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Μέθοδοι διαχείρισης εικονικών αντικειμένων 
 

Περίληψη 

 Σε πολλά παραδείγματα διάδρασης ανθρώπου – υπολογιστή, η επικοινωνία με το σύστημα 
περιλαμβάνει απ’ ευθείας διαχείριση εικονικών αντιστοίχων πραγματικών (φυσικών) αντικειμένων. Καθώς 
τα υπολογιστικά συστήματα εξελίσσονται επιτρέποντας όλο και πιο εξελιγμένες συσκευές εισόδου που 
προσφέρουν ακριβέστερο έλεγχο και μεγαλύτερη ελευθερία, και η απεικόνιση γραφικών πλησιάζει 
βαθμιαία το φωτορεαλισμό, εμφανίζονται όλο και περισσότερες εφαρμογές εικονικής σύνθεσης 
αντικειμένων (κατασκευής). Στην εργασία αυτή παρουσιάζουμε μια εφαρμογή που επιτρέπει στο χρήστη να 
«λύσει» έναν απλό κατασκευαστικό 3Δ γρίφο (puzzle) αλληλεπιδρώντας απ’ ευθείας με τα κομμάτια που 
τον απαρτίζουν σε 3Δ χώρο και σε πραγματικό χρόνο, και αναλύουμε τις μεθόδους που χρησιμοποιήθηκαν 
καθώς και τα συμπεράσματα και τις διαπιστώσεις που προέκυψαν κατά την υλοποίηση. 

 Καθώς δεν υπάρχει περιορισμός ως προς τον τύπο των αντικειμένων που μπορούν να 
αναπαρασταθούν σε ένα εικονικό περιβάλλον, τα εικονικά αντικείμενα μπορεί να είναι αναπαραστάσεις 
αντικειμένων που δεν είναι «διαχειρίσιμα» στον πραγματικό κόσμο (αντικείμενα μεγάλου όγκου / βάρους) 
ή φανταστικών ή αφηρημένων αντικειμένων. Στην παρούσα εργασία, ο όρος «εικονικό» αναφέρεται στην 
αναπαράσταση αντικειμένων με φυσικά αντίστοιχα σε εικονικό (υπολογιστικό) περιβάλλον. 

 Με βάση αυτή τη θεώρηση γίνεται αναγκαία η αναπαράσταση των αντικειμένων σε περισσότερες 
«διαστάσεις» από την απλή οπτική αναπαράσταση: η διαχείριση των αντικειμένων εισάγει ζητήματα όπως 
η αναπαράσταση του βάρους, του ενεργού όγκου (των διαστάσεων του αντικειμένου ώστε να 
πραγματοποιούνται ρεαλιστικές αλληλεπιδράσεις) κτλ. 

 Στην υλοποίησή μας προσπαθήσαμε να παράγουμε μια επαρκή αναπαράσταση των αντικειμένων 
σαν φυσικές οντότητες με χαρακτηριστικά όπως βάρος, αλληλεπίδραση δυνάμεων και τριβές σε ένα 
δυναμικό κόσμο. 

 Οι προδιαγραφές και ο σχεδιασμός της εργασίας επηρεάστηκε κυρίως από την περιγραφή του 
διαγωνισμού 3DUI 2011. 

 Μια βασική επιδίωξη της εργασίας είναι να μελετήσουμε μεθόδους διάδρασης κατά τις οποίες 
εμπλέκονται και τα δύο χέρια του χρήστη. Επιδιώξαμε να μεταφέρουμε την αίσθηση ότι ο χρήστης έχει τα 
κομμάτια στη διάθεσή του σε ένα εικονικό «τραπέζι» και μπορεί να αλληλεπιδράσει με αυτά με τον τρόπο 
που θα χρησιμοποιούσε τα χέρια του. Κατ’ αυτή την έννοια δεν υπάρχει αναπαράσταση του χρήστη σαν 
κάποια ανθρωπομορφική οντότητα στο χώρο του puzzle, αλλά μόνο η αναπαράσταση των 
αλληλεπιδραστικών του «μέσων» (δύο σφαίρες που αναπαριστούν τη θέση του κάθε χεριού στο χώρο). 

 Εξετάζουμε τις περιπτώσεις συμμετρικής και μη συμμετρικής χρήσης των χεριών: στην πρώτη 
περίπτωση τα εικονικά χέρια του χρήστη είναι ισοδύναμα ως προς τη λειτουργικότητα και τον τρόπο που 
αυτή αποδίδεται με τις διαθέσιμες συσκευές εισόδου, ενώ στην δεύτερη υπάρχει διάκριση κυρίαρχου / μη 
κυρίαρχου (dominant / non dominant hand) για εξειδικευμένη λειτουργικότητα κατά περίπτωση η οποία 
υποστηρίζεται και με τη χρήση διαφορετικών συσκευών. Επίσης αναλύουμε τις διαθέσιμες επιλογές που 
αφορούν τον τρόπο με τον οποίο ο χρήστης κρατά και διαχειρίζεται ένα κομμάτι καθώς και τον τρόπο με 
τον οποίο αποδίδεται η κίνηση του χεριού. 
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Κάνουμε μια σύντομη παρουσίαση των μονάδων εισόδου που λάβαμε υπ’ όψη κατά το σχεδιασμό 
και παρουσιάζουμε τα χαρακτηριστικά τους, καθώς και μια ομαδοποίησή τους ως προς τον τύπο 
αλληλεπίδρασης που προϋποθέτουν και τη σχέση χρήστη – κίνησης – χώρου που επιβάλλουν. Πιο 
συγκεκριμένα γίνεται ξεχωριστά λόγος για συσκευές «εμβύθισης» (immersive), επιτραπέζιες συσκευές και 
κάποιες χαρακτηριστικές πειραματικές (με την έννοια «μη καταναλωτικές») συσκευές. 

Περιγράφουμε αναλυτικά την υλοποίηση και τις μεθόδους που ακολουθήσαμε. Αρχικά γίνεται μια 
αποτίμηση αρχικών προσεγγίσεων (APIs, εργαλεία ανάπτυξης) και καταγράφονται οι λόγοι για τους 
οποίους δεν επιλέξαμε τις συγκεκριμένες λύσεις. Αναφέρονται οι βιβλιοθήκες λογισμικού που 
χρησιμοποιήθηκαν στην υλοποίηση (η οποία έγινε σε γλώσσα C / C++) που παρουσιάζεται, και τα βασικά 
τους χαρακτηριστικά. Επίσης αναφέρονται οι βασικότεροι τύποι δεδομένων (ADTs) που δημιουργήθηκαν 
και γίνεται σύντομη δομική περιγραφή της εφαρμογής. 

Καθώς μια από τις κυριότερες απαιτήσεις της εφαρμογής ήταν να μπορούμε να ορίζουμε με απλό 
τρόπο νέους τύπους κομματιών του puzzle αλλά και νέους σχηματισμούς (γρίφους) προς λύση, 
παρουσιάζουμε τη μέθοδο που ακολουθήσαμε και τη μορφή των αρχείων που χρησιμοποιεί η εφαρμογή 
για να παράγει δυναμικά (κατά την εκτέλεση) νέα είδη κομματιών με συνεπή «φυσική» συμπεριφορά. Πιο 
συγκεκριμένα, ο μορφολογικός περιορισμός των κομματιών είναι ότι μπορούμε να θεωρήσουμε πως 
αποτελούνται από ένα σύνολο ομοιόμορφων κύβων, οι οποίοι «συγκολλούνται» για να παράγουν το κάθε 
σχήμα. Κατ’ αυτό τον τρόπο, το αρχείο περιγραφής αποθηκεύει τις θέσεις των κύβων που παράγουν το 
κάθε κομμάτι σαν ακέραιες συντεταγμένες σε χώρο αντικειμένου – model space (και όχι σε χώρο κόσμου – 
world space). 

Στη συνέχεια αναλύονται οι επιλογές που κάναμε σχετικά με την απεικόνιση του χώρου του puzzle. 
Οι επιλογές αυτές αφορούν: 

• Την απεικόνιση των κύβων και των κομματιών, και «φυσική» τους εμφάνιση 
• Την απεικόνιση των «δρομέων» (cursors) που αναπαριστούν τα χέρια του χρήστη και τη λογική με βάση 

την οποία σχεδιάστηκαν 
• Την απεικόνιση του εικονικού μας «τραπεζιού» - εδάφους και τη χρήση του για την καλύτερη απόδοση 

αίσθησης βάθους, προοπτικής και σχετικής θέσης των κομματιών 
• Τη διαχείριση της εικονικής κάμερας, ή αλλιώς τη δυνατότητα ελέγχου του σημείου παρατήρησης που 

δίνεται στο χρήστη 
• Τη μέθοδο απεικόνισης σκιών καθώς τα οφέλη που παρουσιάζει αυτή στην καλύτερη αντίληψη θέσης 

και απόστασης των κομματιών 
 
Επεξηγούνται η χρήση της μηχανής προσομοίωσης φυσικής, και ο τρόπος που τα κομμάτια του puzzle 

αποκτούν υπόσταση στον χώρο του που πραγματοποιείται η διάδραση. Επίσης οι μέθοδοι με τις οποίες το 
σύστημα «αντιλαμβάνεται» τις πράξεις του χρήστη (πώς ανιχνεύεται το οτι «αγγίζουμε» ενα κομμάτι, πως 
πιάνουμε ή αφήνουμε ένα κομμάτι). Τέλος γίνεται αναφορά στους περιορισμούς που επιβάλλει η μηχανή 
προσομοίωσης ως προς την ακρίβεια, ή θέματα που έχουν να κάνουν με την ποιότητα της αλληλεπίδρασης 
και περιγράφονται οι λύσεις που υιοθετήσαμε. Σε κάποιες περιπτώσεις «αποκλείσαμε» κάποια 
χαρακτηριστικά της προσομοίωσης με αποτέλεσμα να μοιωθεί ο ρεαλισμός του τελικού αποτελέσματος, 
κερδίζοντας όμως έτσι σε ευχρηστία. Αυτό είναι και ένα από τα θέματα που διερευνώνται στα 
συμπεράσματα. 

