywords and ontology classes and by determining whether the search will be the

intersection or the union of the two searches. Figure 3-2 shows an implemented hybrid

search. Moreover, advanced searching facilities may be used after implementing the

search faculty such as finding related or similar documents, retrieving the next

(subclasses) or previous (superclasses) generations and searching for documents not

only in selected class but also in its subclasses by implementing proximity search

Chapter Related Work 25

Figure 3-2. GoNTogle hybrid search: Find documents relevant to XML annotated with the class
H.2_DATABASE_MANAGEMENT

3.1.4 NEPOMUK

(NEPOMUK) standing for Networked Environment for Personal, Ontology-based

Management of Unified Knowledge, is an open-source software specification that is

concerned with the development of social semantic desktop that enriches and

interconnects data from different desktop applications using semantic metadata stored

as RDF. NEPOMUK aims to extend the personal computer into collaborative

environment which supports both the personal information management and the

sharing and exchange across social and organizational relations. Through developing

methods, data structures and services it aims to organize the file system’s information

and analyze user’s ideas in order to derive semantic information. NEPOMUK’s goal is to

empower individual knowledge for improving personal information space exploitation

and to maintain fruitful communication and exchange within social networks.

Chapter Related Work 26

Figure 3-3. NEPOMUK architecture

As shown in Figure 3-3 above, NEPOMUK is organized into three main layers. Due

to the fact the NEPOMUK Social Semantic Desktop is peer-to-peer system consisting of

individual desktops, layer concerning the communication between peers is essential.

This layer is named Network Communication layer and provides an Event-based System,

which is responsible for distributing the events on between the NEPOMUK peers. Each

event carries RDF graph describing the cause of the event. Moreover, the Messaging

System routes the messages to receiver and the Peer-to-Peer File Sharing System

enables the shared information space. On top of the Network Communication Layer, the

Middleware layer provides the core services of NEPOMUK. Middleware can be split into

three main parts:

(i) the Service Registry which provides the means of publishing,

unregistering and discovery of services,

(ii) the Core Services which represent the set of standardized services that

are part of the NEPOMUK platform (also contains the Data Services

which are important functionalities for storing and searching both data

and metadata), and

Chapter Related Work 27

(iii) the Extensions which are services that may be included in the

NEPOMUK Middleware.

Finally, on top of the Middleware layer, the Presentation layer provides the NEPOMUK’s

user interface.

As far as NEPOMUK functionality is concerned, users are able to search amongst

different sources or find relevant by querying. They may also access, manage and share

resources even if they are offline. Moreover, NEPOMUK has profiling functionality

based on user’s activity in order to support user’s needs. Data analysis is also supported

by providing keyword extraction as sometimes search results might need to be

rearranged using sorting or grouping. Finally, at the social level, managing groups and

users enhances social interaction and ease resource sharing. In this way, users can

publish and subscribe to relevant stream of information.

3.1.5 SEMEX

(Semex) (SEMantic EXplorer), shown in Figure 3-4, offers platform for the

personal information management and provides logical and integrated view of the

personal information. It provides enriched desktop search experiences as it views the

user’s hard disk as network consisting of instances and the associations between these

instances. The main aim of this system is to enable browsing by creating an automatic

association between data items on the desktop.

Chapter Related Work 28

Figure 3-4. sample screenshot from browsing the Semex database

As described in (Cai, Dong, Halevy, Liu, Madhavan, 2005) and (Dong, Halevy,

Nemes, Sigurdsson, Domingos, 2004), Semex scans user’s hard disk or specified

directories and considering the file formats shown in Table 3-1 extracts one of the

“Person”, “Message”, “Article”, “Presentation”, “Conference”, “Journal”, “Image”,

“Documents” or “Webpage” type of instance. Apart from automatic instance-and-

association extraction, Semex offers reference reconciliation as it can recognize the

person names and email addresses that refer to the same real-world person, and treat

them as attributes of single person instance. Also, when user poses query it classifies

the returned objects into their classes. Then, user can select particular object instance

to see detailed information, including its attribute values and associated instances. Other

features concerning Semex are keyword and advanced search, ranking and lineage

information.

Chapter Related Work 29

Type of file Filename extensions

Email Outlook emails, Pine mails

LATEX file .text, .bib, .bbl

MS office file .doc, .ppt

Text file .txt, .PDF, .ps, .html/.htm

Image .gif, .jpg/.jpeg, .png, .tiff, .eps, .bmp

Table 3-1. File formats scanned automatically by Semex

3.1.6 HAYSTACK

(Haystack) is an extensible semantic web browser, that aims to better

organization, navigation, and retrieval, of both personal and shared information such as

emails, web pages, documents, and calendars. It allows people to define new object

attributes, which helps categorizing their personal information by creating collections

and provides related material with user’s work helping the user in this way to find

effectively what she needs. Haystack is based on the idea that merely providing access to

information is insufficient and needs to be aggregated in meaningful semantic ways.

Therefore, applications must help users filter and select information that is relevant to

the user’s needs. Relevance depends on factors such as the kind of information being

looked at, the task’s context the user is performing, etc.

3.1.7 SPONGE

(SPONGE), standing for Semantic Personal Ontology-based Gadget, is desktop

client application that extends the core Social Semantic Desktop services by supporting

personal and group information and knowledge management. It provides functionalities

for searching by using keyword queries, annotating desktop resources by creating RDF

triples and collaborating on group support systems with semantic capabilities.

Starting with the Search gadget, an RDF repository search is implemented as

soon as the user starts typing keywords. The retrieved results enriched with ontology

neighboring instances and followed by their annotations, are presented in web

browser page, arranged in table of Sponge Notes, another gadget which will be

Chapter Related Work 30

discussed below. Sponge extends desktop search by allowing the user to remotely access

and retrieve resources from peer desktops. Sponge Notes are used for annotating

desktop resources. Implemented as RDF triplets, Sponge Notes allow extended ontology

editing or annotation removal. Finally, collaboration between users is supported by

means of semantic workspaces by storing, organizing and sharing resources needed for

the accomplishment of personal and collaborative tasks. Semantic workspaces can

support either the personal work of individual users or the collaborative work of groups.

Users can browse resources of each workspace, view detailed information for selected

resources as well as annotate resources manually or by exploiting system-generated

recommendations.

Figure 3-5. Image stump from SPONGE's Search gadget

3.2 RELATED ONTOLOGY VISUALIZATIONS

The ontology visualizations described below, are Protégé plug-ins compatible

with Protégé-OWL 4.0. For this thesis implementation, graphic ontology visualization

which has similar look to mind maps is also necessary. This visualization should

include nodes visualized as oval or square boxes and relations represented as lines

connecting nodes. In this subsection, we describe some visualization tools implemented

as Protégé plug-ins which look like mind maps.

Chapter Related Work 31

3.2.1 NAVIGOWL

Starting with (NavigOwl), visualization tool specially designed to explore

ontologies. It is enriched with graph layouts that can be applied to the ontology in order

to understand its structure. NavigOwl features include zoom-able user interface, mouse

events handling (pan, drag, mouse-over, etc.), node searching, changeable node visibility

state, tool-tips and other. The NavigOwl interface is shown in Figure 3-6. Finally,

NavigOwl supports only *.rdf and *.owl ontology formats.

