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Abstract

We envision a publish/subscribe ontology system that is scalable to millions of user
profiles and filters ontology data in a streaming fashion. In such a system, users
submit their subscriptions to the system which indexes them using scalable data
structures and matches them with streaming RDF data, to notify the interested
subscribers. In this work, we initially propose a SPARQL extension appropriate
for a publish/subscribe setting; our extension builds on the natural semantic graph
matching of the language and supports the creation of full-text subscriptions. Lever-
aging on the natural properties of our structures we have developed a family of
filtering algorithms which perform both structural and full-text matching at low
complexity and minimal filtering time. Thus, when ontology data are published
matching subscriptions are efficiently identified and notifications are forwarded to
users. Our solution is faster than state-of-the-art competitors, managing to achieve
improvement of more than 98% in filtering performance, when tested with real-world
datasets.
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Περίληψη

Οραματιζόμαστε ένα σύστημα διάχυσης πληροφορίας για δεδομένα οντολογίας που

είναι αποδοτικό για εκατομμύρια προφίλ χρηστών και έχει την δυνατότητα να φιλτράρει

δεδομένα από οντολογίες που εισέρχονται με συνεχόμενη ροή. Σε ένα τέτοιο σύστημα

οι χρήστες εγγράφονται δημιουργώντας προφίλ, τα οποία θα ευρετηριάζονται χρησι-

μοποιώντας αποδοτικές δομές δεδομένων και θα ταιριάζονται με μια ροή RDF δε-
δομένων, για να αποκαλύψουν εκείνα τα προφίλ τα οποία ταιριάζουν με τη ροή δε-

δομένων, και να ειδοποιηθούν οι χρήστες τους. Στην παρούσα εργασία, αρχικά προτεί-

νουμε μια επέκταση της γλώσσας ερωτήσεων SPARQL προσαρμοσμένη στις ανάγκες
των συστημάτων διάχυσης πληροφορίας. Η προτεινόμενη επέκταση βασίζεται στους

υπάρχοντες εννοιολογικούς ορισμούς της γλώσσας και υποστηρίζει την δημιουργία

προφίλ με όρους κειμένων, κατόπιν παρουσιάζουμε μια οικογένεια αλγορίθμων φιλ-

τραρίσματος που χρησιμοποιούν ειδικά σχεδιασμένες δομές και είναι ικανοί να φιλτρά-

ρουν τόσο συντακτικά όσο και σε επίπεδο όρων κειμένου τις δημοσιεύσεις με μικρή

πολυπλοκότητα και ελάχιστο χρόνο φιλτραρίσματος. ΄Ετσι, όταν τα δεδομένα ον-

τολογίας δημοσιεύονται, φιλτράρονται με τα προφίλ που βρίσκονται στο ευρετήριο και

οι ειδοποιήσεις αποστέλνονται στους χρήστες των οποίων τα προφίλ ταίριαξαν. Η λύση

που προτείνουμε είναι ταχύτερη από αντίστοιχες στην βιβλιογραφία καθώς επιτυγχάνει

κατά 98% ταχύτερο φιλτράρισμα, όπως διαπιστώθηκε σε πειράματα με πραγματικά δε-
δομένα.
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Chapter 1

Introduction

This thesis addresses the problem of delivering full-text support in ontology based
publish/subscribe systems. In this chapter, we define the problem, highlight our
approach and present our contributions.

1.1 Problem statement

In the last decade we witness the exponential growth of the internet and consec-
utively the high availability of newly published information on a daily base. This
information flow is intended to reach the users and satisfy their needs on updat-
ing their knowledge in their field of interest. Users currently handle the information
flow by resorting to periodical searches of newly published information and by trying
to distinguish this information to relevant or irrelevant. Consecutively these tasks
consume a high percentage of users’ time reducing the total time dedicated to the
process of information assimilation. The never-ending process of discovering and
classifying new data has become tedious for the users, and this cognitive avalanche
of information has created the need for applications that can assist the users in the
information seeking task.

The need for applications that can assist users to information delivery has cre-
ated publish/subscribe systems focused on news delivery. These publish/subscribe
systems can be used in news alerts, digital libraries or RSS feeds. Users may ex-

- 1 -



Introduction

press their needs to a server by creating a profile describing these needs, a task
that may be achieved by utilizing modern subscription languages. Thereafter the
alerting systems will be able to notify the subscribed users automatically when they
determine the relevance of a new publication to a user’s profile. Publications can
be generated from news feeds, digital libraries, or even other users who post new
items to blogs, social media or other Internet communities. Based on the above, the
problem of information filtering examined in this thesis may be defined as follows:
given a database DB of continues queries (profiles) that reside on a server and a
publication p, retrieve all queries q ∈ DB that match p.