 
Κλείνοντας με τα θέματα υλοποίησης, παρουσιάζονται οι λύσεις που εξετάσαμε για το θέμα της 

καταγραφής της ορθής λύσης του γρίφου (κατά την κατάσταση «προγραμματισμού» του), και της 
αξιολόγησης της λύσης κατά την κατάσταση παιχνιδιού. Παρουσιάζονται 3 προσεγγίσεις, τα προβλήματα 
που παρουσίασαν και οι περιορισμοί τους και τελικά γιατί καταλήξαμε στη λύση που υλοποιήθηκε 
απορρίπτοντας τις 2 άλλες. 
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Ειδικότερα παρουσιάζονται 3 μέθοδοι καταγραφής: 
• Καταγραφή των σχετικών θέσεων κάθε ζεύγους κομματιών 
• Καταγραφή των σημείων επαφής των ελεύθερων επιφανειών κομματιών 
• Δημιουργία ενός περιέχοντος 3Δ κάναβου (occupancy grid) για τους κύβους που αποτελούν τα 

κομμάτια – λύση που προτιμήθηκε 

Τέλος αναλύονται τα συμπεράσματα που προέκυψαν γύρω απο τους εξής θεματικούς άξονες: 

• Ποιότητα προσομοίωσης και ρεαλισμός σε σχέση με ευχρηστία και ευκολία χειρισμού 
• Αλληλεπίδραση με τα δύο χερια και πως αυτή προκύπτει σε ένα περιβάλλον ανοιχτό σε προσαρμογή / 

εξέλιξη του χρήστη 
• Η αφαιρετική αναπαράσταση των χεριών του χρήστη και τα οφέλη της 
• Η δυνατότητα του χρήστη να αλλάζει την οπτική γωνία του παιχνιδιού και η σημασία της στη 

δυνατότητα χειρισμού των κομματιών και της κατασκευής 
• Η σχέση που έχει η οικειότητα του χρήστη με μια συσκευή εισόδου με την ευκολία χειρισμού. Η 

αντίθεση εδώ είναι ανάμεσα σε μια γνωστή αλλά πιθανόν λιγότερο κατάλληλη για το συγκγκριμένο 
σενάριο συσκευή, σε σχέση με μια πληρέστερη λειτουργικά αλλά «άγνωστη» συσκευή. 
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Abstract 

In many examples of human-computer interaction, interfacing with the system involves direct 
manipulation of virtual counterparts of physical objects. As computer systems evolve allowing increasingly 
sophisticated input devices with finer control and greater freedom, and graphics display is gradually reaching 
photo – realism, virtual assembly applications are not uncommon. We present an application that allows the 
user to solve a simple 3D Puzzle by directly interacting with the building blocks (pieces) in 3D space, and 
discuss the methods used as well as the insights gained in the course of implementation. 

 

 

Part 1 – The Problem 

1) Introduction 

In this work we implement an application that allows solving a simple 3D puzzle by directly 
interacting with the puzzle pieces. Our aim is to evaluate different approaches and identify at least some of 
the problems that arise when trying to provide the user with a method of direct interaction with a 
compound virtual object. 

As there is no limitation to the type of objects that can be represented in a virtual environment, 
virtual objects can be representations of items that could not be physically manipulated in the real world (for 
example immobile objects or objects of excessive size / weight) or entirely fictional or abstract objects. Ιn 
this study however, we are mainly interested in items with physical counterparts, with well-known or 
obvious affordances. As such the term “virtual” here refers to virtual representations of physical items in a 
virtual environment. 

In the latter case there are certain aspects of the representation of a virtual item that should be 
taken into account. Apart from the visual representation of an object, direct manipulation also introduces 
issues of representing the “weight” of an object – at least in a relative fashion to the weight of other objects 
of the same virtual world, the volume of the object, which of course refers not only to the volume perceived 
by the user through graphically rendering the object, but also the interactive volume of the object – meaning 
collision space, interaction with other objects (such as joining, breaking) and so on. 

In the present implementation, we tried to give an adequate representation of the game objects as 
physical items in a (restricted) dynamic world, having properties like weight, friction and gravity, and 
presenting natural behavior (collisions and force response). The aspect of force feedback that would provide 
the user with additional tactile data has been left for further study (see also §10.1). 
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2) Related work 

2.1) The 3DUI 2011 contest 

The description and specifications of the present work, were mainly inspired by the call to the 3DUI 
2011 contest [1]. The terms of the content hint rather than explicitly specify that the goal of the interaction 
is to assemble a puzzle given its building blocks, and not to find a way to disassemble it in a “Cube Lock” 
puzzle fashion. We considered the two cases to be symmetrical in terms of the way the user manipulates the 
puzzle building blocks, and as such no special conclusions would be reached by favoring either case. Our 
implementation presents the user with a set of “free” pieces, the goal being to assemble the puzzle. 

Video presentations of the results of the contest have been available: 

Felipe Bacim, Cheryl Stinson, Bireswar Laha and Doug Bowman (The Fighting Gobblers team, 
Department of Computer Science and Center for Human Computer Interaction, Virginia Tech) present a 
method to not only build a puzzle but essentially build the pieces in an interactive manner, by selecting 
“occupation” space in a fixed grid [19]. Their approach uses a custom immersive controller (for the term see 
§2.5.1, “Immersive Input – Controllers”) to manipulate the puzzle space itself, as well as make selections by 
pointing in an on – screen menu. 

Billy Lam, Yichen Tang, Ian Stavness and Sidney Fels (Electrical and Computer Engineering, University 
of British Columbia) use their pCubee device [27], [28] to allow the user to have direct control over the 
puzzle 3D space view [20]. pCubee is a multi – faceted display that credibly creates the illusion of holding a 
transparent box with real contents. 

Steven Maesen, Patrik Goorts, Lode Venacken, Sofie Notelaers and Tom De Weyner (Hasselt 
University) presented an augmented reality environment that allows direct manipulation of real-world 
objects. The system tracks the motion of the “controller” real objects, and translates it to translations and 
rotations of the virtual ones [21]. This has the advantage of immediate tactile feedback (volume, weight) 
while the augmented reality display presents the state of the virtual puzzle world to the user. Of course, 
here as in any augmented reality system, the coupling of virtual and real objects is purely artificial – what the 
user “perceives” she/he is handling, does not necessarily coincide with the item at hand. 

Tuukka Takala and Roberto Pugliese (Aalto University, Department of Media Technology) presented 
a solution based on their CAVE – like immersive environment RUIS (Reality – based User Interface System), 
that also uses Wiimote and similar controllers [22]. 

Dmitri Shuralyov and Wolfgang Stuerzlinger (Department of Computer Science and Engineering, York 
University) presented a more “conventional” solution, using standard desktop equipment, and providing 
object manipulation that resembles a 3D modeling application environment. [23] 

The contest entry by Masashi Kitagawa and Tsuyoshi Yamamoto (Hokkaido University) is not a virtual 
environment that allows the user to interact with virtual objects to solve or construct a puzzle, but rather an 
augmented reality system that offers a step by step guidance to solving a real – world puzzle with actual 
pieces [24]. Obviously the system must know the puzzle structure, and be able to recognize that a certain 
step has been carried out. The display system combines a tracker with a projector in order to monitor the 
piece positions and display instructions and information on the puzzle space plane (piece numbers, pointers 
and schematics) 
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Toni Da Luz presents a method to manipulate a cursor (actually an action 'space' displayed as a box) 
in order to carry out all interactions with puzzle pieces (selecting, moving rotating and placing) [26] using the 
novel multi – touch device Cubtile [25] by Immersion SAS. 

Henrique Debarba, Juliano Franz, Vitor Reus, Anderson Maciel and Luciana Nedel (Instituto de 
Informatica, Universidade Federal do Rio Grande do Sul) demonstrate a very interesting combination of 
input controllers: in this proposal, there is explicit distinction of dominant / non dominant hand, in the form 
of greater / lesser demand for movement accuracy respectively. The dominant hand is responsible for single 
piece manipulation using a Phantom Omni device (see 2.5.2 Desktop Controllers) while the non – dominant 
hand alters the orientation of the puzzle space using data gathered by tracking an iPod smart phone. The 
implementation also incorporates haptic feedback through the Phantom Omni, view (camera) freedom 
through head tracking, and stereoscopic vision. [30] Our own take on hand differentiation is discussed in 
(2.2, “Virtual hand utilization – Symmetry”) 

 

2.2) Other works on virtual object manipulation 

Direct manipulation of virtual objects in a virtual environment, spans a wide range of issues: input 
methods, means of registering the user's actions in the system, object interactions and behaviors in the 
system world, and so forth. 

Yong Wang, and Sankar and Uma Jayaram, present some aspects of representing the objects 
behaviors in a physically correct manner [2]. Except from providing with a credible natural representation 
(which we have “bypassed” in some cases, as discussed in §4.1) the purpose of using a real-time physics 
simulation engine in our implementation, was to address the type of issues presented here. 

Lee, Billinghurst, and Woo have developed an augmented reality method of bimanual user input 
through a custom built pair of tangible cubes that support the screw – driving and block assembly methods 
they propose [5]. The user interacts directly with the cubes, while a set of enclosed magnets can track their 
relative position and motion in real space, and translate the data accordingly to detect the user's 
movements that indicate intent to fit together or decouple the objects at hand. 

Andrews, Mora, Lang and Lee present an implementation of object manipulation in a gaming 
context (using the SensAble Phantom Omni device presented in §4.2) in the form of HaptiCast [3]. Quoting 
from the game description “In HaptiCast, players take on the role of a wizard, with a set of haptically – 
enabled wands to help them do battle and interact with their environment”. In the context of HaptiCast, the 
issue of dominant and non – dominant hand is apparent. 
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Figure 1 : Playing HaptiCast 

 

Another attempt to convey the avatar's physical presence in a game is the 2002 first person Role-
Playing game Arx Fatalis by Arkane Studios [4]. In Arx Fatalis the player, besides fighting with “traditional” 
pseudo – medieval weapons, can cast magical spells in an interesting fashion: in order to cast a spell she/he 
must first discover the appropriate runic stones which depict a sequence of gestures in the form of an 
abstract shape, and then “draw” the shape using mouse movement, mapping in-game to the avatar's hand. 