Figure 3-6. Image stump from the NavigOwl interface

3.2.2 OWLVIZ

(OWLViz) visualization plug-in is designed to be used with the Protégé-OWL

plug-in and is based on (Graphviz) visualization. It visualizes class hierarchies of an

OWL ontology as directed graph where the edges represent relationships between

parents and children, allowing in this way the comparison of the asserted class

hierarchy and the inferred class hierarchy. OWLViz uses the same color scheme as

Protégé-OWL so that primitive and defined classes can be distinguished, computed

changes to the class hierarchy can be clearly seen, and inconsistent concepts are

Chapter Related Work 32

highlighted in red. Properties and individuals are not represented and nodes cannot be

moved. However, the layout of the generated graph can be configured. Figure 3-7 shows

the OWLViz visualization for (Pizza ontology) part. The plug-in enables export of the

graph as bitmap image, supporting formats like *.png, *.jpeg and *.svg. Finally, OWLViz is

implemented as view so that the subsumption graph can be shown on any tab.

Figure 3-7. Part of (Pizza ontology) with the OWLViz visualization

3.2.3 ONTOGRAF

(OntoGraf) is another ontology graph visualization plug-in which has become

standard part of the Protégé-OWL editor. It has been developed in Stanford University,

and makes use of the visualization library from the Protégé plug-in (Jambalaya).

OntoGraf supports interactively navigating the relationships of OWL ontologies. The

OntoGraf Protégé plug-in is shown in Figure 3-8.

OntoGraf allows navigating through relationships of an OWL ontology. It

visualizes classes and individuals (class instances) as nodes of graph and relationships

between them as edges. Hovering over the edges shows the type of the relationships

Chapter Related Work 33

they correspond to, while terms can be expanded to provide incremental expansion of

the graph. Various layouts are supported for automatically organizing the structure of

the ontology, but also each node can be moved by the user. Edges and nodes can be

filtered according to their types, to display only what is desired and nodes that become

orphaned can be hidden. In this way, graph complexity is reduced allowing the user to

navigate faster and easier. Finally, the user can take bitmap image of the visualization

or save the graph to file to be loaded later.

Figure 3-8. Part of the ontology described in (Katifori, et al., 2008) and (Golemati, Katifori, Vassilakis,
Lepouras, Halatsis, 2007) drawn by the OntoGraf plug-in

3.3 A BRIEF COMPARISON

The OntoFM personal ontology-based file manager implemented for this thesis, is

personal information management and retrieval system enriched with mind map-

oriented visualization to support user navigation within the personal information base.

From the above related systems, two of them are well-known and one of them is close to

the OntoFM search functionality. For this reason tables 3-2 and 3-3 summarize the main

functionality each system (MIT Semantic File System, GoNTogle and, NEPOMUK) or

Chapter Related Work 34

visualization offers to the user comparing to the OntoFM system and ontology

visualization.

3.3.1 COMPARING RELATED PERSONAL INFORMATION SYSTEMS TO ONTOFM

As shown in Table 3-2, all systems allow the users to navigate through the

ontology. Each system has different way of approaching this functionality, either by

command-line like interface or by tree showing the hierarchical relations. The OntoFM

system offers this functionality graphically with mind map-oriented visualization,

offering in this way an easy understandable navigation method. The user is able to

interact with the ontology visualization by expanding, collapsing or hiding nodes and

apply filters or different layouts by using the ontology visualization toolbar offered.

Moreover, unlike the other personal information management systems, OntoFM

supports navigating through the file system catalogues and files by providing common

folder hierarchy pane, as employed by many file browsers, in order to keep not only the

functionality but also user’s familiarity. To end with the navigation functionality,

OntoFM introduces an innovative support of selecting multiple folders in order to access

their contents at once or limit the search results locations.

As far as annotating is concerned, all three related systems offer automatic

annotation of files. Annotation is implemented either by transducers or semantic

annotation components to either whole documents or parts of their text. However, only

NEPOMUK supports any type of annotating of all types of files. Even though OntoFM

offers semi-automatic annotation, it also supports any type of annotating of all types of

files.

Furthermore, all systems offer search functionality, with NEPOMUK and OntoFM

having also available some advanced search options. Except for MIT Semantic File

System, for which we have insufficient information, the rest three systems provide full-

text searching, while apart from GoNTogle, the remaining systems have an auto-

completion or autosuggestion feature, recommending to the user candidate search

keywords or phrases.

Chapter Related Work 35

MIT SFS GoNTogle NEPOMUK OntoFM

NNaavviiggaattiioonn

FFiillee SSyysstteemm NNaavviiggaattiioonn
MMuullttiippllee FFoollddeerr SSeelleeccttiioonn
OOnnttoollooggyy NNaavviiggaattiioonn
GGrraapphh vviissuuaalliizzaattiioonn

IInntteerraaccttiivvee GGrraapphh VViissuuaalliizzaattiioonn
GGrraapphh VViissuuaalliizzaattiioonn TToooollss

AAnnnnoottaattiioonn

AAuuttoommaattiicc AAnnnnoottaattiioonn
AAllll TTyyppeess ooff FFiilleess SSuuppppoorrtteedd
AAllll TTyyppeess ooff AAnnnnoottaattiioonnss

RReettrriieevvaall

AAuuttoo--ccoommpplleettiioonn
FFuullll--tteexxtt SSeeaarrcchh
AAddvvaanncceedd SSeeaarrcchh OOppttiioonnss

OOnnttoollooggyy EEddiittiinngg

OOnnttoollooggyy EEddiittiinngg

Table 3-2. Summary table concerning the differences among MIT SFS, GoNTogle, NEPOMUK and, OntoFM
(=supported, not supported, ?=not mentioned)

Finally, as shown in the table above, only NEPOMUK and OntoFM offer the user

the ability to edit the ontology by adding new instances or relations between two

existing instances.

3.3.2 COMPARING RELATED VISUALIZATIONS TO ONTOFM VISUALIZATION

Before starting with the comparison of all four visualizations, it should be

mentioned that the OntoFM visualization is an extended Ontograf visualization, edited to

serve the OntoFM system purpose. This leads to the result that these two visualizations

are much alike to each other.

As shown in Table 3-3, all four visualizations offer zoom-able user interface,

color characterization for recognizing visually in an easy and fast way classes and

instances, choosing among various layouts and graph overview either by zooming out

Chapter Related Work 36

or by viewing small ontology overview pane. While OWLViz cannot handle mouse

events and does not support node searching, NavigOWL is not able to export graph.

Moreover, even though both OWLVIZ and NavigOWL do not offer node or edge filtering,

Ontograf and OntoFM do not offer node visibility state, but only for orphan nodes.

Apart from that, both OWLVIZ and NavigOWL do not offer node pinning and, loading or

saving graph. Finally, except for the OntoFM visualization, none of the related

visualizations supports different node coloring or icons for nodes that represent files or

folders.

NavigOwl OWLViz OntoGraf OntoFM
visualization

Zoom-able User Interface
Mouse Events
(drag, mouse-over, etc.)
Node Searching

Node Visibility State

Color Characterization

Various Layouts

Graph Overview

Export graph

Node filtering

Edge filtering

Node pinning

Load/Save graph
Node Icons
related to file type

Table 3-3. Summary table concerning the differences among NavigOWL, OWLViz, OntoGraf and, OntoFM
ontology visualizations (=supported, not supported)

3.3.3 COMPARING RESULTS

As resulted by the above comparisons, OntoFM system does not differ much from

the other related systems. The same comparing result was extracted for the OntoFM

visualization too. However, OntoFM is unified personal information management and

retrieval system enriched with mind map-oriented visualization. Due to the fact that

Chapter Related Work 37

the idea of OntoFM is innovative, there is no related system to OntoFM. This leads to the

need of “dividing” OntoFM into two main parts in order to make comparing feasible.