1.2 Solution outline

The Resource Description Framework (RDF) [68] constitutes a conceptual model
and a formal language for representing resources in the Semantic Web. RDF is
ideal for representing the publications generated in a publish/subscribe system that
focuses on information delivery and can combine a wide variety of sources. More-
over the SPARQL query language [62] is the current recommendation of W3C for
querying the Semantic Web. The SPARQL query language can give the tools and
flexibility to users to define their interests.

Research has been conducted in the field of P2P publish/subscribe systems where
the publications and subscriptions are expressed in RDF forms [18, 43], however
there is lack of research on information delivery systems where the load is directed to
a single server and the information flow is constant. Furthermore, there is lack of full-
text operators in the SPARQL query language, while research has been conducted
in the Information Retrieval field in order to support such operations [5, 46, 54–56].
The same work can not be applied in Information Filtering where the principles
are fundamentally different as well as the objectives of the system. The need of
a publish/subscribe system that can support expressive RDF subscriptions with
full-text operators is essential and has to be addressed.

In this work we concentrate on delivering an ontology publish/subscribe sys-
tem that can index millions of user profiles. The proposed algorithm coined RTF
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(acronym for RDF Text Filtering), indexes subscriptions defined in the SPARQL
query language. In order to provide users with better expressivity we extend the
SPARQL query language with full-text operators. The utilization of full-text sub-
scriptions enhances the flexibility and expressiveness of the subscription language.
Furthermore the full-text extension can deliver publications to the users with higher
precision aiming also at content, and not only structure of publications their field
of interest. We support publications from ontology data expressed in native RDF
form. The publications data can be extended to a great amount of sources (i.e.,
XML data). We concentrate on structural and textual Information Filtering of
RDF data and present a novel trie-based main-memory algorithm that is able to
match incoming publications against millions of profiles in a few milliseconds.

1.3 Contributions

A major part of the works conducted in the field of publish/subscribe systems
supporting RDF data and focuses on the semantic matching of profiles [57, 60,
61, 74]. In this work, we concentrate on solving both the textual and structural
matching process providing the user with an expressive query language that is a
SPARQL extension, and covers both structure and content. We propose methods
that leverage on the natural properties of the RDF data and develop structures
that assist the indexing and filtering procedures both on structural and textual level
which has been greatly overlooked. Thus we concentrate on solving the filtering
problem efficiently both for the structural and textual part. Semantic matching can
be a complementary process to our developed algorithms without reducing their
performance. In the light of the above, our contributions are:

• We extend existing publish/subscribe solutions [57] from text equality to full-text
matching including keywords and boolean operators.

• We extend the existing SPARQL query language with full-text operators, thus
increasing the expressivity of the language, the flexibility in profile definition,
and precision of delivered information.

• We present a novel SPARQL query indexing algorithm that supports Boolean
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Information Filtering up to 96% faster that its state-of-the-art competitors.

• We identify and present different algorithmic alternatives to facilitate the struc-
tural and textual indexing of profiles and experimentally assess their performance
with a real-word data set.

1.4 Thesis structure

The rest of the work is organised as follows. Chapter 2 surveys related work in the
fields of information filtering, publish/subscribe systems supporting RDF data, and
appropriate data structures for profile indexing and publication filtering. Chapter 3
presents the data model developed to solve the problem of representing user profiles
wit text constraints in SPARQL, and describes the indexing Algorithm RTF and
it’s variants developed to solve the indexing and filtering problem. Chapter 4 gives
the experimental evaluation of the developed algorithms with a real-world data set
and compares them against existing state-of-the-art solutions. Finally, Chapter 5
gives conclusions and future directions for our work.
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Related Work

In this chapter we present related work in RDF-based publish/subscribe systems.
At first, we briefly provide a background discussion on Information Filtering. Sub-
sequently we present works that focus on RDF-based publish/subscribe systems.
Finally, we give the basis for the trie indexing structures used in the Information
Filtering field.

2.1 Information Filtering

Information Retrieval(IR) and Information Filtering(IF) are often referred as
the two sides of the same coin [9]. While a few common points overlap in the
research fields, such as the aim of both, to provide users with information delivery,
fundamental differences are present. Some of them are the timeliness of information
delivery, as Information Retrieval provides users with informations that match their
interests independently of the publication time, while Information Filtering aims
for newly provided content as soon as this is published. The definition of user
needs also presents variations, as in Information Retrieval users pose a short-sized
one-time query to satisfy their short-term interests while the delivered results could
be hundreds of items of matching data, leaving users to decide which one satisfies
the most their needs. On the other hand, queries on Information Filtering systems
are rather extensive in order to capture specific, usually long-term, interests of the
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users without overwhelming them with data, but aiming at the delivery of the exact
information the users desire. Given these needs, the representation of information
as well as the indexing algorithms and techniques used to fulfil the requirements of
IR and IF vary vastly.