 

  

  

Figure 2: Arx Fatalis spell casting with gestures and rune stones 

14 
 



Kiyokawa, Takemura, Katayama, Iwasa and Yokoya have implemented the VLEGO system [10], a 
prototype immersive modeler that employs features of toy blocks to give flexible two – handed interaction 
for 3D design. In this work many interesting issues about block collision states are discussed. Also, VLEGO 
highlights the need to make location and orientation of primitives discrete. 

Brandl, Forlines, Wigdor, Haller and Shen [33] discuss the benefits of differentiating and combining 
dominant and non – dominant hand in the context of bimanual pen and direct – touch interaction on 
horizontal (drawing) surfaces. 

Hinckley, Czerwinski and Sinclair present a similar case of differentiation between hands [9] using a 
touchpad for the non – dominant hand and a customized mouse for the dominant hand, and show detailed 
transition diagrams for hand states during interaction. 

Kunert, Kulik, huckauf and Fröhlich compare tracking- and controller- based input for complex 
bimanual interaction in virtual environments in [8]. One of the results of interest to the present work is that 
maneuvering could be performed easier with a controller – based device. 

Murayama, Bougrila, Luo, Akahane, Hasegawa, Hirsbrunner and Sato present SPIDAR – G [6], a novel 
haptic 6DOF interface for bimanual VR interaction. SPIDAR provides effective force and torque feedback by 
design. 

Ott, Thalmann and Vexo discuss the benefits and difficulties in using mixed – reality environments 
for industrial training [34], using an augmented reality implementation with force feedback 

Manipulation of virtual objects is very important in cases where the physical counterparts are not 
necessarily available, or too risky to handle. Such a case is manipulation of objects of cultural heritage for 
purposes of reassembly efforts. Solutions specifically targeted to this purpose are presented in [35] and [36]. 
The term “solutions” here reflects the fact that the applications presented do not rely solely on software 
approaches, but also introduce custom devices that (in the case of ArcheoTUI) even involve foot pedals. A 
more specific discussion concerning modality relative to the ArcheoTUI environment can be found in [38]. 

Adams, Klowden and Hannaford [37] conduct an experiment in training users to perform a manual 
task through a force feedback enabled virtual enviroment, and discuss the results. 

Schlattmann and Klein discuss the issues arising from using directly tracking the user's hands to 
provide for markerless 3D interaction. One of the main problems in this context is that there is no direct way 
to indicate a “switch”, for example a grab on – off button (see also §3.2.2), so the relative positioning of 
hands is used to indicate “grab”, “release” and so on. 
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Part 2 – Design 

3) Bimanual object manipulation 

For our implementation we chose not to represent the user as an anthropomorphic entity in the 
puzzle space. Focus of the application is what the user can do with his hands, provide adequate response to 
the hand movement, and restrict his interaction with the available puzzle building blocks, in order to provide 
a form of “confined sandbox”. 

The omission of some kind of avatar for the user 

(a) Removes the burden of controlling the avatar, providing for a more direct experience for the user (as if 
she/he holds the items in his own hands) 

(b) Simplifies the input method and allows for every degree of freedom provided by the controllers to be 
mapped to hand movements and 

(c) Removes the visual obstruction of a redundant entity – that would be the avatar model - besides the 
puzzle pieces and cursors from the puzzle space. 

In a real world analogy, the intention was to provide freedom in a confined environment. Figure 2 
depicts an instance of laboratory handling of radioactive materials, as an analogy of our view of the puzzle 
space. 

 

 

Figure 3 : Laboratory analogy 
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3.1) Virtual hand utilization – Symmetry 

Virtual hand utilization refers to the manner in which the user's hands representations in the puzzle 
space are enabled or limited. It has nothing to do with the physical ability of the user to interact with the 
provided controllers. This said, we considered two main “paradigms”: 

 

3.1.1) Symmetrical hands 

User “hands” are equivalent in terms of ability to manipulate pieces as well as their binding / 
response to input devices. This approach implies use of similarly equivalent input devices. 

Advantages 

• User does not have to provide direct or indirect information about his own handedness – which in 
addition would be considered intrusive – and is allowed to evolve his interaction with the system as 
she/he  sees convenient. 

• There are no “special cases” considering the implementation, both virtual hands are considered equal in 
terms of system functionality 

 

3.1.2) Non-Symmetrical Hands – use of dominant / non-dominant hand 

User defines a dominant and a non – dominant hand (potentially by setting a “handedness” option). 
We considered this option in the sense that usually we perform tasks with greater precision with our 
dominant hand, and this could be mapped by assigning it a controller with greater granularity / more 
degrees of freedom. 

Advantages 

• We tend to automatically assign different tasks to each hand when dealing with bi-manual operations. 
Input device differentiation naturally maps this innate tendency. 

• Better utilization of controller's response / granularity. 

Disadvantages 

• Differentiation of user's hands is artificial / enforced → user must setup the controller to be used by 
each hand based on a priori knowledge of what suits him. 

• Unless we provide with a method to identify the dominant hand implicitly, we force the user to explicitly 
present a characteristic that should be naturally transparent in a real – world scenario. 
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3.2) Dragging vs. Grabbing 

Considering the state on “holding” a virtual object in each of the virtual “hands”, we discussed two options: 

3.2.1) Dragging 

When the system registers required proximity (“touching”) between a hand representation in the 
virtual world (a cursor) and a puzzle piece, the user can press a controller switch to indicate that she/he 
seizes the piece. In order to keep the piece at hand, she/ he must keep the switch suppressed. Releasing the 
switch corresponds to releasing the grip to the piece, so the cursor / hand is again considered empty. 

3.2.2) Grab on/off 

When the state described above is detected, the user presses and releases a controller switch to 
indicate that the piece is actively in the corresponding hand (cursor). The piece remains controlled by the 
grabbing cursor until the user presses and releases the same switch. 

3.2.3) Comparison 

Although the dragging method seems to map more naturally to the notion of “holding” an item, 
early tests indicated that keeping a switch pressed can be a burden to the users hands, and makes the use of 
the controller more complex and – interestingly – more unnatural. Besides, the percentage of time the user 
is holding an item, is expected to be far greater the one spent with empty cursors, so taxing the user with 
one more button to press is considered unnecessary. This option however, might have some sense coupled 
with using force feedback in order to provide a “full” tactile experience (sense of weight / pressure) while 
carrying an item. As a result we decided in favor of the grabbing option for its greater ease of use. 

We can argue that for the 3D mouse, where there is not button on the cap controlling motion and 
manipulating a 3D object requires precise movements (possibly taking longer), dragging was considered 
difficult for users. In the case of a joystick or a haptic device such as Phantom Omni it may have been easier 
(especially if manipulation movements are short). 

 

3.3) Full Arm - Wrist mapping vs. Move – Rotate decoupling 

Sophisticated input devices such as the 3Dmouse tested offer 6 degrees of freedom (represented with 
registering movement in all axes) that can potentially map the full spectrum of the movement of a human 
hand. For the purpose of this work we can recognize two major forms of hand motion: 

• arm motion which maps to translating an active item in the puzzle world and 

• wrist motion which maps to rotating an active item in the puzzle world around its current world position 

The immediately obvious approach was to try and give the user the full range of hand motion by 
mapping the whole axis set provided by the controller to item rotation and translation simultaneously. User 
testing, initially gave the impression that this is counter intuitive in the case of 3Dmouse. 

Arm motion and wrist motion require quite different activation of our motor facilities and provide a very 
different feedback. Arm motion is targeted to longer range movement, fast and with no particular precision 
requirements (though we can perform very accurately) while wrist motion is targeted to working with finer 
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control over smaller items at hand, and allows for very precise movement. Given an input device such as a 
3Dmouse, the user is expected to map these different types of motion to one device that provides the same 
feedback for every type of movement (the user receives the same “impedance” from the controller for every 
axis), and use a limited range of movement (essentially only wrist movement) for all actions. 

In the course of implementation, we considered the solution of adding a switch to indicate that the 
controller was in “piece translate” or “piece rotate” mode. This solution however added another artificial 
barrier to the actual translation of the user's movements and consequently lessened the experience of direct 
piece manipulation (as was expected by adding a new mode in user interaction). 

After performing some more tests, we concluded that the solution lied simply on carefully adjusting the 
controller's input to a more suitable translation / rotation speed and adding some thresholds to alleviate the 
controller's sensitivity, in order to to match the expected accuracy. The result was that the “collateral” 
rotation during translation or vice – versa was within acceptable limits, and user experience became more 
smooth and predictable. 

 

4) Input devices 

In this section we briefly present some of the options for input controllers available today and their 
primary attributes. The majority of these devices are market standards in one way or another, however, we 
also present a few experimental methods of user input. 

 

4.1) Immersive Input – Controllers 

We use the term immersive here to describe the type of controllers that take into account the user's 
spatial interaction properties, such as bodily movement, posture, and speed. This kind of input devices is 
rapidly becoming dominant in home entertainment appliances, and actually, the great majority of 
applications that take advantage of this technology is video games. 

 

Nintendo Wii Remote (default) controller 

 

Figure 4: The Nintendo Wii Remote 
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• Motion sensing (vertical axis, left – right horizontal axis, horizontal rotation) 
• infrared optical sensor 
• 8xDigital buttons (A, B, +, -, Home, 1, 2, Power) 
• Digital D – pad 
The Wii remote is the primary controller for the console. It uses a combination of built-in accelerometers 
and infrared detection to sense its position in 3D space when pointed at the LEDs within the sensor bar. This 
design allows users to control the game using physical gestures as well as traditional button presses. The 
controller connects to the console using Bluetooth and features rumble as well as an internal speaker. 