To this end, OntoFM is novel combined system, which if compared to the other

personal information management systems, it offers further functionality regarding

managing, retrieving and visualizing information and more features than all related

systems at once.

4
PREVIOUS EFFORTS

PREVIEW
 Earlier implementation of OntoFM file manager
 Problems occurred
 Solutions given

In this chapter, previous efforts concerning the OntoFM file manager are described. Also,

problems faced and techniques followed to overcome these problems are mentioned.

Chapter Previous Efforts 39

In this chapter we describe an earlier implementation of OntoFM, namely what it

consists of and how it works. We also list the main problems faced and techniques

followed to overcome these problems.

4.1 EARLIER IMPLEMENTATION OF ONTOFM

OntoFM development started in 2010 for my Bachelor of Science thesis. As

mentioned in the introduction subsection, OntoFM is tool that allows semantic

searching on personal ontology which represents the user’s personal information

space. The tool is an ontology-based file manager that exploits the ontology relations to

locate and display concepts associated to specific files, proposes new related concepts to

users, and helps them explore the information space to locate the required file.

OntoFM was crafted as an application connected to (Sesame) server, through

which the ontology information could be retrieved using SPARQL queries. Depending on

the user activities, OntoFM created suitable queries which were sent to the Sesame

server; subsequently OntoFM received the results and processed them accordingly, to

populate the user interface widgets with which the application user interacts.

Figure 4-1. OntoFM screen with captions Inputting multiple keywords. Entered terms appear in the related
concepts pane along with directly connected concept instances.

Figure 4-1 depicts the OntoFM user interface with the file system view pane on

the left and the results view pane on the right. On top of them search bar allows the

Chapter Previous Efforts 40

user to search within the file system or personal ontology and suggests candidate search

terms as soon as the user starts typing keywords. When search is implemented,

hidden related concepts pane appears, showing all related to the keywords concepts.

For each related concept, list of first level related concepts is shown too.

To make that clear, Figure 4-1 is an example search image stump, showing the

case when the user searches for files related to the keywords “publication

journal_paper”. Apart from the related files, the OntoFM application retrieves the first

level related concepts for both “publication” and “journal_paper”. For this example, for

“publication” it retrieves “paper” and “document” first level related concepts.

The two main functions implemented by OntoFM were browsing through

catalogues and files and searching through the file system using semantic metadata

supplied by personal ontology. Moreover, the user was able to select multiple folders

and view their contents at once. Other features include customizing the presentation to

view all file details in tubular format, file icons or simple file lists and multiple selection

of folders to limit the search only to the selected ones. Finally, time related queries can

be performed in two ways. The first one, is indirectly through the file list pane, when the

details view is selected, by sorting files using one of the time related columns (created or

modified) and the second one is directly by using the “Date” concept modeled in the

personal ontology and entering constrain on it.

4.2 PROBLEMS AND SOLUTIONS

Even though the OntoFM file manager was functional, the time needed for

retrieving all the query results was not tolerated by the user. Every user wants

immediate or almost immediate system response and the OntoFM could not satisfy that

need. For this reason, we modified the tool architecture so that the personal ontology

would be stored locally. However, while creating the module which would retrieve the

necessary information from locally stored personal ontology, new problem came up

to stop that effort too. The problem was related to the libraries needed for important

functions, such as searching into the personal ontology or filtering results by type; these

libraries were bundled within the Protégé executable and were therefore not available

for use by standalone applications. Contacting with the (Protégé team) ended up to

Chapter Previous Efforts 41

(Protégé bug report, 2011) asking to make Protégé UI components available for use by

standalone applications.

Meanwhile, the development of OntoFM continued, this time as Protégé plug-in

instead of stand-alone application. This is temporary solution to overcome the

problems concerning time and libraries needed, until solution is available.

5
DEVELOPMENT

PROCESS
PREVIEW

 Assumptions
 General assumptions
 Visualization assumptions

 Specifications
 Architecture
 Implementation

This chapter describes the development process of OntoFM plug-in for Protégé.

Necessary assumptions that were made are described and various requirements to

implement prototype are listed. Moreover, the OntoFM’s architecture and

implementation information are commented.

Chapter Development Process 43

This chapter describes the development process of OntoFM plug-in for Protégé.

Necessary assumptions and specifications that were made are commented. Moreover,

the OntoFM’s architecture and implementation information are outlined.

5.1 ASSUMPTIONS

Before proceeding to the enumeration of requirements for the OntoFM plug-in,

we need to set some assumptions.

5.1.1 GENERAL ASSUMPTIONS

First of all, we assume that the personal ontology which describes the personal

information space of the user, as described in (Katifori, et al., 2008) and (Golemati,

Katifori, Vassilakis, Lepouras, Halatsis, 2007), already exists and is in use. The classes

of personal ontology concepts are divided into two main groups, which constitute the

top-level ontology concepts, namely «Thing» and «Value Class». «Thing» class contains

all concepts within the field of discourse (i.e. the personal information space), which

may be either abstract or concrete. «Value Class» class contains all possible values

within the field of discourse. The purpose of adding this class was the need to separately

represent and store elementary data elements such as personal names, phone numbers,

etc. Under this approach, not only elementary data is distinguished from more complete

information (such as instances of concepts) and can be subject to formatting rules, but

additionally is allowed to have internal structure, which would not be possible if they

belonged in «Thing» class.

Apart from the above, the personal ontology includes «File» class referring to

file or folder from the file system hierarchy, or to instances of concepts such as

«Person», «Project», «Location» and others, which may be related to instances of the

concept «File». For each file and directory within the physical system hierarchy, there is

corresponding instance of the concept «File» that represents it. Therefore, the

hierarchy of files and directories is still available to user, but in different semantic way

through the personal ontology. Approaches to management and maintenance of

Chapter Development Process 44

personal ontology can be found in (Fernandez-Garcia, Sauermann, Sanchez, Bernardi,

2006) and (Lepouras, et al., 2006).

Finally, as mentioned above, we assume that each file and directory has

corresponding “File” instance in the personal ontology. By this assumption we ensure

that there is no need for the user to create new “File” instance in the personal ontology.

This leads to the decision of disallowing the user to create or delete instances or

concepts. However, information concerning our everyday life change, so it is imperative

to allow the user to change the ontology by letting her relate “File” instances to other

instances or concepts. In this way the personal ontology’s structure cannot be

dramatically changed so that it ends up inappropriate to serve its purpose. Still, the user

can modify the ontology in order to serve her daily needs. At this point it should also be

mentioned that the reverse assumption is not necessarily true as it is permissible for

instances or concepts in the ontology to be unrelated to any file.

5.1.2 VISUALIZATION ASSUMPTIONS

Based on the previous general assumptions, we proceed to visualization

assumptions such as setting basic design issues and investigating various design

strategies.