In the field of selective dissemination of information the first work that addressed
the topic was conducted by H.P. Luhn [44], where a “Business Intelligence System”
is described. In the proposed system, users subscribe by describing their interests
with a profile creation; subsequently the document filtering system used this profile
to deliver to the users a list of newly published documents. From this delivered
list of publications users are able to select and order the documents that meet their
interests. At the time of publishing this work, the procedure of selecting documents
was coined with the term of selective dissemination of new information. The term
Information Filtering was later conceived by P.J. Denning [23], where the need of a
system capable to filter incoming mail messages and arrange them in a prioritized
order is described.

In the first work conducted in the field, researchers in the area of Information
Filtering focused their efforts to accurately represent the user interests [47], while
others emphasized on the optimization of the filtering process [33]. The work done
by M. Morita and Y. Shinoda [47] included the utilization of techniques to observe
and record the user interests , while indexing subsets of terms in order to determine
the documents that really concern a user. The work done by D.A. Hull et al. [33]
focused on studying the filtering process by applying machine learning techniques,
where a combination of known techniques was used in order to increase the accuracy
of the results delivered to the users. Other techniques include the utilization of
statistical data for filtering incoming documents such as LSI-SDI [29] which uses
the LSI technique in the filtering process.

One of the first studies conducted to address the performance factor on Infor-
mation Filtering is [10], where an Information Filtering system capable to filter
large volumes of data is described. The researchers developed a server where great
amounts of data are published in a high rate, and algorithms that support the Vec-
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tor Space Model of Information Retrieval, by enhancing the SQI algorithm of T.W.
Yang and H. Garcia-Molina [76] are suggested. Another influential system is In-
Route [13], which is based on network topology and aims at more efficient filtering.
InRoute created networks of documents and queries, while it utilized belief propa-
gation techniques to deliver results. Apart from performance issues researchers also
focused on the adaptiveness that a filtering system must exhibit [14, 80] and the
way queries represented in Vector Space Model must be altered depending on the
past filtered documents.

Besides the statistical approaches described above, Information Filtering systems
supporting the Boolean model of Information Retrieval were also developed. One
influential system in this area is LMDS [79], that is based on the idea of least
common trigramms to deliver faster document filtering. LMDS indexes user profiles
and documents under their least common trigramms to facilitate matching. During
the filtering process a table that defines which profiles matched with the incoming
document is constructed; since false positive results may occur from this process, a
post-filtering procedure is required in order to determine the true positives.

One of the main problems in publish/subscribe systems is the determination of
user interests and an optimal way to represent them. Approaches such as S. Nilsson’s
and G. Karlsson’s [49] for the creation of representative profiles of user interests ,
suggest solutions of using genetic and machine learning algorithms. This approach
aims in the creation of richer user profiles where users rate the information that
is delivered to them; with this indirect way the higher rated. Queries that users
suggested will be used to construct the next generation of queries. Y.-I. Chang et
al. [17] based on the observation that user interests change over the time, developed
a personalized filtering system with the ability to easily reflect the changes of the
users interest on their profiles. This was achieved with the usage of a knowledge
mining system, attempted to identify and categorise the user interests in short term
and long term. This categorisation aimed at a better indexing of the profiles as
well as the better reorganization when changes are frequent. Other approaches stir
away from the classic model of profile representation as a set of words and study
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the correlation of terms [50]. In these approaches, a network is created consisting of
weighted word nodes in order to represent closely user interests as well as to increase
the filtering precision.

Other works [40, 81, 82] pay attention in the filtering process of the documents
and divide it in two stages in order to accelerate the procedure and to provide higher
precision in the delivered results to the users. In the first stage the most irrelevant
incoming documents are excluded from the filtering procedure, while in the second
stage the remaining documents, which is a relatively smaller number, are filtered
with a pattern matching method. Their objective is to reduce the total of non
relevant documents that reach the end user. On the same assumption that word
patters offer a richer representation of data, than the one of bags of words [45], and
the window of words, N. Nanas and M. Vavalis [48] attempted to locate semantic
similarities in the documents and profiles. In this spirit works [3, 41, 42] developed
methods to evaluate the negative feedback of users for documents, combine them
with pattern recognition and deliver filtering results with reduced noise.