Source : http://en.wikipedia.org/wiki/Wii 

 

Microsoft Kinect 

 

Figure 5: The Microsoft Kinect 
Sensor 
• Color and depth-sensing lenses 
• Voice microphone array 
• Tilt motor for sensor adjusment 
 
Field of View 
• Horizontal field of view: 57 degrees 
• Vertical field of view: 43 degrees 
• Physical tilt range: ± 27 degrees 
• Depth sensor range: 1.2m – 3.5m 
 
Data Streams 
• 320x240 16 bit → 30 fps 
• 640x480 32 bit → 30 fps 
• 16 bit audio 16 Khz 
• Skeletal tracking system 
• Up to 6 people, 2 active players 
• 20 joints per active player 
• Can map active players to live avatars 
 
Audio 
• LIVE party chat and in-game voice chat 
• (requires Xbox LIVE Gold Membership) 
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• Echo cancellation system 
• Multiple speech recognition 
 
• The RGB camera takes pictures and sends via USB to the computer. 
• The Depth sensors are used to measure the 3rd dimension that is the Depth of the object from the camera. 
• The Microphones are used to take the Audio input to the computer via USB. 
• The Motor and Tilt mechanism is used in the case some object in front of the camera is to be tracked in 

its motion 
 
Source : http://entreprene.us/2011/03/09/microsoft-kinect-technical-introduction/ 

 

PlayStation Move 

 

Figure 6: The PlayStation Move 
Motion controller 

• Motion sensing (three-axis accelerometer, three-axis angular rate sensor) 
• Location tracking (magnetometer, object recognition (via PlayStation Eye)) 
• 1 Analog trigger (T) 
• 8 buttons ( , , , , Start, Select, Home, Move) 

Navigation controller 

• Analog stick 
• D-Pad 
• 1 Analog trigger (L2) 
• 5 buttons  ( , , L1, Home, L3) 

The PlayStation Move motion controller features an orb at the head which can glow in any of a full range of 
colors using RGB light-emitting diodes (LEDs). Based on the colors in the user environment captured by the 
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PlayStation Eye camera, the system dynamically selects an orb color that can be distinguished from the rest 
of the scene. The colored light serves as an active marker, the position of which can be tracked along the 
image plane by the PlayStation Eye. The uniform spherical shape and known size of the light also allows the 
system to simply determine the controller's distance from the PlayStation Eye through the light's image size, 
thus enabling the controller's position to be tracked in three dimensions with high precision and accuracy. 
The sphere-based distance calculation allows the controller to operate with minimal processing latency, as 
opposed to other camera-based control techniques on the PlayStation 3. A pair of inertial sensors inside the 
controller, a three-axis linear accelerometer and a three-axis angular rate sensor, are used to track rotation 
as well as overall motion. An internal magnetometer is also used for calibrating the controller's orientation 
against the Earth's magnetic field to help correct against cumulative error (drift) by the inertial sensors. The 
inertial sensors can be used for dead reckoning in cases which the camera tracking is insufficient, such as 
when the controller is obscured behind the player's back. 

Source : http://en.wikipedia.org/wiki/PlayStation_Move 

 

4.2) Desktop Controllers 
Common desktop mouse 

 

Figure 7: Common desktop mouse 
Implementation variants 

• Mechanical mice 
• Optical and Laser mice 
• Inertial and gyroscopic mice 
• 3D mice 
• Tactile mice 
A mouse is a pointing device that functions by detecting two – dimensional motion relative to its supporting 
surface. Physically, a mouse consists of an object held under one of the user's hands, with one or more 
buttons. It sometimes features other elements, such as "wheels", which allow the user to perform various 
system-dependent operations, or extra buttons or features that can add more control or dimensional input. 
The mouse's motion typically translates into the motion of a cursor on a display, which allows for fine control 
of a graphical user interface. 
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Source : http://en.wikipedia.org/wiki/Mouse_(computing) 

 

3D Mouse (input method used) 

  

Figure 8: The 3DConnexion CADman and Space Pilot 3D mice 
• 6DoF devices for quickly orienting 3D objects or views  
• Devices that enable working with both hands simultaneously (for example, a 3D mouse in one hand and 

a traditional 2D mouse in the other hand) 
Commonly utilized in CAD applications, 3D modeling, animation, 3D visualization and product visualization, 
users can manipulate the controller's pressure-sensitive handle (historically referred to as either a cap, ball, 
mouse or knob) to fly through 3D environments or manipulate 3D models within an application. The appeal 
of these devices over a mouse and keyboard is the ability to pan, zoom and rotate 3D imagery 
simultaneously, without stopping to change directions using keyboard shortcuts or a software interface 

Source : http://en.wikipedia.org/wiki/3DConnexion, 
http://www.3dconnexion.com/fileadmin/user_upload/manuals_docs/english_intl/3dx_whitepaper_cadpayb
ack_en_intl.pdf 

 

 

SensAble Phantom Omni 

 

Figure 9: The SensAble Phantom Omni device 
• 6 degree – of – freedom positional sensing 
• Two integrated momentary switches on the stylus for ease of use and end – user customization 

23 
 

http://en.wikipedia.org/wiki/Mouse_(computing)
http://en.wikipedia.org/wiki/3DConnexion
http://www.3dconnexion.com/fileadmin/user_upload/manuals_docs/english_intl/3dx_whitepaper_cadpayback_en_intl.pdf
http://www.3dconnexion.com/fileadmin/user_upload/manuals_docs/english_intl/3dx_whitepaper_cadpayback_en_intl.pdf


• Stylus – docking inkwell for automatic workspace calibration 
The SensAble Phantom Omni device is a 6 DoF desktop input device that can represent 3D rotations and 
translations as well as provide application defined force feedback through a series of motors. This feature 
makes for good use in physics simulation – enabled environments, as it can convincingly convey the sense of 
weight, resistance and friction. 

Source : http://www.sensable.com/haptic-phantom-omni.htm#techspecs 

 

4.3) Nonstandard Controllers 

Color glove 

 

Figure 10: (Left, Middle) Color Glove tracking system, (Right) A 3D rendering of a Color Glove interaction 
environment 

Quoting from the paper : “Our approach uses a single camera to track a hand wearing an ordinary cloth 
glove that is imprinted with a custom pattern. The pattern is designed to simplify the pose estimation 
problem, allowing us to employ a nearest-neighbor approach to track hands at interactive rates” 
See [11] 

 

PCubee 

 

Figure 11: The PCubee 3D display device 
Quoting from the paper : “The pCubee display uses five 5” LCD panels arranged as five sides of a box. Three 
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graphics pipelines drive the screens on the sides of the box visible to the user. A Polhemus Fastrak is used to 
track the pCubee and users’ head in order to couple the user’s view of the box to the rendered perspective 
on each screen. This creates the illusion for the user of looking into a box with clear sides to see a small 
virtual diorama contained within.” 
See [27], [28], [29] 

 

Part 3 – Implementation 

5) Initial Approaches 

Before deciding in favor of the current implementation, we experimented with a few other 
alternatives considering authoring tools and APIs 

 

5.1) Vizard VR Toolkit 

http://www.worldviz.com/products/vizard/index_b.html 

5.1.1) Features 

Vizard toolkit is a suite that enables visual editing of 3D environments, enables custom functionality 
through Python scripting and has good out – of – the – box support for numerous input devices. It also 
provides a built-in physics (rigid body dynamics) library, accessible through its Python API. It is a combination 
of an authoring environment with a built – in 3D editor, and a simple development environment for Python 
development. 

 

 

5.1.2) Why not? 

During experimenting with Vizard we came across some of its aspects that could not support well our course 
of action: 

• The only predefined items of the puzzle world is the surface on which the pieces lie when idle, and the 
two hand cursors. Everything else (namely the pieces that comprise the puzzle instance) are dynamically 
created and added to the world, based on the corresponding description files of the puzzle (see §3.4.1 
and §3.4.2). In this sense, the editing options of the environment were not really utilized and no 
productivity improvement gained. 

• At the time of experimenting with Vizard, there was no obvious way to couple the rigid body spatial 
properties (translation, orientation / rotation) with their graphical representation spatial properties 
counterparts. The composite physical objects would react properly during the world stepping simulation 
phase, but when moved dynamically in the world, their “physics” position and their rendered position 
would not be in sync. 
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• Vizard communication with 3DMouse devices we tested was immediately successful. On the other hand, 
the Phantom Omni device we tested proved unreliable in terms of cooperation with the system, 
although this can't be really attributed to the Vizard environment but to the overall system 
configuration. For device descriptions, see §2.5.2. This also was one of the technical (that is, not design 
oriented) reasons, that testing with the Phantom Omni became less of a priority. 

 

5.2) Panda3D Game Engine  

http://www.panda3d.org/ 

5.2.1) Features 

Panda is a full - blown 3D rendering engine with a strong game bias, which has been used in 
commercial products. Quoting from the “Introduction to Panda3D” page of the manual [32]: 

“Panda3D was developed by Disney for their massively multiplayer online game, Toontown. It was released 
as free software in 2002. Panda3D is now developed jointly by Disney and Carnegie Mellon University's 
Entertainment Technology Center “ 

It is a complete API with many advanced features for rendering, profiling and Python integration. 

5.2.2) Why not? 

Being (mainly) a game oriented engine/framework, Panda3D has a great deal of underlying functionality 
that can be restrictive: 

• Certain forms of input are by default mapped to game related interaction (for example controller 
movement is initially mapped to first person camera orientation change / movement – yaw / pitch / roll). 
This of course can be worked around. 

• The overall structure of the world must conform to the internal representation of the engine, namely 
world items are nodes in a scene graph 

• There was no direct way to provide meshes created at run time with appropriate physical properties. 
The engine is most comfortable with its own data representation (.egg files) or more standard graphics 
formats (for example .obj files) which do not cater for metadata concerning physics. Also we wanted a 
method to dynamically create new classes of puzzle pieces, without having to edit an actual 3D mesh to 
that end. 