The first and probably most fundamental question for the OntoFM plug-in

interface is whether the personal ontology should be visualized, allowing user to

interact directly with ontology concepts and select files linked to the instances of

concepts previously selected. The use of personal ontology serves different file

organization based on the relations between concepts, which might make finding file

of known content simpler, faster and easier compared to searching in complicated and

probably counter-intuitive file system with hierarchical structure and no cohesion. The

notion of using ontology visualization methods as browsing aids has been explored in

(Katifori, Torou, Halatsis, Lepouras, Vassilakis, 2008) and (Katifori, Halatsis, Lepouras,

Vassilakis, Giannopoulou, 2007). (Alani, 2003) suggests TGViz as visualization

technique which may be chosen to employ for browsing the concepts in the personal

information space while presenting the file system hierarchy. However, more

Chapter Development Process 45

enhanced and new ontology graph visualization plug-in as OntoGraf, which was

discussed in 3.2.3 subsection, is recommended for the OntoFM plug-in.

The reason of recommending OntoGraf and not some other ontology visualization

from the ones discussed before, is that we can observe several similarities with mind

mapping. Starting from the fact that both are graphical methods, they both help

distinguishing words or ideas, with colors and symbols. Mind maps are generally

hierarchically organized with ideas branching into their subsections. On the other hand,

OntoGraf displays not only the hierarchical structure of concept classes but also the

instances of classes and the object properties. Finally, an extended OntoGraf

visualization can be treated as mind map if it focuses on multiple concepts. The

similarities outlined above make OntoGraf ideal to use for the ontology visualization for

the OntoFM plug-in.

However, the visualization of two hierarchies, one physical and one semantic,

risks making navigation more difficult. On the side of the physical structure, each user

has organized the files in certain way, through which the user can easily and rapidly

locate each file. In case of an often used file, the steps of finding and accessing the file in

the personal computer may be performed even mechanically. Regarding the ontology,

file search could be an entirely different process and perhaps more complicated, causing

confusion to the user, who would wander which hierarchy would be the best to use in

each case.

For the above reasons, we decided to keep both hierarchies visible and add

show/hide buttons for the beginner users. We also decided to have single pane to

display the files list (if navigation was performed) or search results (in case search was

performed). The file list widget was placed in the center of the application window, since

it can constitute link of the two hierarchies. similar decision was made for the search

bar too, as the user can search keywords consisting of file or folder names, concepts and

instances of the personal ontology and retrieve the results in the result pane.

We hope that this design assumptions with the new design, will offer new

possibilities in searching and organizing files and more familiarization with the personal

ontology. The hide/show buttons help not only beginner users by offering familiar

environment, but also advanced users to perform more complicated processes. As noted

Chapter Development Process 46

in (Henderson, 2009), an effective user interface management of personal files should

provide convenient, fast and powerful full text search, without involving the user's files

and their organization. (Sauermann Heim, 2008), found that in the personal

environment, simple has-part and is-related relations are sufficient for users to file and

re-find information.

To this end, the plug-in created in the context of this thesis is an extended

common file manager user interface with the folder hierarchy on the left and the tabular

file list on the center, with an ontology view pane on the right, complemented with an

ontology-based searching mechanism.

5.2 SPECIFICATIONS

In this subsection we list the functional specifications of OntoFM. The

specifications are listed in descending order of necessity, with the first ones being

considered indispensible and the last ones less critical.

Firstly, we need to provide all the available features supplied by common file

browser. This means that functions such as browsing and searching in the file system

hierarchy are necessary for the user. Since an ontology-based file manager is developed,

the use of an existing ontology in the above mentioned functions is equally necessary, so

that the results returned are not only structurally related (via the file system hierarchy)

but also conceptually (via the ontology links).

Starting with the essential function of browsing, the user should be able to

browse in the file system hierarchy and view each folder’s contents. To achieve this, it is

necessary to use pane depicting the file system hierarchy and pane which contains

the contents of each selected folder, similarly to Windows Explorer. Moreover, features

such as opening file or accessing context menus should be available to the user,

providing smooth transition from the common file browser to the OntoFM plug-in.

Secondly, the returned search results should not only be structurally relevant but

also conceptually. This can be implemented through the use of personal ontology by

linking files to concepts. As mentioned in the General Assumptions subsection, the

personal ontology is in use and already populated with all necessary “File” instances

Chapter Development Process 47

representing all files in the file system. The search results are displayed in the same

result pane with the selected folder contents, as discussed in the Visualization

Assumptions subsection.

Displaying the concepts related to the search keywords is also important, as the

user can navigate easily through concepts to locate files of interest, or imposing

restrictions to effectively limit the amount of results. As discussed in the Visualization

Assumptions subsection, displaying the ontology or part of it is complex issue, and can

be classified as an “average necessity” feature. Moreover, updating the ontology by

relating files to other instances or concepts, in order to keep the ontology updated to

everyday needs, is an essential feature which can be also classified as an “average

necessity” feature.

Search options such as selecting multiple folders or adding search criteria can be

classified as “average necessity” features as well. When having selected multiple folders,

the user must have access to list containing all the selected folders’ paths (path labels)

so that she has an overall view or be able to unselect folder. delete button in front of

each path label of the list may be useful for quick and easy removal of the specific path

from the selected locations. At this point, we can assume that each path label is search

criterion which imposes the result files to be contained in the selected folder. In this

way, features such as inserting or deleting search terms could be implemented easily

and quickly. Another search criterion could be the capability of choosing among

searching in filenames, contents or concepts in order to perform an effective search.

5.3 ARCHITECTURE

As mentioned in subsection 2.3, Protégé was proposed as means to interact

with the personal ontology for supporting functionalities such as browsing, searching or

managing the personal ontology. Apart from the fact that Protégé is the most widely-

used ontology creation tool on the market, there are more reasons for making this

choice. First of all, Protégé is not only an open source platform which is freely available

but also easy extensible as it integrates the necessary and comprehensive tool suites for

ontology development. Also, language independence makes the development process

Chapter Development Process 48

easier. Finally, since the first Protégé tool was created in 1987, there is significant

amount of research and experiment that may be used as references.

The main idea was to create standalone application, but due to the problems

occurred in the previous efforts, as described in 4.2 subsection, OntoFM is implemented

as Protégé TabWidget plug-in, appearing as tab in the Protégé user interface.

OntoFM has been built according to layered architecture, as illustrated in Figure

5-1. The bottom layer is the information store, comprising of the file system (as offered

by the underlying operating system) and the personal ontology, which hosts the

concepts that are important to the user and the associations between these concepts and

the items within the file system (files and directories). The personal ontology is

represented and stored using the Protégé open source ontology editor and knowledge-

base framework.

Figure 5-1. OntoFM architecture scheme

On top of the information store lays the OntoFM logic layer, which implements

the functionalities of (i) information querying i.e., finding file system items associated

with given concepts, (ii) linking of information i.e., allowing the user to associate

selected items or item hierarchies with concepts, and (iii) fetching and updating data

from the information store. The full-text search engine Lucene is used for the indexing

Chapter Development Process 49

and fast retrieval of the ontology elements, the file/folder names, and the associated

metadata.

Finally, the top layer (user interface and visualization) collects user input and

displays results to the user. The ontology visualization is based on the Ontograf plug-in,

which has been extended to support the additional functionality offered by the file

manager and tailored to display the ontology according to the mind map paradigm. Mind

mapping-inspired ontology visualization and interaction allows users to manipulate the

ontology without requiring detailed technical knowledge in ontology building. In this

way, we offer semantic expressiveness by exploiting the inherent mind mapping

connections to enrich and present the user’s information space.

5.4 IMPLEMENTATION

In order to develop the OntoFM plug-in, several programming tools and

development and execution platform were required. The following subsections, describe

the platform and tools and the libraries used to implement OntoFM.