An intriguing approach in the filtering stage is given by W. Vanderbauwhede
et al. [73] as the filtering procedure is implemented by using Field Programmable
Gate Arrays (FPGAs) in order to speed up the most resource intensive routines.
In a similar spirit, [26, 63] try to make use of modern processors with threads and
achieve higher throughput of filtering documents with parallelization of the filtering
algorithms.

2.1.1 Information Retrieval

In this section we present some characteristic works on information retrieval on RDF
systems with full-text query support.

Panzeri and Pasi [54, 55, 56] build an extension on XQuery [16] to support full-
text query capabilities for Information Retrieval systems. This work introduces two
new predicates below and near for the XQuery full-text language. The purpose is
to provide users with ranked results for the structural matching of their queries.
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Users can define constraints about the structure and content of the data they want
to retrieve. This is achieved while the underlying structure of the data remains
unknown to the users. The proposed extension provides a ranking on structural
or content level of nodes or a combination of both rankings. Each XML element is
ranked upon the closeness it has to the provided query. Panzeri and Pasi [54] specify
the syntax of the proposed predicates, their semantics and evaluation functions
for computing the relevance score of a document path. Additionally in [55, 56]
the implementation of the proposed extension on the BaseX query engine [32] is
presented. However more time is required for BaseX to calculate the ranking of the
matched data, as the evaluation functions must be applied for the below and near
predicates of the extension.

Amer-Yahia et al. [5] developed FleXPath an Information Retrieval framework
for querying XML documents. The proposed framework supports queries formulated
in XPath, an XML [12] query language, with full-text support. The framework treats
the users queries as templates rather than strict representations. By adopting this
approach and relaxing the query expressions the framework gives the flexibility to
match a higher number of XML documents structurally and provide the users with
results similar to their interests. FleXPath provides a set of operators for the queries
and a schema for ranking documents depending on the satisfiability on the submitted
query. The framework is the first that provides a loose interpretation of the XPath
rather than the conventional exact semantic matching.

Mishra et al. [46] developed an Information Retrieval engine that processes and
answers SPARQL full-text queries by querying a relational store of structured XML
documents. [46] provides a method to transform SPARQL queries with full-text
conditions into SQL queries by making use of temporary indices, while the XML
documents are stored in the relational database by applying a similar procedure.
Finally a scoring mechanism is provided for the documents in the database that
matched the issued query.
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2.1.2 Information filtering in databases

The majority of research conducted for Information Filtering in the field of databases
is based upon the work of M. Franklin and S. Zdonik [30] where the term selective
dissemination of information initially appears to characterise their research on the
DBIS [4] system. The term publish/subscribe system originates from the field of
distributed systems but has also been used by researchers on databases systems.
Yet another one influential system is SIFT [75, 77]. In SIFT publications are in
the form of plain text and queries are represented as word sets; SIFT was the first
system that emphasized the importance of the query indexing method, addressed
the problem efficiently and achieved high performance rates against a high volume
of data [75].

2.1.3 Information filtering in distributed systems

Finally, a few influential distributed publish/subscribe systems will also be de-
scribed. Driven by the lack of a large scale publish/subscribe system A. Carzaniga
et al. [15] developed SIENA, a distributed system that offers alerting services based
on events. SIENA used an attribute based data model with capabilities that in-
cluded user subscriptions and alerting while it supported event publishing. It is the
first distributed system that focused in providing expressiveness to user searches
and to serve a high number of distributed users. Driven by the concept of SIENA,
M. Koubarakis et al. [38] developed DIAS and P2P-DIET [34, 39] while they used
the AWP and AWPS data models, the creation of which is based on ideas derived
from the Information Retrieval field. These two systems incorporate ideas from
Information Retrieval and databases in a single framework, while maintaining the
characteristics of SIENA that concern the publish/subscribe side. Another contri-
bution of P2P-DIET is the suggested representation of one-time queries, and the
support of super-peer protocols [78]. On the other hand the system iClusterDL
[64] presented a way to use a Semantic Overlay Networks (SON) [21] to support
both Information Retrieval and publish/subscribe functionalities in a digital library

- 10 -



Chapter 2

domain.

2.2 RDF-based publish/subscribe systems

In this section we present the work done in publish/subscribe systems that sup-
port RDF data natively on user profiles and document publishing.