• Panda3D did not include a dynamics module, integrating with some external collision / physics library 
would be necessary anyway. 

After a brief survey of similar solutions, for example the Ogre3D Open Source 3D Graphics Engine 
(http://www.ogre3d.org/) we concluded that using a readily available 3D engine would be an overkill in 
terms of functionality on offer, and for the same reason an unnecessary shift of the development focus from 
a certain small fixed set of requirements to manipulating a large framework and trying to make it comply to 
our needs. 
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6) Environment – Software Libraries 

Puzzle3D is written in standard C++ with some external dependencies: 

• SDL – Simple Directmedia Layer (http://www.libsdl.org/) is used for easy window creation and event 
management. 

Alternatives: 

o SFML - Simple Fast Multimedia Library (http://www.sfml-dev.org/) 

o GLFW – GL Framework (http://www.glfw.org/) 

• OpenGL (http://www.opengl.org/) is the API used for rendering along with the Glee (GL Easy Extension) 
library (http://elf-stone.com/glee.php) for easier manipulation of some OpenGL extensions required for 
the rendering of shadows. In Microsoft Windows environments, the last supported OpenGL version is 
1.1 which is rather old, but more advanced and up-to-date functionality can be achieved through said 
extensions. 

SDL is coupled easily with OpenGL, is mature, stable and used in a large number of projects. It is also 
“transparent” enough to allow integration with other libraries. 

• From the Microsoft DirectX SDK (http://msdn.microsoft.com/en-us/directx) we used the DirectInput 
component to communicate directly with the 3D mice we use. DirectInput provides a generic method to 
obtain data directly from a device, bypassing driver support and other manufacturer details (essentially 
it conveys data concerning axes and switches) 

The implementation of DirectInput cooperation was based on samples from 3dconnexion. 
http://www.3dconnexion.com/forum/viewtopic.php?t=1610, ftp://ftp-us.3dconnexion.com/ 

• Bullet Physics Library (http://bulletphysics.org/wordpress/)  

Bullet is the library used to implement the “physical” behavior of the puzzle pieces. It provides with an 
easy means to set up a dynamics world and implements the simulation steps required (collisions, 
dynamics, force response) to update the position of the managed items, which the rendering module 
can then use to visually represent the positioning of the items in the puzzle world. The simulation flow 
occurs in a discrete step fashion for each frame tick (at 60 hz), and the updated item state is then used 
for rendering 

Bullet is open source and has been used in major movie productions such as 2012, Sherlock Holmes and 
various animated films (http://bulletphysics.org/wordpress/?p=241) 

Alternatives: 

o Newton Game Dynamics (http://newtondynamics.com/forum/newton.php)  

o NVIDIA PhysX (http://developer.nvidia.com/technologies/physx) 

• irrKlang sound library (http://www.ambiera.com/irrklang/) greatly simplifies audio files loading and 
playback with 3D spatial source and listener properties. It is a commercial library, free for non-
commercial use, used (among others) in the well-known game World of Goo. 
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• For a quick solution on obtaining some simple sound effects for audio feedback we used Tomas 
Pettersson's (Dr.Petter) sfxr application (http://drpetter.se/project_sfxr.html) 

 

7) Software Engineering & Classes 

This section provides a brief description of the main conceptual building blocks of the application, 
and how they are related to each other 

class Object 

This is the base class of all the interactive items in the puzzle, Cursors and Pieces. It provides the 
means to change the overall diffuse color of an object (such as setting the color of a Piece when grabbed by 
a cursor). Each object instance also contains a btRigidBody instance that represents the object in the physics 
simulation, and allows for piece – to – piece and cursor – to – piece interactions. 

class Puzzle3D 

Implements the application, supervises the Puzzle3D space, organizes input handling and 
implements logic for loading the puzzle and (partially) constructing the pieces that comprise the puzzle 
instance. It also manages initialization and disposing of all graphics and audio assets. 

class Piece 

Instantiates the pieces of the puzzle, is responsible for constructing the actual representation of 
each composite piece in the physics simulation world, based on a simple piece description. Piece instances 
are created only if required from the puzzle description file 

Bullet Physics (like all physics APIs) are heavily optimized to work with shapes that are basic 
geometric primitives (boxes, spheres etc), or can be described as compound shapes built from such 
primitives. In order to exploit this, we assume that each piece is built from a set of cubes of same size 
“glued” together to form an complex object. The description of each piece type lies in the Shape Library file 
(see §3.4.1). 

class Cube 

The main assumption / restriction of the puzzle world is that all pieces can be thought as being built 
out of smaller cubes. Class Cube implements the rendering of each cube so that every piece can be rendered 
as a set of simple cube meshes, and maps the owner piece world translation to cube world translation to 
produce the integer grid coordinates for each cube 

class Cursor 

The (two) instances of this class represent the user's virtual hands. Regarding user interaction, the 
simulation is concerned with when the geometry representing each cursor “interacts” with a piece. The 
cursors are representing as spheres (as the orientation of an empty hand is indifferent), and although they 
are physical objects concerning the dynamics world (they can interact with other objects, collide, push etc.) 
they don't take part in the simulation step, as they are moved freely by the user. In this fashion, they are no 
special objects concerning the implementation (they are also rigid bodies, as the puzzle pieces are) but are 
treated differently in each frame iteration. 
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struct PieceDesc 

This data structure represents a simple description of a piece in the form of a series of integer 3D 
coordinates. The piece is always modeled in model space, that is around the origin (0,0,0), with each triplet 
(coordinate set) representing the placement of a cube. Coinciding cubes should be avoided in the description 
of a piece for physics simulation stability and correctness, and are not meaningful in a physical sense 
anyway. Instances of PieceDesc are used to construct concrete piece instances. 

Dynamics module 

The functions provided Dynamics module provide the means to interact with the dynamics world 
and implement world creation and shutdown as well as adding items, constraints and so on 

 

8) File Structure 

8.1) Shape Library 

This text file contains the descriptions of all available pieces. Its simple format allows for more 
arbitrary shapes to be added without any external modeling. The file is loaded upon application initialization 
and all respective instances of struct PieceDesc objects are instantiated, but no concrete piece is created. 
Every piece class also has a string name defined in the file, while an id is automatically assigned to each on 
load time. The id provided is simply a serial number of the piece classes, so changing the Piece Library after 
recording a puzzle solution will result to not correctly registering a “solved” state. 

 

Shape library format sample: 

PIECE Piece1 3 
0 0 0 
1 0 0 
2 0 0 
PIECE Piece6 5 
0 0 0 
0 1 0 
0 -1 0 
1 0 0 
-1 0 0 
 
ENDLIBRARY 

 

8.2) Puzzle Description File 

The name of the puzzle description file is passed as a parameter in the Puzzle3D configuration file. A 
recorded puzzle description file contains a specific puzzle instance as a series of the names of the pieces that 
it built out of, as well as the description of its “solved” state. A solved state is stored as a series of 
GRID_SLOTS, each with the piece integer id in each slot, followed by its coordinates in the normalized 
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solution bounding box. For the procedure of recording a puzzle to obtain the said description see 11 “Puzzle 
Recording and Evaluation”. 

Puzzle description format sample: 

PIECE Piece1 
PIECE Piece2 
PIECE Piece3 
 
BBOX_SIZ 3 
 
GRID_SLOT 2 2 2 1 
GRID_SLOT 2 1 2 1 
GRID_SLOT 2 0 2 1 
GRID_SLOT 0 1 1 2 
GRID_SLOT 0 1 0 2 
GRID_SLOT 1 1 0 2 
GRID_SLOT 1 0 0 3 
GRID_SLOT 0 0 0 3 
GRID_SLOT 0 0 1 3 
GRID_SLOT 2 0 0 3 
GRID_SLOT 2 0 1 3 
GRID_SLOT 2 1 1 3 
GRID_SLOT 2 2 1 3 
 
ENDPUZZLE 

 

8.3) XML Configuration File 

The inclusion of an .xml configuration file arose from the need to easily tweak some parameters of 
the environment, as the usage of a Graphical User Interface (GUI) was considered beyond the scope of the 
current implementation. However, besides allowing us to fine – tune some of the interface parameters – like 
controller sensitivity – in order to provide for a better user experience, it became an integral part of the the 
puzzle application usage process : in the configuration file we define the name of the puzzle file to be loaded 
by the application and a switch that indicates whether we are in puzzle recording mode (for a description of 
the procedure see §3.7: “Puzzle Recording and Evaluation”). 

Some other parameters defined in the configuration are: 

• cubeCollisionScaling : the scale factor for the rigid cube objects as represented in the dynamics 
simulation module (see §4.1: Simulation vs. user friendliness) 

• cubeFriction : the friction that cube objects display against each other (this is different to the friction 
that cubes display against the ground) 

• rotateStep : the step at which rotations are performed (applies to all axis) 

Configuration file format sample: 

<?xml version="1.0" ?> 
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<config> 
<mouse3DMoveSensitivity value="0.00005"/> 
<mouse3DRotateSensitivity value="0.005"/> 
<mouseMoveSensitivity value="0.001"/> 
<mouseRotateSensitivity value="0.1"/> 
<cubeCollisionScaling value="0.96"/> 
<cubeFriction value="10.0"/> 
<rotateStep value="45.0"/> 
<puzzleFile name="Puzzle1.txt"/> 
<enableRecording value="true"/> 
</config> 

 

9) Rendering 

In this section the main aspects of the rendering module of Puzzle3D are described 

 

9.1) Rendering Components 

The rendering module of Puzzle3D is responsible for displaying all the puzzle building blocks, as well 
as the space where the interaction takes place and the user means of interaction (the representation of his 
hands). 