5.4.1 PLATFORM AND TOOLS

OntoFM plug-in is implemented in Java programming language and as Protégé

does, it requires 1.6 version of JRE installed. The main development platform is (Eclipse

IDE for Java Developers). This platform is preferred because it has an open-source

license, simple yet powerful user interface and many conveniently accessible features.

Moreover, it is faster than other platforms and time saver due to the auto-compilation

feature offered.

5.4.2 LIBRARIES

Efficient and fast searching through the entire ontology could not be

implemented without Lucene, powerful text search engine API. As mentioned in 2.3.2

subsection, Lucene is high-performance, scalable, full-featured, open-source, and written

in Java. As far as the ontology tasks are concerned, (OWL API) and (Protégé OWL API)

Chapter Development Process 50

libraries proved beneficial for the OntoFM implementation. Last but not least, the

OntoGraf libraries helped visualizing the ontology in an extended mind map way.

6
ONTOFM PLUG-IN

PRESENTATION
PREVIEW

 OntoFM plug-in overview
 OntoFM plug-in functionality

 Browsing
 Searching
 Maintaining ontology

This chapter describes an overview outline and functionality list using image stumps

to illustrate the plug-in’s functionality and to better explain the features provided.

Chapter OntoFM Plug-in Presentation 52

6.1 OVERVIEW

Having all the visualization assumptions, as presented in 5.1.2 subsection, and

specifications, as presented in 5.2 subsection, in mind, the OntoFM plug-in has an

extended common file manager user interface. As shown in Figure 6-1, the OntoFM user

interface consists of three main panes: the folder hierarchy pane on the left, the tabular

file list pane on the center and the ontology view pane on the right. The folder hierarchy

pane serves to access the physical file folder hierarchy and browse through the user’s

catalogues. The file list pane avails to access either the files contained in one or more

folders or the files related to some terms in case search is implemented. The ontology

view pane serves to overview how folder, file or search term is related to other items

of the file system or the personal ontology.

Figure 6-1. OntoFM initial screen with captions

Apart from these three panes, there are also some other objects that enrich the

OntoFM’s functionality. Starting with the search bar it is located on top of these panes;

decision which was documented in 5.1.2 subsection. The search bar consists not only

Chapter OntoFM Plug-in Presentation 53

from the search box but also from smaller panes which provide additional tools with

further functionality options, such as selecting the search region (all or selected folders

options) or search scopes (search in filenames/contents/related options). Next is the

location pane which is located above the search bar, allowing the user to overview the

folders selected from the folder hierarchy pane. Finally, graph visualization toolbar

located in the graph visualization pane, contains the graph visualization controls.

6.2 FUNCTIONALITY

OntoFM plug-in incorporates number of functions and services, which could be

categorized in three main groups: browsing searching and maintaining functions. Each

group, including its subcategories, will be explained below by using plenty image stumps

to illustrate the plug-in’s functionality and to better explain the features provided.

6.2.1 BROWSING THROUGH CATALOGUES AND ONTOLOGY ITEMS

Starting with the simplest task user can perform, browsing may be

implemented by using the file hierarchy on the left, navigating to location by selecting

the desired folder and browse through files. When selecting folder, the file system

hierarchy gets expanded and all first level subfolders are displayed. Also, the file list

pane contains all files located in the selected folder and the ontology view pane gets

updated so that it shows all the current relations to other files, folders, concepts or

instances of the selected folder.

Figure 6-2 shows an image stump of browsing case. As soon as the user

navigates through the folder hierarchy pane to the “University” folder and selects it, the

file list and the ontology visualization panes get updated to show the corresponding

information. In this example, the file list pane contains all the files located under the

“University” folder and the ontology visualization pane visualizes part of the personal

ontology, having the “University” folder instance node in the center and all directly

related items around it represented by nodes and connected by arrows. Each node has

different icon in front of it, representing its type. When node represents concept,

yellow circle is placed in front of the node label, whereas when it represents an instance,

Chapter OntoFM Plug-in Presentation 54

purple rhombus is located in the same spot. In case the node represents folder,

folder icon is placed in front of the node label whilst in case the node represents

file, system shell icon depending on file’s type is shown. In Figure 6-2 browsing case,

all files retrieved have the same icon as they all have Portable Document Format

(*.pdf). As far as arrows are concerned, each arrow has different color encoding,

representing in this way the type of each relationship. In this image stump, all arrows

have the same color as they represent the same type of relationship, “has_Location”.

However, the arrow directions indicate the existing hierarchical relation; i.e. “2011

Files” is contained in “University” folder which has location in “My Documents” folder.

Figure 6-2. Browsing the file system hierarchy. Contents of the selected folder "University" at the center and
corresponding ontology visualization on the right

In case the user wants to navigate through the concepts and instances of the

personal ontology, she has to double click on node, so that the ontology visualization

gets expanded. In Figure 6-3, the user has double clicked the “Ontology Visualization

Methods Survey” to view all the relations to other items such as files, folders, people,

etc. In this image stump, there are arrows with different coloring representing relations

such as “has_author”, “has_individual”, etc.

Chapter OntoFM Plug-in Presentation 55

Figure 6-3. Browsing the personal ontology Visualizing all relations to "Ontology Visualization Methods
Survey" after browing to the "University" folder

As long as the user continues navigating, at some point the ontology visualization

will be cluttered. The OntoFM plug-in anticipates this possibility by offering some

ontology visualization tools. Figures 6-4 and 6-5 show some ontology visualization

options which allow the user to limit the types of nodes or arrows shown. By clicking on

checkbox, not only the checkbox gets unchecked but also the corresponding nodes or

arrows get hidden. Apart from these two options, the user may hide all orphan nodes,

change the visualization layout to one of the supplied ones (alphabetical grid, radial,

spring layout, vertical or horizontal tree, vertical or horizontal directed tree), zoom-in or

out by scrolling or pin nodes, open or save graph, etc by pressing the available buttons.

Chapter OntoFM Plug-in Presentation 56

Figure 6-4. Ontology visualization options Show
specific node types

Figure 6-5. Ontology visualization options Show
specific arc types

6.2.2 SEARCH AND LOCATE FILES

One of the most common functions file browser offers is to help users locate

files in their personal file system. Depending on the information already known by the

user we can categorize the file hierarchy exploration task in two basic categories.

6.2.2.1 Perfect Exploration

The first category is perfect exploration in which the user knows both the file

name and location. When this information is available, the task of locating file is ideal

and straightforward. As described in the browsing case above, the user can use the file

hierarchy on the left, navigate to location by selecting the desired folder and browse

through files to find the one required.

6.2.2.2 Limited/Incomplete/Partial exploration

When the user does not have all the necessary information for locating the

needed file, she has to go with limited incomplete partial exploration In this case,

finding file is more difficult than in the perfect exploration case. Depending on the

available information, there are three possible cases:

 Location is known.

 All or part of the filename is known.

Chapter OntoFM Plug-in Presentation 57

 Metadata such as author, keywords from the content, date and other, are

known.

Depending on the above circumstances, there are some techniques which may be used

in order to locate file. These techniques are going to be described below.