2.2.1 Centralized publish/subscribe systems

Petrovic et al. [60] present a prototype system S-ToPSS (Semantic Toronto Pub-
lish/Subscribe System) to address the problem of semantic matching on publish/-
subscribe systems through an ontology. The purpose of this work is to extend the
matching process on syntactically different data but with semantically similar in-
formation. Three methods are presented in order to enhance the matching process.
The first approach includes the translation of an event’s attributes to synonyms and
matching them also with the existing subscriptions. The second method suggests
the usage of taxonomies, that represent general and specialized concepts, and their
placing in a hierarchic structure. Attributes of an event, that represent specialized
concepts, match with generalized concepts in subscriptions. On the other hand
more generalized concepts of publications do not match with specialized concepts in
subscriptions, since users have explicitly requested more specific informations. The
final proposed approach includes the usage of mapping functions in order to deter-
mine relations between attribute-value pairs that are not discoverable by a concept
hierarchic or a synonym relationship. The proposed approaches can be used either
together or separately, while the user can determine how generalized/specialized
publications wants to receive. On the other hand S-ToPSS [60] aimed for a better
semantic matching of published data on an ontology, G-ToPSS [61] (Graph-based
Toronto Publish/Subscribe System) focused on information dissemination of RDF
data on ontologies, by emphasising on scalability and fast filtering of RDF data
such as RSS publications and PDF documents. The publications on G-ToPSS are
represented as a directed labelled graph and a set of triples (subject, predicate, ob-
ject) is used to represent the graph on the system. Similarly the user subscriptions
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are represented as a directed graph pattern, while 5-tuples are used to capture the
profiles, similar to publications plus the constraints on object and subject. A two-
level hash table is used to represent the graph that indexes the subscriptions. The
matching algorithm is based on the traversal of the publications and subscriptions
graphs. Similarly to S-ToPSS [60] a class taxonomy is used to enhance the semantic
matching of G-ToPSS.

Lately a lot of work is focused in supporting publish/subscribe systems with
ontology capabilities. Wang et al. [74] propose an ontology-based publish/subscribe
system which can support events with complex data structures. The Ontology-based
Publish/Subscribe (OPS) system makes use of semantic events to filter them against
subscriptions in an ontology. All published events are at first processed into a RDF
graph and thereafter are filtered by the system. This conversion aims for a uniform
representation of the published data. In the same manner the subscriptions of the
users are also represented in a RDF graph, while an effective graph matching algo-
rithm for facilitating the filtering process is provided. During the filtering process
the published event’s and the subscriptions’ RDF graphs are traversed in a BFS
manner. Subsequently OPS checks the matching trees that emerge from the graph
traversal to determine the subscriptions that matched with the publishing event.

Related work focused in publish/subscribe systems that support data models
with attributes and query languages that utilize arithmetic and string operators.
Such systems are Le Subscribe [25], the monitoring subsystem of Xyleme [52] and
the Xyleme system [52], which uses an attribute-based query system but differentiate
from the majority of existing systems by supporting more than conjunctive queries
[25].

Park and Chung [57] developed a broker for OWL-based [8] publish/subscribe
systems. The focus of the work is to support profiles expressed in SPARQL [62],
a form appropriate for filtering incoming documents and events from OWL ontolo-
gies. The proposed system, named iBroker, uses algorithms to semantically and
syntactically match incoming events generated from an ontology. iBroker makes use
of semantics like inverse, symmetric and transitive properties to locate additional
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relevant profiles that may not match directly. The full-text support in SPARQL is
provided without emphasizing the importance of an optimization for the text index-
ing of user profiles. The text fields included in a SPARQL query are indexed using
a value field that can only operate a simple comparison of alphanumerics. iBroker
is a work that has common goals with ours and later in the thesis we are going to
extend iBroker to our data model and use it to evaluate the algorithms that we
propose.

2.2.2 P2P publish/subscribe systems

Chirita et al. [18] build the first P2P publish/subscribe system based on RDF data.
All users of the system employ L, a typed-first language subset of QEL [51], to con-
duct every transaction they seek i.e. advertising new publications, subscribing to
the system by expressing their interests and user notifications on new publications.
Additionally a set of types, constants and predicates is provided to allow users to
describe the data exchanges on the network. Publishers advertise the content they
intent to provide in the network using L. In the same manner users subscribe in
the system by describing their interests in the publications’ content they want to
be notified about by making use of the aforementioned set of tools. The system is
build on a topology of super-peer architecture. Initially publications, queries and
subscriptions are routed to the super-peers, and then they are distributed in the
peers depending of their content. The content of data is determined by the RDF
schema, property, or value of the data. Each peer is responsible for specific schemas
and properties, so profiles or parts of profiles that concern a specific schema are
routed for indexing to the corresponding peers. The indexing is coordinated by the
super peers as they maintain routing indices about which peers are responsible for
every schema or property. In the same manner when an advertisement/publication
occurs, super peers rout the data to the responsible peers in order to filter the adver-
tisement and notify the interested users about the publication. This work provides
optimization of processing RDF-based subscriptions and publications, by reducing
the network traffic, with the utilization of subscriptions’ content that express similar
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interests.