 

9.1.1) Cubes and Pieces 

Each piece is formed by a set of cubes. At initialization time, a single instance of the vertex data 
describing the cube geometry is allocated and initialized, in the form of client-side OpenGL vertex, normal 
and texture coordinate buffers. 

glVertexPointer(); 

glNormalPointer(); 

glTexCoordPointer();  

As a technical note, this method of geometry data storage is considered deprecated as of OpenGL 
v3, as client (application) side vertex buffer storage is abandoned in favor of server (driver) side storage. It is 
still supported in OpenGL 2.0 and earlier execution contexts, where server side storage is accessible through 
extensions as an optimization mechanism. However for more recent OpenGL contexts, there is no support, 
and usage of Vertex Buffer Objects (VBO) [12] is mandatory. 

Using the older functionality does not impose any penalty on visual quality, and as there would not 
be any visible performance gain by using VBOs, the transition was left as an optional future upgrade. 

The only visual information intrinsic to each cube is the texture index. The application of a “wooden” 
appearance to the puzzle pieces was mainly an aesthetic choice (inspired by the natural appearance of 
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similar real – world puzzles – see fig. 10). However, presenting explicit visual clues about the cube topology 
of each piece, (by means of interchanging light-dark wood texture) proved to be a valuable aid, as it makes 
relative position and alignment assessment easier for the user. 

  

Figure 12: A real-world cube lock puzzle and a rendering of a set of pieces in Puzzle3D 

 

The assignment of texture is done automatically based on the integer cube coordinates in model 
space using the formula: 

texture = (x + y + z) MODULO 2 ? GetLightTexture() : GetDarkTexture(); 

in C – like notation, or more descriptively: 

 

if (x + y + z) MODULO 2 EQUALS 1 
Use Light Texture 

else 
Use Dark Texture 

where x, y, z are the integer model space coordinates of the current cube. 

In order to display each piece, at its correct world position, the world transformation is retrieved 
from the physics simulator. Conveniently, the Bullet library introduces a function to obtain this 
transformation in the form of an OpenGL conformant 4x4 matrix 

void btTransform::getOpenGLMatrix(...); 

The current piece world transformation is then stored in the OpenGL matrix stack, and for each 
cube, the local (model space) transformation is applied, the cube geometry is rendered and the world matrix 
is restored to its previous state to ensure that each cube will be positioned relative to the piece world 
position. 

For each piece p 
apply the world transformation matrix WM 
store WM 
for each cube in p 

multiply WM with cube model space transformation CM 
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render cube 
restore WM 

 

9.1.2) Cursors 

The cursors were initially conceived as hand – shaped meshes. The modeling would not have to be 
realistic, as long as the shape would convey the idea of the user's hand int the puzzle space. However, the 
original implementation as mere spheres with different colors (considered only temporary at the time), 
allowed us to make some interesting observations, discussed in §4.3. 

The two cursors are rendered as procedurally generated spheres using the OpenGL utility library 
(glu) function 

void gluSphere(GLUQuardic* obj,GLdouble radius,GLint slices,GLint stacks); 

where the parameters radius, slices and stacks control the geometry generation values of the shpere. If the 
cursor is carrying a piece then rendering of the sphere is disabled to reduce visual cluttering, and the piece at 
hand is rendered with the cursor's ambient color to enable easy identification of which cursor is 
manipulating which piece. 

9.1.3) Ground 

The ground is rendered as a tiled pattern of smaller textured flat squares. The texture (diffuse map) 
representing a square pattern was found to make easier the perception of perspective, world scale, and the 
relative positions of the pieces, as opposed to a seamless texture image. 
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Figure 13: Tiled vs. Seamless texture map on the ground 

The ground is not rendered as a single large textured square in order to compensate for the 
limitations of the light calculation method OpenGL implements by default (Blinn – Phong shading model). 
This issue can be overcome by the use of a per-pixel lighting method through the OpenGL programmable 
pipeline, but this was considered beyond the scope of this work. 

9.1.4) Camera 

At early stages of development, Puzzle3D had no method of changing the user's vantage point. The 
concept was that the user's view of the world is that of “sitting” in front of a “table” where all the puzzle 
pieces lie. This notion of the puzzle world however, completely omitted the fact that in the real world, the 
user has several options for viewing the puzzle from different angles: 

• She/he holds the constructed puzzle in one hand and changes the puzzle view by rotating his/her hand  

• She/he constructs the puzzle on a surface, but is able to rotate/drag it around without lifting it 

• She/he changes her/his own position relative to the puzzle space 

Due mainly to reasons concerning simulation stability when binding together a set of pieces, we 
provided for the last solution. The user can change between piece and camera manipulation mode anytime 
during interaction. Camera is not free in the sense of a virtual walk – thru mode, but always pointed at the 
center of the puzzle space (which coincides with the origin (0,0,0) ), and distance from the origin also 
remains constant at all times. The controller can actually be thought of as manipulating the azimuth and 
altitude of the camera position. 
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Figure 14 : Horizontal Coordinates. Azimuth, from the North point (red) -also from the South point toward the 
West (blue).Altitude, green (source http://en.wikipedia.org/wiki/Altitude_(astronomy) ) 

9.2) Shadows 

Display of shadows was considered essential for intuitive estimation of the relative positioning of 
pieces and cursors in the puzzle space. It also adds to the immersion factor considering we strive for a 
credible 3D workspace. 

9.2.1) Method 

Single – directional perspective shadow mapping with multitexturing. 

This is a multi – pass algorithm that requires the following steps: 

1. We render the scene from the light's point of view, with depth – testing enabled. This yields a texture 
map with a float depth value for each pixel. We are actually interested only in the depth values, so color 
rendering during this phase is disabled. 

2. We render the scene from the user's point of view with dim or no light. 

3. We render the scene again from the same point of view with the desired lighting enabled. For each pixel 
its light view coordinates are calculated. Then, a comparison of the depth computed at step 1 to the 
current light – pixel distance is performed. If the pixel's distance is greater than the depth value stored in 
the shadow (texture) buffer, then the pixel is obscured by an object closer to the light, and the frame 
buffer is not updated to the lit value, leaving the dimly – lit pixel of step 2 on display. 

For a more extensive explanation with OpenGL fixed – functionality sample code, see [14], [15] 

 

9.2.2) Limitations and Issues 

The implementation of step 1 without any OpenGL extensions, limits us to rendering said texture in the 
display buffer, which has two main disadvantages: 

• It involves more operations on the frame buffer in the course of each frame and 
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• The resolution of the produced image is limited by the smaller value of the rendering window 
dimensions. (actually, in order to follow the compatibility convention that texture dimensions should 
optimally be powers of 2, we are limited to the maximum power of 2 that is smaller or equal to the 
smaller window dimension) 

By using OpenGL extensions, we can overcome both these issues at once, by rendering the “shadow” 
texture to an off - screen video buffer of any dimensions. Of course, this does not eliminate the need to 
render the scene, but this action does not involve frame buffer updates. The image generated is readily 
available as a depth texture. 

This method is possible through functionality exposed by the OpenGL Framebuffer Object extension 
function family [13] 

Due to float calculation limitations, shadow outlines may appear jagged primarily in instances where the 
rendered polygon plane is nearly parallel to the light direction. This can lead to unrealistic – looking 
shadows. Generally these issues are resolved by using a very large shadow map, performing some type of 
anti – aliasing method (see [17]), and carefully placing the light source where possible (for example in video 
games where light – staging is also artistically meaningful) 

 

10) Physics Simulation 

In order to simulate the behavior of the puzzle pieces in a realistic manner, we used the open – 
source Bullet Physics Library. The initial purpose was to give a full “natural” representation of the behavior 
of the pieces as if they were real objects interacting with each other, with the “ground” plane as well as the 
cursors. The physics library allows the user (the application developer) to define a large number of 
parameters and attributes that dictate the physical object movements and interactions. However, for 
usability reasons we decided to omit some of the naturally expected behavior by disabling certain simulation 
computations. The particular reasons and the results are discussed in detail in §4.1. 

In the following paragraphs, the facilities of the physics library that are used and the procedure to create 
the puzzle world are presented. 

• In order for any entity in the physics simulation world to be able to interact naturally with other entities, 
it should be described as an object of type rigid body. 

• Each rigid body is defined by means of a collision object that describes its geometry plus weight, friction, 
inertia and so on. 

The collision object can be an arbitrary shape formed from a vertex cloud, or a triangle set, or more 
often than not, built up from a set of simple standard objects like boxes, spheres, cylinders etc. The 
reason that every physics library includes such a predefined set of simple object types is that there are 
highly optimized algorithms available to process collisions and interactions among these types. 

In our case the pieces are composite shapes built from cubes. This provides us with a simple means to 
define new piece types (see §3.4.1), as well as makes the definition of the collision shape of each piece 
very straightforward in our implementation. 

• Since it is possible to use the same collision shape in multiple rigid object descriptions, we create the 
respective collision shape for each piece upon first request to create the piece as a rigid object, use it to 
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describe the rigid object, and leave it available for the whole lifetime of the application for further 
requests as a simple form of caching. The pieces are created as rigid objects and added to the physics 
world in the sequence they are read from the puzzle description file (see §3.4.2). 

• We define an immovable horizontal plane to act as the “ground” of the puzzle area, to coincide with the 
rendered “ground” at y = 0 coordinate. As far as the physics simulation is concerned though, the collision 
plane is infinite. In addition, we add four more vertical planes at reasonable distances from the puzzle 
space (which is defined around the origin), in order to prevent of pieces being translated to distances 
that is impractical to manage due to explosive dynamics reaction of the simulation. (see §3.6.1). The 
total of the five planes form a well – like space of square cross – section. 

• Finally the cursors are also defined a rigid body shapes, with the additional parameter of being kinematic 
objects, that is objects that their behavior is not dictated by the rules of the simulation but rather they 
display a one – way relationship with other objects as their state is determined by factors outside the 
simulation (for example user input). 

This allows us to create cursors the response of which to the user's input is always straightforward (for 
example they cannot be encumbered by the presence of other rigid bodies), but also introduces some 
issues of accuracy and predictability to the system, inherent to the simulation algorithms. 