The case of having available only the file location can be likened to the perfect

exploration case as even if only the location is known, the file hierarchy may be used to

locate the folder, and subsequently files within the folder may be browsed to locate the

requested file. Likely before and starting from the top, when the file location is known,

the user can navigate to the specific folder by leveraging the folder hierarchy pane on

the left. As soon as the folder gets selected, the file list pane located in the center of the

plug-in set-up, shows all files located under it, allowing the user to browse through

them. When the desired file is found, the user can double click it, as in common file

browser, to open or execute it. At this point, it should be mentioned that when browsing

in folder’s contents, file preview may be useful for an easier, quicker and more

visualized search.

Continuing with the case when location is not known, the search facility may be

employed. As mentioned in 5.1.1 subsection, since there is «File» concept in the

personal ontology, all file names are included to every implemented search. Taking

advantage of the search engine provided, the user may type all or part of the file name in

the search box. As soon as she starts typing, suggestion list appears automatically,

containing all possible keyword terms and making search easier through the entire

system. Figure 6-6 image stump shows the autosuggestion options which match to the

typed by the user letters “ont”.

Figure 6-6. Autosuggestion feature

Chapter OntoFM Plug-in Presentation 58

After selecting keyword or phrase from the suggestion list or typing one or

more terms, the user may press the “Enter” button of her keyboard or click the “Search”

button supplied by OntoFM’s user interface. The file system will be scanned and all

related to keywords files will be retrieved. Figure 6-7 is limited incomplete partial

search case example in multiple selected folders where the user knows that the file

name contains the keyword “ontology”. The file list pane contains all files related to the

keyword “ontology”, showing information not only about their location and type but also

their ranking concerning the keywords entered. The file list is sorted by ranking in

descending order, having in this way the most related file to the search keywords first.

The ontology visualization pane shows corresponding part of the personal ontology,

having pseudo node in the center of the visualization representing the keywords

entered by user and all directly related items around it. Each of the related items is

connected to the center node with pseudo relationship “has result”.

Figure 6-7. Search for "ontology" relevant items in multiple selected folders

The last case of the limited incomplete partial exploration is when file's

metadata such as the author, keywords from the content, date, etc, are known by the

user. Current file managers provide searching mechanisms for files with specific

metadata, or even specific content (full text search). The user can combine search

keywords and other metadata such as file type or date created. In some file managers,

Chapter OntoFM Plug-in Presentation 59

search criteria may be progressively refined to limit the number of results. However,

search is not always easy as many files could be retrieved while other metadata may not

filter results enough, or even the user may not remember exact keywords. To this end,

ontology based search was suggested to alleviate such search problems.

Figure 6-8 is continuation of the previous use case and an example of this

limited incomplete partial exploration case. Having available all files and items

related to the “ontology” term from previous accomplished search, the user wants to

limit her search by adding the term “iswc” as she knows that the requested file was

accepted in the ISWC conference. The file list and the ontology visualization panes get

updated and show the narrowed down search results.

Figure 6-8. Search for "ontology iswc" relevant items in multiple selected folders

6.2.3 ADVANCED SEARCH

Searching file is not always easy as in many cases large amount of results is

retrieved. The OntoFM plug-in provides the user with several advanced search options,

such as searching in specific folders or searching not only file names but also contents or

relations.

6.2.3.1 Select Multiple Search Folders

As mentioned in previous example user case, the OntoFM plug-in offers new

feature allowing the users to select multiple folders while browsing or searching. Figure

Chapter OntoFM Plug-in Presentation 60

6-9 shows an example case where the user has selected multiple folders. In order to

achieve multiple selection, the user must hold down the Ctrl key from her keyboard and

then select the desired folder. This procedure could be repeated in case the user wants

to select more folders from the file hierarchy list. With multiple folder selection, more

than one folders can be selected giving the user chance to have all files contained in the

selected folders available at once. When folder gets selected, the OntoFM plug-in

displays all files contained to the folder and inserts path label to the locations pane

with the new selected path. Before each path label, removal icon is shown, providing

fast removal method in case the user wants to unselect one folder but keep the rest of

the selected ones.

Figure 6-9. Multiple folders selection "University" and "2011 Files" have been both selected to view their
contents

This feature is useful as in this OntoFM plug-in version selecting folder and

showing all files located in its subfolders recursively is not feasible. Nevertheless, this

task can be simulated by exploiting the multiple folder selection capability through

selecting all the desired subfolders. Moreover, in case the user needs to limit her search

to specific folders only, she can select the desired ones from the file system hierarchy on

the left and filter her results straight ahead. Initially, all folders of the user’s personal

space are selected for searching. However, when the user selects one or multiple folders,

the «Search» option automatically changes from «All» to «Selected Folders».

Chapter OntoFM Plug-in Presentation 61

At this point, the following case should be discussed: Each personal computer has

many files with -usually- different names. The single restriction imposed is the non-

existence files with same name (including the extension) in the same folder. However,

their existence in different folder is allowed. When the user selects multiple folders, it

is possible that more than one of these folders have the same name (but different file

system path). In this case, the path labels in the locations pane would be

indistinguishable, and therefore the user could not easily identify and remove the

desired folder. To alleviate this problem, the system displays the full folder path when

the mouse hovers over the path labels in the locations pane.

6.2.3.2 Search criteria

Searches may vary regarding the terms entered in order to locate the requested

file. The keywords may be an entire file name or part of it, part of the file’s content (for

example in text files) or even concepts that are linked with the desired file.

To encounter all these cases, the OntoFM tool provides options to control

whether the search includes file names, file contents or concepts associated to files.

These options are available as checkboxes to the user so that more than one search

scopes may be selected.

6.2.4 RELATE FILE TO ITEMS

As mentioned in 5.1.1 subsection, we assume that each file and directory has

corresponding “File” instance in the personal ontology, so that there is no need for the

user to create new “File” instance in the personal ontology. However, information

concerning our everyday life change, so it is imperative to allow the user change the

personal ontology by letting her relate “File” instances to other instances or concepts.

File relating could be implemented in two ways; either by right clicking the file

and selecting the type and the target of the new relationship or by dragging and

dropping file on to node shown in the graph visualization pane.

Chapter OntoFM Plug-in Presentation 62

6.2.4.1 Relate File by Right Clicking

Starting with the first case, the user may right click on file from the file list pane,

select the “Add relation…” option and new frame will appear. As shown in Figure 6-10,

label containing the name of the file selected to be related, is located on the top of the

“Relate file to…” dialog. On its right, combobox containing all possible types of

relationships allows the user to select one of them to be added. Figure 6-11 shows all

candidate relations for “OntoFM Personal Ontology-based File Manager for the

Desktop” file contained in the candidate relations combobox. First of all, the “is a”

relation exists in case the user wants to relate the selected file to concept. Secondly,

“submittedIn”, “acceptedIn”, “authors” and “owner” relations exist due to the fact that

the file is “Demo_Paper” and inherits recursively all parental object properties. Finally,

“related_thing” relation exists due to the fact that the selected item is file.

Figure 6-10. Relate by right clicking file to concept/instance dialog with captions

Chapter OntoFM Plug-in Presentation 63

Figure 6-11. Candidate relations for “OntoFM Personal Ontology-based File Manager for the Desktop” file

After selecting the type of relation to be added, the label naming the types of

relation targets and the candidate targets list below it, get both updated. In Figure 6-10

the “is a” relation is selected and all possible “Concepts” are contained in the candidate

targets list whilst in Figure 6-12 “acceptedIn” relation is selected and all possible

“Conferences” and “Journals” are contained in the candidate targets list. As soon as the

user selects target from the corresponding list, the “Add relation” button gets enabled.