Liarou et al. [43] studies the problem of evaluating multi predicate conjunctive
queries in publish/subscribe systems. The proposed system operates on a P2P
network while the routing algorithms utilize Distribute Hash Tables (DHTs), in
order to achieve fast transactions between the peers, more specifically the protocol
of Chord [69] is used. As conjunctive queries require more than one triple to be
satisfied, the focus of this research is to distribute the load of the matching process.
Since the set of triples consisting a profile can be satisfied asynchronously and the
network must maintain knowledge of all the satisfied triples; thus it must remain
updated about sub-queries (triples) that have already matched and detect when a
query is answered. The speed up of the matching process is achieved by organizing
efficiently the sub-queries (triples) in the network nodes in order to accelerate the
filtering process. Two algorithms are proposed for the query evaluation process. In
the first algorithm, all peers involved in a subscription are organized in a chain-
like manner while a sequential matching of sub-queries is used for the matching
procedure. Finally in the second algorithm multiple peers are responsible for the
query indexing and matching, thus creating multiple node chains that speed up the
filtering procedure.

Similarly Pellegrino et al. [58] build a publish/subscribe P2P network based on
CAN [65]. Their goal is to support RDF events on the P2P network and study
the messaging paradigm. Particularly the proposed model allows users to formulate
queries and profiles making use of SPARQL and publish data and events using the
RDF data model. Users subscriptions are divided in quadruples and indexed in the
responsible peer, determined by the CAN protocol, in a multi-dimensional indexing
space. An algorithm for parallel matching of publishing events is provided. Given
that a publishing event occurs more frequently than a subscription, a scheme is
provided for not indexing the publications multiple times on the network. The data
of the event that concern a peer are stored while the rest of the event is forwarded
to other peers. Although the publication process becomes more resource intensive
a much faster notification of the subscribers is achieved.
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2.3 Using tries for Information Filtering

In this section we present the basis for the trie indexing structures used in the
Information Dissemination field as well as their variations that have arisen. The
proposed algorithm RTF utilizes the trie structures both in the structural and the
textual parts of the RDF-based user profiles for it’s indexing purposes.

The concept of tries was first presented in the research of de la Briandais [22],
but the real term trie was tries was conceived by Fredkin [31] and was derived
from the term retrieval. Tries are used in a high variety of applications including,
dictionary management [1, 6, 37], text compression [11], natural language processing
[7, 59], pattern recognition [28, 67], IP routing [53] and even for searching reserved
words in a compiler [2]. The range of applications that tries apply classify them as
general purpose data structures with characteristics known to us by a large number
of studies [24, 27, 35, 37, 66, 67].

There are quite a few methods on how the trie nodes are implemented and the
selection of one depends on the type of application their destined to be used. Two
methods prevail as they are the most commonly used. The first method requires the
usage of tables in the size of the vocabulary [31], while the second method favours
the usage of linked lists with non empty elements as the roots of sub-Tries [22, 36].
Tries implemented with tables are suitable for applications with small vocabulary
sizes; on the other hand the implementation of linked lists is suitable for applications
that aim in large vocabulary sizes or nodes that have a small number of children.

There are two main methods applied in order to reduce the size of a given trie,
either by reducing the size of the nodes or reducing the number of nodes needed
to represent a given set of terms. Compact Tries [70] are formations that aim to
reduce the number of nodes used to represent a given set of terms. This is achieved
by minimising the path of nodes that lead to a leaf of the trie, reducing the branching
factor to one node. In another approach the word index can be treated as a total
rather than a sequence of terms, affecting the number of nodes and creating a sparser
forest. However, [20] proved that the problem of computing the smallest possible
trie is NP-complete , therefore several heuristic methods have been proposed [19].
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Data Model and Algorithms

In this chapter we present the data model defined for the publication and profile
model in our system. Additionally we present the algorithms developed to facilitate
the indexing of profiles and the matching of incoming publications.

3.1 Data and profile model

Resource Description Framework (RDF) constitutes a conceptual model and a
formal language for representing resources in the Semantic Web. It is the building
block of a metadata layer on top of the current structured information layer of
the World Wide Web which would enable interoperability between different systems
and facilitate the exchange of machine-understandable information. Furthermore,
the streaming fashion of RDF makes it a perfect candidate for modern publish
/subscribe ontology systems which demand sophisticated filtering mechanisms for
matching massive ontology data against thousands of user profiles.