• In order to detect cursor – to – piece collision (when a cursor touches an object, so it can be picked up) 
we use the built – in collision facilities of the physics engine. When a cursor is detected to “touch” a 
piece, then this piece is registered as available to pick up, and pressing the respective controller button 
causes the cursor to be “replaced” by said piece 

• Picking is implemented as creating a constraint between the cursor rigid body and the piece rigid body 
the cursor collides with. Symmetrically, pressing the “pick / select” button again when a piece is at hand, 
leads to releasing the piece, by “breaking” the constraint - that is removing from the physics world. 
During the time of carrying a piece, the collision of the carrying cursor and all pieces is disabled.  

 

10.1) Limitations and Issues 

The physics simulation relies on a step – based advance of the world. Naturally, all pieces that are 
simulation – driven are expected to behave in a realistic manner within the specifications of the simulation. 
The use of kinematic objects to represent the cursors and detect their interaction with other world objects 
introduces several issues which we discuss here. 

At each simulation step, the physics engine calculates the expected position of each rigid body in the 
world, based on its physical attributes as described upon creation of the body. These attributes include 
geometry, weight, friction, inertia, world gravity and so on. The simulation step frequency is considered 
adequate at 60 Hz, or, one simulation step at each frame for a 60 frame – per – second application. This 
frequency ensures that the simulation caters for situations like objects penetrating each other, and ensures 
that rigid body motion that results from force interactions inside the world is smooth and predictable. 

The issue arising from the use of kinematic objects as cursors is that the motion of cursors does not 
adhere to the simulation of forces that appear in the world through object interactions. Instead, the position 
of each cursor is enforced into the world, directly through the input values of each controller. This results in 
the cursors taking “leaps” into the world – at least from the physics engine point of view – as their position is 
not a result of step calculation. This in turn, forces the simulation to calculate the new state of the world, 
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and the forces produced based on a state that is not a direct result of the previous world state, as the rigid 
bodies of the cursors have arbitrarily changed their position in the world during the input handling state of 
each frame.  

As a result, during the step calculation, a cursor may appear to penetrate a rigid body although this 
state could not be “foreseen” at the previous step. The physics engine will try to compensate this by 
applying a repulsion force between the objects, and as the cursor's position in the world is solely determined 
by input state not taking forces into account, the free rigid body will move explosively away from the cursor. 

The behavior described above is probably the most easily observable instance of the issues arising 
from the more general fact that kinematic cursors can in fact be “anywhere” in the physical world, even 
inside rigid geometry. For example, similar behavior would arise when trying to “press” a free object against 
the floor. The cursor would at some time appear “inside” the free object, and the engine would apply a 
suitable force that would finally cause the object to “blast off”. 

Allowing the cursors to move at a speed that was found acceptable for the physics simulation world 
stepping, and at the same time not too slow to be impractical for the user, provided an adequate solution. 
As a potential future improvement we would consider using force – based cursor motion (the cursors would 
also be free rigid objects and motion would be achieved by applying external forces upon them) instead of 
enforcing the world position, coupled with a force feedback enabled controller. In the absence of force 
feedback, we chose not to impose any restrictions to the cursor motion (like other objects blocking the 
cursor) as the “difficulty” to move would only be presented visually, and as such feel too artificial. 

 

11) Puzzle Recording and Evaluation 

The goal of the user interaction with our 3D world is to build a construct (the puzzle shape) out of 
the provided pieces (the puzzle building blocks). As such, there must be a specific predefined shape against 
which the user's attempts are compared, so that the system can provide the user with feedback about 
whether she/he has succeeded or not. 

Creating a new puzzle is a multi – step procedure:  

(a) If the intended puzzle can be created using the pieces provided in the Piece Library file (explained in the 
file formats section §3.4.1 – Shape Library) then this step is complete, otherwise the puzzle editor must 
provide the description of the new required shapes in the file. 

(b) The editor must then enter the application in a “recording” mode, and specify the puzzle file she/he is 
working with, which for the moment must contain only the names of the pieces the intended puzzle is 
comprised of. These options are provided by the configuration file of the application. 

There she/he can build up the intended puzzle using direct manipulation like the “player”, and then press “r” 
(for record) to store the puzzle state. 

(c) The player can now enter the application by specifying the puzzle file she/he intends to try to solve. The 
system will inform her/him when the puzzle has been successfully solved. 

The storage of the “correct” puzzle state as well as the process of testing if the user has succeeded was one 
of the most interesting challenges of the project: 
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• The user should be able to solve the puzzle in any point of the 3D space. This contrasts the more game-
like approach of a “solution” area wherein the user constructs the puzzle in order for his solution to be 
evaluated (this approach was also suggested by the problem description of the contest). Our intent was 
to give as few restrictions as possible to the space the user has at his disposal, and the notion of an 
artificial “solution area” was alienating to the sense of natural space we tried to convey. 

• There should not be any assumptions about the orientation of the puzzle. If the correct relative 
positioning of the pieces is achieved, then the system should report the puzzle as solved, even if it is 
built, for example, upside-down, or sideways compared to the stored “correct” state. This we believe 
adheres more to the users' notion of “solving” the puzzle, albeit with the extra limitation that the 
construct should be structurally sound, as gravity still applies – we do not take into account a solution 
that could fall apart when resting on a surface. 

The methods we considered for storage and solution evaluation are : 

 

11.1) Relative transformations 

The description of each piece type contains the information necessary to build a piece in “model 
space”, meaning each piece is described by the integer coordinates of its building cubes around (0,0,0). The 
pieces are then placed into their original positions at a setup phase, and their subsequent world positions 
are dictated by input and simulation. The positioning of each piece in the world is represented by 
translations and rotations. 

Let MA be a 4x4 transformation matrix that describes the position of a piece A in the 3D world, and 
MB similarly for a piece B. 

The relative transformation from MA to MB would be a 4x4 matrix X with the property: 

AX = B → X = A-1B 

So, given two pieces at given positions, (that is given the transformation matrices that place them in 
these positions) we can produce the position of each relative to the other. Storing these relative positions 
for every pair of pieces comprising the puzzle, we should have an adequate description of the solved state, 
which moreover would be puzzle orientation agnostic, as the orientation of the pieces is only tested against 
each other. 

This solution however could not take into account the fact that some orientations that would be 
different from a numerical perspective (different matrix representations), would appear equivalent due to 
piece symmetry. (The following example is displayed in 2 dimensions for simplicity) 
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Figure 15: An example of relative positioning equivalence 

This implies either that the user would be required to place the pieces in a strictly predefined 
fashion, or the system should evaluate against all alternatives. 

The first case would be a “system” imposed limitation to a “real-world” simulation (and thus 
unacceptable), as the user does not naturally differentiate between the two states of the piece in Figure 12. 

The latter case would be impractical for a real-time application, as the number of alternatives to a 
solution can be very large. Consider a puzzle containing n pieces that present such a symmetry that there are 
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k equivalent transformations for each. Then the alternative puzzle configuration descriptions are kn assuming 
that there are no other symmetrical pieces. 

 

11.2) Contact Points (cube faces) 

Another possible solution we considered is the “contact points” approach. In this, every cube face 
that matters to the solution evaluation (that is the cube faces that form the hull of each piece) would be 
marked with an id, and its orientation in the world space represented with its normal vector. 

 

Figure 16: An 2D representation of a composite shape with hull normals 

To perform contact point matching, for any given orientation of the pieces in world space, we could 
match the face normals taking into account a predefined tolerance value, and compare the matching sets 
with our prerecorded solution. The tolerance value (which applies in the same fashion for the Relative 
Positioning solution) is needed to amortize the need for rigidly precise piece placement on behalf of the 
user, and to compensate for the innate floating point round off error of the system. If the origins of two 
normal vectors coincide within this tolerance limit, and they have opposite orientation, then the owner cube 
faces are in contact. 

The problem arising in this solution has a similar cause to Relative Positioning. For any given piece, it 
would be necessary to have a method to detect axis or plane symmetries and to mark the cube faces 
accordingly in order to provide for alternative piece placements that “construct” the (visibly) same solution. 

 

A
B

F

E
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Figure 17: An example of contact point matching equivalence 

Although this approach would result in a fairly generic system that could support a wider variety of 
shapes and contact scenarios, it was considered to be beyond the scope of the present work, mainly due to 
complexity issues. 
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11.3) Grid matching 

The solution we implemented has the advantage of overcoming the problem of symmetries in a 
simplistic but effective manner, by removing the actual cube topology that forms each piece from the 
solution description. Each cube of any piece “class” (type) is marked with an integer id that represents this 
class. 

For each simulation step a set of integer 3D coordinates is formed from the (floating-point) world 
position of the cube as produced by the world transformation of each piece. Based on the integer cube 
coordinate set, an axis-aligned integer bounding box is formed that includes all available pieces. 

If the current bounding box is not of the same size as the one recorded to the piece solution file, 
solution matching is stopped (as the current state can't be a possible solution). If the bounding box sizes 
match, then a grid comparison is performed between the grid representing the solution (which is 
constructed at initialization time from the puzzle description file) and the grid produced by the current world 
state. 

The (x,y,z) grid coordinates of each grid “slot” are an integer mapping of each cube's world position, 
and its value is the id of the piece class the respective cube belongs to. In order not restraint the user to a 
solution area, the grids (and consequently the represented cube coordinates) are normalized to the space 
xyzmin = (0,0,0) – xyzmax = (bbox_size, bbox_size, bbox_size) where bbox_size = Max(bbox_xsize, bbox_ysize, 
bbox_zsize). Obviously, the bounding box is not tight-fit but rather the minimal bounding cube. 

If every id in the respective (x,y,z) grid coordinates is matching then we have reached a “solved” 
state. In order to be able to detect correct piece placements but with different orientations, we pre-compute 
all possible permutations of the recorded solution at initialization time, and compare to all of them 
whenever necessary. 
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Figure 18: Puzzle solution evaluation with grid matching 

A major disadvantage of this solution is that in its present form can effectively match puzzle solution 
states only if the puzzle layout in the working surface is axis aligned. We compensate for this by allowing a 
fixed angular step to the piece rotations during manipulation, as well as removing local inertia from the 
piece dynamics attributes, in order to force a more predictable (but less “natural”) piece behavior. (see also 
§12, “Simulation vs. user friendliness”) A solution that could apply to any angle is (potentially) left for future 
work. 