Figure 6-12. Creating new relation “OntoFM Personal Ontology-based File Manager for the Desktop” file
“acceptedIn” “ISWC 2011” “Conference/Journal”

Chapter OntoFM Plug-in Presentation 64

Below the “Add relation” button the existing relations list is located, containing

all existing relations followed by their targets regarding the file selected to be related.

When the user presses the “Add relation” button, the new selected relation between the

file and the target is created in the personal ontology. Candidate targets list gets updated

in order to remove the candidate target added. Likewise, the existing relations list

creates new row consisting of the type and the target of relation added and followed

by removal icon. As shown in Figure 6-12, not all of the existing relationships are

followed by removal icon, having the ones not followed grayed out. Such provision was

made in order the user not to be able to delete crucial relationships such as “hasName”,

“hasLocation”, or “is a” followed by “File”. As mentioned in 5.1.1 subsection, the personal

ontology’s structure should not be dramatically changed preventing in this way to end

up inappropriate to serve its purpose. This led to the characterization of these types of

relationships as System Relationships and they should get updated automatically by the

system.

In case the user wants to remove an existing relationship, she may click on the

removal icon of the desired relationship. The selected relationship will be removed from

the personal ontology and the existing relations list will be updated so that it does not

contain the relationship anymore. If the relation removed matches the selected relation

from the candidate relations combobox, candidate targets list will also get updated to

contain the target removed.

When the user does not want any more changes, she may click on “Close” button,

located at the bottom right corner.

6.2.4.2 Relate File by Dragging and Dropping

The other way of relating file to either concept or an instance is by dragging

and dropping the file to the corresponding node. Relating file to concept differs from

relating file to an instance, as the only type of relationship that may exist between

“File” instance, or even better any instance, and concept is the “is a” relationship. In

case the user drags and drops file on to concept node, an information dialog appears

informing the user whether the linking procedure was successful. However, in case the

user drags and drops file on to an instance node, as soon as she releases the mouse

button, new frame containing all possible relationships will appear. As shown in Figure

Chapter OntoFM Plug-in Presentation 65

6-13, the dialog consists of an array containing all possible relations that could be

assigned to the selected items. Each row consists of three fields; the first one is the

source file, the second one is the candidate relation and the last one the target on which

the file was dropped on to. The user may either select the relation she wants to be added

and then click the “Add” button or click the “Cancel” button and close the dialog.

Figure 6-13. Relate by drag and drop file to concept/instance dialog

This way of adding relationship is easier, faster and more direct. However, it is

useful only for adding relationships and not for removing the existing ones. To this end,

an evaluation is proposed to determine which method is mostly preferred by the users.

7
FUTURE WORK

PREVIEW
 Suggestions for future work

This final chapter gives some suggestions for the future work.

Chapter Future Work 67

The goal of this thesis was to implement personal ontology-based file manager,

offering mind map-oriented visualization to support user navigation within the

personal information base. The OntoFM plug-in implemented, while functional, is still

being developed.

We are planning to extend the functionality as to populate automatically the

personal ontology by extracting information from documents, images, e-mails, contacts,

multimedia and so forth. In this way not only we save the user large workload on

matching information items with the personal ontology but also we ensure that mapping

is implemented in proper manner keeping the personal ontology appropriate to serve

its purpose and retrieve the expected results when search is performed.

The way search results are displayed is still being surveyed and various options

will be tried to prevent cluttering. Additionally, in the current development stage all

concepts are treated with equal weight. However, if user activity is monitored, some

concept instances may be assigned higher weight values than others; prominent way

of setting concept instance weights is described in (Katifori, Vassilakis, Dix, 2008). For

densely populated personal ontology this may help users select concepts of

importance.

Tasks like creating folder or cut or copy file and then paste it to another

catalogue are not supported by this version of the OntoFM plug-in. However, it would be

useful if the user could execute such tasks directly from the OntoFM interface. Apart

from file system management, tools concerning ontology management should be offered

too, allowing the user to create fast and easy new concepts by using graphic tools.

Finally, we intend to start long term evaluation study of the OntoFM file

manager to reveal strong and weak points, to find new ways to improve its functionality

and better understand user filing and recovering patterns in semantically enhanced

environment. In the near future we plan to start an evaluation study on how the users

prefer to relate files to other ontology items.

VII References XIV

VII.REFERENCES

Alani, H. (2003). TGVizTab: An Ontology Visualisation Extension for Protégé. Proceedings of
Knowledge Capture (K-Cap'03), Workshop on Visualization Information in Knowledge Engineering.
Sanibel Island, Florida.

Barreau, D. (1995). Context as factor in personal information management systems. Journal of
the American Society for Information Science, Volume 46, Issue 5

Boardman, R. (2004). Improving Tool Support for Personal Information Management. London:
Doctoral dissertation, Imperial College.

Buzan, T. (1991). The Mind Map Book. New York: Penguin.

Cai, Y., Dong, X., Halevy, A., Liu, J., Madhavan, J. (2005). Personal Information Management with
Semex. In SIGMOD '05: Proceedings of the 2005 ACM SIGMOD international conference on
Management of data (pp. 921 923). New York, NY, USA: ACM Press.

Davies, M. (2011). Concept mapping, mind mapping and argument mapping: what are the
differences and do they matter? In Higher Education, Volume 62, Issue 3 (pp. 279-301).

Dong, X., Halevy, A., Nemes, E., Sigurdsson, S., Domingos, P. (2004). Semex: Toward on-the-fly
personal information integration. In Workshop on Information Integration on the Web (IIWEB).

Eclipse IDE for Java Developers (2001, November). Retrieved 02 14, 2012, from
http://www.eclipse.org/

Eppler, M. (2006). comparison between concept maps, mind maps, conceptual diagrams, and
visual metaphors as complementary tools for knowledge construction and sharing. In
Information Visualization, Volume 5, No. 3 (pp. 202-210).

Fernandez-Garcia, N., Sauermann, L., Sanchez, L., Bernardi, A. (2006). PIMO Population and
Semantic Annotation for the Gnowsis Semantic Desktop. Proceedings of the Semantic Desktop
and Social Semantic Collaboration, Volume 202 of CEUR-WS.

Gennari, J., Musen, M., Fergerson, R., Grosso, W., Crubézy, M., Eriksson, H., et al. (2003). The
Evolution of Protégé: An Environment for Knowledge-Based Systems Development. In
International Journal of Human-Computer Studies, Volume58, Issue 1 (pp. 89-123). Duluth, MN,
USA: Academic Press, Inc.

Giannopoulos, G., Bikakis, N., Dalamagas, T., Sellis, T. (2010). GoNTogle: Tool for Semantic
Annotation and Search. ESWC (pp. 376-380).

Gifford, D., Jouvelot, P., Sheldon, M., O'Toole, J. (1991). Semantic File Systems. Proceedings of
the 13th ACM Symposium on Operating Systems Principles, Volume 5 16-25.

VII References XV

Golemati, M., Katifori, A., Vassilakis, C., Lepouras, G., Halatsis, C. (2007). Creating an Ontology
for the User Profile: Method and Applications. Proceedings of the First IEEE International
Conference on Research Challenges in Information Science (RCIS). Morocco.

Graphviz (2004). Retrieved February 4, 2012, from http://www.graphviz.org/

Haystack (2004). Retrieved January 31, 2012, from http://simile.mit.edu/hayloft/

Henderson, S. (2009). Guidelines for the Design of Personal Document Management User
Interfaces. Personal Information Management 2009 Workshop. Vancouver.