3.1.1 The SPARQL query language

The SPARQL query language is currently the W3C recommendation for querying the
Semantic Web. The graph model over which it operates naturally joins data together
and provided with several query forms for querying datasets SPARQL represents

- 17 -



Data Model and Algorithms

Constraint ::= FTExpression

FTExpression ::= ftcontains()

FTExpression ::= FTMain ("ftand“ FTMain)*

FTMain ::= String

Table 3.1: SPARQL extension grammar.

a fully-fledged language. However, is still lacks the support of a complete full-
text retrieval mechanism which uses sophisticated algorithms and data structures
to minimise processing load and memory requirements. Only regular expression
queries are supported in the specification where an XPath function is invoked neither
providing any optimizations for the syntactic advantages that SPARQL provides, nor
leveraging on the structural properties of the datasets.

Since we focus our attention on full-text filtering of ontology data we are inter-
ested only in property elements with an RDF literal as their content. A literal in
an RDF graph can be either plain or typed. Plain literals have a lexical form and
an optional language tag, where as typed literals have a lexical form and a datatype
URI. We only consider the case where the datatype URI is an XML Schema built-in
datatype.

The equivalent extension for information retrieval on XML publications [16] uses
a concrete boolean model to capture the semantics of full text querying where the
atoms of the model are decomposed into basic queries representing both single word
and context queries. Context queries can be subsequently broken down into phrase
and proximity queries.

3.1.2 SPARQL full-text extension

We propose a similar extension to the SPARQL syntax to address these types of
queries in RDF datasets. Notice that SPARQL supports different profile forms that
affect only the form of the answers returned and not the graph matching process it-
self. To preserve this expressibility we view the full text operations as an additional
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filter of the profile variables hence leaving cost-efficient strategies to the profile opti-
mizer. In this context we define a new binary operator ftcontains (full-text contain)
that takes as input a variable of the profile and a full-text expression that operates
on the values of this variable. The profile signature of the operator is expressed as
the following function:
xsd : boolean : ftcontains(variablevar, fulltextexpression)

In this context the subject of the triple is always a node element and the predicate
denotes the relation to the literal. The object is the literal which is expressed as
a string either typed or untyped. A full text expression is evaluated only against
a literal so the variable var is always the object of the triple pattern in the graph
pattern. The subject and/or predicate of the triple pattern can be constants.

The rules for the extended SPARQL syntax are listed in Table 3.1. Using this
syntax we carefully designed a new set of full-text queries shown in Figure 3.1 which
currently can not be efficiently evaluated by existing publish-subscribe ontology
systems. These start from simple keyword and phrase matching queries and are
easily extended to specialized conjunctive matching. SPARQL Query 1 matches
all publications that are of type Article and have a property Title with a string
literal content that contains the keyword “Greece”. SPARQL Query 2 is a phrase
matching profile which is represented by a proximity formula of zero minimum and
maximum distance between the words of the phrase. It matches all publications
that are published and are of type Article, while the body of the publication must
contain the phrase “economic crisis”. Finally, SPARQL Query 3 matches all articles
that are published by the “Economist”, contain the word "Greece in their title and
their body contains the words "economic“ and "measures” in it at any given distance.
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SPARQL profile 1

1 SELECT publication

2 WHERE { publication type Article .

3 Article hasAttribute Title.

4 FILTER ftcontains (Title , " Greece ")

5 }

SPARQL profile 2

1 SELECT publication

2 WHERE { publication type Article .

3 Article hasAttribute Body.

4 FILTER ftcontains (Body , " economic crisis ")

5 }

SPARQL profile 3

1 SELECT publication

2 WHERE { publicatition type Article .

3 Article hasAttribute Publisher .

4 Publisher hasAttribute Name

5 Article hasAttribute Title.

6 Article hasAttribute Body.

7 FILTER ftcontains (Name , " Economist ")

8 FILTER ftcontains (Title , " Greece ")

9 FILTER ftcontains (Body , (" economic " ftand " measures "))

10 }

Figure 3.1: SPARQL Queries presenting the extended syntax proposed.

3.1.3 SPARQL subscription representation

Users express their interests in a defined manner by making use of the SPARQL
query language and the full-text extension we supply. Thus in this section we explain
the notion for processing and representing SPARQL queries in the form of RDF
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triples.

As discussed earlier, SPARQL provides a formal way for querying RDF data.
SPARQL is a standardized language for the users to define their interests, providing
expressiveness and comprehensive tools to exploit language features. Apart from
the aforementioned, SPARQL is nevertheless a representation of data that can be
translated in a series of conjuncts using RDF triples. This transformation in triples
can provide us with great advantages. As the data retain their information we
can utilize better techniques for managing user profiles, thus providing clustering
opportunities in the indexing phase and delivering better performance during the
filtering phase. Based on this notion, every SPARQL profile consists of individual
parts represented in a form that include three fields named subject, predicate and
object. In our approach fields of subject, predicate and object are fixed values that
must match triples with these exact values.