 

11.3.1) Determining the alternative solutions 

Since cube coordinates in the solution description are integers, calculating all possible variants of a 
given solution is a deterministic procedure – that is it doesn't suffer from float arithmetic errors or similar 
inaccuracies. As such, generating and storing all solutions in the puzzle description file would be a waste of 
space. Instead, we store only one solution – the integer coordinates determined by the puzzle layout at the 
time “record” is executed – and generate all alternatives at program initialization time. 

Creating the alternatives, involves rotating the coordinates of the initial solution in order to take 
snapshots of every rotation around the cardinal axes the puzzle can be constructed with. This of course may 
also take into account puzzle states that would not be structurally possible, given the physics simulation 
(states that the pieces could fall off), but determining in advance the structurally sound states, would not 
only be too complicated, but also the structural “soundness” itself is not a generic term, as it depends on the 
physics simulation parameters, which may be altered (for example if we disable gravity and inertia, all states 
are stable). 

In any case, this particular approach was chosen because it provides a fixed small number of 
alternatives to take into account. By fixing all solutions to be axis – aligned, given a single solution state, we 
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have to rotate the initial solution coordinates around all 6 directions (negative x, positive x, negative y and so 
on) by 0, 90, 180 and 270 degrees, yielding a total of 6 x 4 = 24 alternatives. Any given puzzle state is 
matched against all of these configurations, but only if the bounding box size implies a potential solution 
state, as described in 11.3. 

  

a) The initial solution state as recorded b) State (a) rotated 90 degrees around the negative z 
axis 

 
 

c) State (b) rotated 90 degrees around the negative z 
axis d) State (c) as normalized bounding box coordinates 

Figure 19: Constructing alternative puzzle solutions - Red arrow denotes positive x axis, Green arrow denotes 
positive y axis and Blue arrow denotes positive z axis 

In figure 16 the process is displayed : alternative solutions are created by 90 degree rotations around 
the cardinal axes. As the coordinates produced are bound to contain negative values, we normalize each 
coordinate set to lie inside a bounding cube inside the intersection of positive half spaces with its origin on 
(0,0,0) thus yielding positive only values. 
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Part 4 – Lessons Learned: Conclusions and Discussion 

 

12) Simulation vs. user friendliness (or Is there too much physical representation?) 

The Bullet Physics Simulation (and indeed any modern dynamics simulation framework) defaults to a 
behavior that most closely resembles what we would expect from a real-world set of interacting physical 
objects. When the objects are correctly modeled in terms of their physical attributes (relative sizes and 
weights, friction, inertia etc.), the simulation does its best to represent a credible representation of their 
behaviors in the given context. This has presented a tradeoff between the need of a natural appearance that 
would better convey the sense of interaction with physical objects, and the ease of the user achieving his 
goal. Given a “precise” physical simulation, several interaction issues arise: 

• Lacking a tactile user feedback, the user has no other means of determining a proper fit between pieces 
– especially concerning proper alignment – besides visuals. In the case of very small differences in 
orientation (within the range of a few degrees), there must be special (in the sense that they should 
override the simulation) methods to detect these nearly-correct situations, while being transparent to 
the user. The reason is that leading the world into a state that would be unacceptable to the correctness 
of the physical simulation (for example forcibly moving two rigid objects into one another, can cause 
explosive response which more than unexpected, is unnatural and can be frustrating to the user 
especially when trying to perform precise operations – see §10.1. 

This issue was resolved by forcing all rotations to a 45 degree step. This imposed restriction makes the 
perception of orientation/alignment much more intuitive and also simplifies the positioning of the pieces 
into the world and consequently the construction of the puzzle. 

• Inertia calculations would cause the pieces to bump on the surface and on each other, and rotate 
accordingly when hitting an obstacle. Although this adds to the natural appearance of the simulation, it 
caused the pieces to end up resting on arbitrary angles. It also added another factor of instability when 
constructing the puzzle, as angular factors are computed based on center of mass, and allowing almost – 
correctly positioned pieces to remain within the puzzle construct in a stable fashion requires very careful 
inertia/friction balancing. 

In order to maintain a consistent view of the puzzle world, inertia was disabled. This causes the pieces to 
maintain the orientations defined by the hand cursors when left to fall. The advantage is that the sense 
of orientation/alignment holds for all pieces, held (in the cursors) and free (on the “floor”) alike. The 
disadvantage is that it introduces visual peculiarities like pieces not falling flat to a stable state. 

• The cubes that comprise the pieces are somewhat smaller (about a factor of 0.96) in their physics 
simulation representation than their rendered instances. This allows for some “slack” when positioning 
the pieces, which although not computationally accurate, conveys the correct behavioral “feeling” 
especially when sliding a piece between others or expecting a rotation within some construct to be 
feasible. 

In all the above cases, we deemed the user experience of greater importance than the correctness and 
plausibility of the underlying simulation. We believe however that in both cases the advantage in ease of 
use, world perception and general “feeling” outweighs the drawbacks, a common conception in Human-
computer interaction aspects, including video games. 
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13) Handedness and emergent usage 

Using our system with both (symmetrical) input controllers as intended, reveals that the way the user 
utilizes his (cursor) hands actually evolves towards a mapping of the tasks involved to manipulating the 
puzzle in real life to the most similar tasks allowed by the system – that is after a certain time allowed to get 
accustomed to the controls. More precisely, as the controllers provide full symmetry to the actions allowed, 
common ways to interact with the puzzle world are: 

• Using one hand to hold/move/rotate one piece while using the other to operate the camera to shift the 
puzzle view. 

• Using one hand to hold/move/rotate one piece while using the other to hold another piece in a more 
static fashion on order to provide for stability or resistance to the puzzle structure. This of course also 
brings up the physics simulation stability/precision issues discussed in §10.1. 

It's interesting to remind here that said “one” and “other” hands are completely interchangeable in 
terms of handedness (our design as discussed in §3.1), at any time during the interaction, so the user's 
preference of usage is emergent. 

It should also be noted that concerning the former observation, the user actually maps the 'typical' 
means of bi-manual method of constructing objects from parts: one hand holds the construct in progress in 
order to easily observe it from any angle to determine possible contact points for following parts, while the 
other usually manipulates a single piece testing possible fittings. 

 

14) The Cursors: Form vs. Function 

It has already been mentioned in (3.5.1.b) that displaying the cursors as simple colored spheres was 
considered only a temporary solution. However, it eventually allowed for some interesting issues to surface: 

• The orientation of the cursors is of no importance as long as they are empty – that is not holding a 
“piece”. So the minimalistic representation as spheres was adequate. Of course, when a piece is held, 
the sphere is not shown and the orientation is apparent by the piece rotation. 

• There is no limitation as to where the cursors can be in the 3D space, so there may be cases in which 
position of the cursors can be cross-over relative to the users hands from the current view. Moreover, 
the apparent handedness, though “hand-consistent” from a given point of view, may be switched by a 
camera change. Fixing the user's view of the world, to enforce handedness was found impractical, as 
discussed in (4.4 Viewing the world). As a result, depicting the user's hands in an accurate manner, 
would appear rather alienating (as they would not follow the notion of actually being the user's hands 
shown in “front” of him) instead of adding to the realism and immersion. 

• Due to the previous observation, the colors of the cursors strives not to convey the conventional notion 
of handedness (left – right) but rather to enable the user to easily “connect” each cursor with a 
controller. As such the mental model is “my left hand controls the red sphere” rather than “my left hand 
controls the sphere that appears left on the screen”. 
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15) Viewing the world 

In order to construct the puzzle at hand, the user should have the freedom to view the results of his 
actions from various points of view. Towards this end we considered two alternatives: 

• The user's point of view of the world is fixed. We would try to simulate the experience of holding the 
“constructed” part of the puzzle in one hand (as a set of pieces) and allow one “free” cursor to 
manipulate a single piece at a time and search for possible placements on the constructed set. The 
cursors being functionally equal, the process would be interchangeable in terms of handedness. 

This solution though conceptually intuitive proved impractical due to the way the physical simulation 
allows us to construct constraint – bound sets of objects. 

• The user switches between manipulating the cursors and manipulating a camera at any given time. The 
world view is dynamic, through smooth camera movement and the constructed set of items (the puzzle 
being built) lies on the “ground”. The can change mode by pressing a button on any controller. 

With this method, we achieve the desired result (the user being able to have a dynamic view of the 
puzzle) without imposing further complexity to the UI – as the user would in either case have to 
manipulate the movement controls, while simplifying the implementation of puzzle recording and 
evaluation. 

 

16) “Natural” vs. Familiar 

One of the main goals of this work was to experiment with alternative methods of input towards a 
more natural means of conveying our intentions to the computer system. Towards this end, there is a great 
number of input devices beyond what we are used to consider “common”, rapidly becoming standards 
mainly in entertainment, and even more experimental solutions in development and academia. (see 4. Input 
devices) 

However it was interesting to notice, as early tests indicated, that users were much more 
comfortable to perform any task using familiar controllers such as the 2D desktop mouse, even when 
confronted with tasks that we felt were more suited to 3D controllers, due to its more intuitive natural 
mapping. This leads to the assumption that the leap towards using a new device is much greater than the 
mental shift required to map a familiar device to an uncommon task. In other words, the user seems to find 
much easier to use well – known tools to solve unfamiliar problems, than to take the time to familiarize 
himself to a new tool from the ground up in order to perform a well defined task, even if the tool is designed 
towards this goal and ultimately proves to be more efficient. It also seems that the computer system use 
context is strongly coupled with the input devices of daily use: using the mouse is “canonical” in terms of 
interacting with a computer, something that doesn't apply to other devices – yet. 

Of course, 20 years ago this unfamiliarity was also the case with the common mouse – at least for 
PCs, so we can assume here that adoption of new methods of interaction is only a matter of time, provided 
that is that they prove practical enough. 
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