Jambalaya (n.d.). Retrieved July 6, 2011, from http://protegewiki.stanford.edu/wiki/Jambalaya

Jones, W. (2008). Keeping found things found: The Study and Practice of Personal Information
Management. Burlington: MA: Morgan Kaufmann Publishers.

Jones, W., Teevan, J. (2007). Personal Information Management. University of Washington
Press.

Jones, W., Bruce, H., Dumais, S. (2001). Keeping found things found on the web. Proceedings of
the tenth international conference on Information and knowledge management pp. 119–126.

Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E. (2007, October). Ontology
Visualization Methods Survey. ACM Computing Surveys, Volume 39, Issue 4, Article No.: 10 p.
43.

Katifori, A., Poggi, A., Scannapieco, M., Catarci, T., Ioannidis, Y. (2005, June). OntoPIM: How to
Rely on Personal Ontology for Personal Information Management. ISWC Workshop on Semantic
Desktop pp. 78-81.

Katifori, A., Torou, E., Halatsis, C., Lepouras, G., Vassilakis, C. (2008). Selected results of
comparative study of four ontology visualization methods for information retrieval tasks.
Proceedings of the 2nd International Conference on Research Challenges in Information Science,
RCIS 2008 (pp. 133-140).

Katifori, A., Vassilakis, C., Dix, A. (2008). Using Spreading Activation through Ontologies to
Support Personal Information Management. International Conference on Intelligent User
Interfaces IUI.

Katifori, A., Vassilakis, C., Daradimos, I., Lepouras, G., Ioannidis, Y., Dix, A., et al. (2008). Personal
Ontology Creation and Visualization for Personal Interaction Management System. CHI.

Kljun, M., Dix, A., Solina, F. (November 2009). Study of Crosstool Information Usage on
Personal Computers: how users mentally link information relating to task but residing in
different applications and how importance and type of acquisition affect this.

Lepouras, G., Dix, A., Katifori, A., Catarci, T., Habegger, B., Poggi, A., et al. (2006). OntoPIM: From
Personal Information Management to Task Information Management. Personal Information
Management ACM SIGIR 2006 Workshop. Seattle, Washington.

Lucene (1997). Retrieved 14, 2012, from http://lucene.apache.org/core/

VII References XVI

Mahalingam, M., Tang, C., Xu, Z. (2003). Towards Semantic, Deep Archival File System.
Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems
pp. 115-121.

NavigOwl. (n.d.). Retrieved February 2, 2012, from http://klatif.seecs.nust.edu.pk/navigowl/

NEPOMUK. (n.d.). Retrieved February 2, 2012, from http://nepomuk.semanticdesktop.org

Noy, N. F., Fergerson, R., Musen, M. (2000). The Knowledge Model of Protégé-2000: Combining
Interoperability and Flexibility. In Proceedings of the 12th European Workshop on Knowledge
Acquisition, Modeling and Management (pp. 17-32). London, UK: Springer-Verlag.

OntoGraf (n.d.). Retrieved July 6, 2011, from http://protegewiki.stanford.edu/wiki/OntoGraf

OWL (2005). Retrieved March 5, 2012, from http://www.w3.org/TR/owl-features/

OWL API (2004). Retrieved 14, 2012, from http://owlapi.sourceforge.net/

OWLViz. (n.d.). Retrieved February 4, 2012, from http://protegewiki.stanford.edu/wiki/OWLViz

Pizza ontology (n.d.). Retrieved February 4, 2012, from http://www.co-
ode.org/ontologies/pizza/2007/02/12/

Protégé (n.d.). Retrieved July 6, 2011, from http://protege.stanford.edu/

Protégé bug report (2011, June 13). Retrieved June 28, 2011, from https://bmir-
gforge.stanford.edu/gf/project/owleditor/tracker/?action=TrackerItemEdit&tracker_item_id=3
324&start=0

Protégé OWL API (n.d.). Retrieved 14, 2012, from
http://protege.stanford.edu/plugins/owl/api/

Protégé team (n.d.). Retrieved July 6, 2011, from http://protege-ontology-editor-knowledge-
acquisition-system.136.n4.nabble.com/

Sauermann, L., Heim, D. (2008). Evaluating Long-Term Use of the Gnowsis Semantic Desktop
for PIM. Proceedings of the 7th International Conference on The Semantic Web (pp. 467 482).
Karlsruhe, Germany: Springer-Verlag.

Semex. (n.d.). Retrieved January 31, 2012, from http://db.cs.washington.edu/semex/

Sesame (1999). Retrieved June 28, 2011, from http://www.openrdf.org/

SPONGE. (2008). Retrieved February 4, 2012, from http://imu.ntua.gr/?q=node/201

	Dedication

	I. Acknowledgements
	II. Summary
	III. Περίληψη
	IV. Table Of Contents
	V. Table Of Figures

	VI. Table Of Tables
	1. Introduction
	1.1 Objectives and Motivation
	1.2 Thesis Structure

	2. Theoretical Framework
	2.1 Personal Information Management
	2.2 Graphic Representations of Ideas and Information

	2.2.1 Concept Maps

	2.2.2 Mind Maps

	2.2.3 Concept Maps Versus Mind Maps

	2.3 Software Platforms and Languages
	2.3.1 The Protégé Ontology Editor and Knowledge Acquisition System

	2.3.1.1 Architecture
	2.3.1.2 Knowledge Model

	2.3.2 Lucene Information Retrieval Library

	2.3.2.1 Indexing

	2.3.2.2 Searching

	2.3.2.2.1 Querying
	2.3.2.2.2 Scoring

	2.3.3 Web Ontology Language (
OWL)
	2.3.3.1 OWL
Components

	3. Related Work
	3.1 Personal Information Management Related Systems

	3.1.1 MIT Semantic File System (MIT
-SFS)
	3.1.2 Semantic, Deep Archival System (SEDAR)
	3.1.3 GoNTogle

	3.1.4 NEPOMUK
	3.1.5 SEMEX

	3.1.6 Haystack
	3.1.7 SPONGE

	3.2 Related Ontology Visualizations
	3.2.1 Navig
OWL
	3.2.2 OWLViz

	3.2.3 OntoGraf

	3.3 A Brief Comparison

	3.3.1 Comparing Related Personal Information Systems to OntoFM

	3.3.2 Comparing Related Visualizations to OntoFM Visualization

	3.3.3 Comparing Results

	4. Previous Efforts

	4.1 Earlier Implementation of OntoFM
	4.2 Problems and Solutions

	5. Development Process

	5.1 Assumptions

	5.1.1 General Assumptions

	5.1.2 Visualization Assumptions

	5.2 Specifications

	5.3 Architecture

	5.4 Implementation
	5.4.1 Platform and Tools

	5.4.2 Libraries

	6. OntoFM Plug-in Presentation

	6.1 Overview

	6.2 Functionality

	6.2.1 Browsing through Catalogues and Ontology Items

	6.2.2 Search and Locate Files

	6.2.2.1 Perfect Exploration
	6.2.2.2 Limited / Incomplete / Partial exploration

	6.2.3 Advanced Search
	6.2.3.1 Select Multiple Search Folders
	6.2.3.2 Search
criteria

	6.2.4 Relate File to Items

	6.2.4.1 Relate File by Right Clicking
	6.2.4.2 Relate File by Dragging and Dropping

	7. Future Work

	VII. References