Definition 1 We define a profile p as a series of conjuncts using RDF-triples. Each
triple has three mandatory attributes, namely subject (s), predicate (p) and object
(o). There is an additional, non-mandatory, attribute that facilitates the represen-
tation of the full-text operators and their textual restrictions. The following formula
is used in order represent the user profiles:
p = t(S1, p1, O1, {FT1()}) ∧ t(S1, p2, O2, {FT2()}) ∧ ... ∧ t(S1, pn, On, {FTn()})

In our system each SPARQL profile has a mandatory field called publication;
every profile posed in RTF must bear this field and use it in the SELECT clause.
Additionally, in the WHERE clause of a SPARQL profile the conditions that the
profile must meet in order to match with a publication are described. The conditions
that form the WHERE clause are conjunctive. This means that when the conditions
are satisfied the user can be notified about the publication. To better demonstrate
our approach, in Figure 3.2 we give two representative examples of SPARQL queries,
without full-text operators. We are going to proceed and demonstrate how these
SPARQL queries are processed in RDF-triples and later on extend these triples to
include full-text support.
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SPARQL profile 4

1 SELECT publication

2 WHERE { publication type Article .

3 Article hasAttribute Title.

4 Article hasAttribute Body.

5 }

SPARQL profile 5

1 SELECT publication

2 WHERE { publication type Book.

3 Book hasAttribute Title.

4 Book hasAttribute Body.

5 Book hasAttribute Publisher .

6 Publisher hasAttribute Name.

7 }

Figure 3.2: SPARQL profile examples presenting simple user subscriptions.

Example 1 We present SPARQL profile 4 (Figure 3.2), a simple profile, where the
user wants to be informed about all publications that are articles. This is achieved
by specifically asking in his request that the publication’s type must match with the
defined type Article hence the second line of the profile publication type Article.
Additionally the user requests that the publication has a field named Title and a
field named Body, hence the third and fourth lines of the profile Article hasAttribute
Title and Article hasAttribute Body, respectively. As we can observe each part of
the profile can be matched independently thus it can be breaked into autonomous
parts and stored separately; these parts are called RDF-triples. Consequently the
SPARQL profile 4 can be expressed in the following form as a set of conjunctive
RDF-triples:

q1 =(publication, type, Article) ∧ (Article, hasAttribute, T itle)

∧(Article, hasAttribute, Body)
(3.1)
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Observe that the information of the profile are retained in a different form, while
giving us a more flexible representation of data to work upon.

Example 2 In the same manner we can exam SPARQL profile 5 (Figure 3.2) which
contains three constraints in it’s WHERE clause. The user requests a publication
that must be published by a publisher (Book hasAttribute Publisher) and be of a type
Book (publication type Book), the publication should have two mandatory fields
named Title and Body (Book hasAttribute Title and Book hasAttribute Body),
and the publisher should have a name (Publisher hasAttribute Name). Respectively
to the first example, Query 5 is expressed with the following series of RDF-triple
conjuncts:

q2 =(publication, type, Book) ∧ (Book, hasAttribute, T itle)

∧(Book, hasAttribute, Body) ∧ (Book, hasAttribute, Publisher)

∧(Publisher, hasAttribute, Name)

(3.2)

We can see that RDF-triples are sufficient for representing a sub-set of SPARQL
queries. Below we present how we can extend RDF-triples to accommodate addi-
tional information for supporting our full-text operator ftcontains and consequently
other full-text operators that may be similarly defined.

Full-text restrictions in SPARQL queries can be applied in every triple. The user,
while posing a profile defines the full-text operators. These restrictions concern the
object attribute in the RDF-triple. The FILTER clause in SPARQL queries 6 and 7
shown in Figure 3.3 includes the operators that must be applied on the chosen field.
These restrictions must be represented in a simple way in order to be indexed by
algorithm RTF. To support this functionality RDF-triples must have an additional
non-mandatory field for the object that will be also indexed. This field includes
the full-text operator and it’s supplementary fields as specified in Section 3.1.2. A
RDF-triple that bears a full-text operator is named quadruple. We proceed to give
examples that demonstrate the usage of quadruples in supporting full-text operators.

Example 3 In SPARQL profile 6 (Figure 3.3) the user subscribes for a publication
that is of type Article as shown in the second line publication type Article and it
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SPARQL profile 6

1 SELECT publication

2 WHERE { publication type Article .

3 Article hasAttribute Title.

4 Article hasAttribute Body.

5 FILTER ftcontains (Title , " olympic " ftand "games ")

6 FILTER ftcontains (Body , " olympic " ftand "games" ftand "rio ")

7 }

SPARQL profile 7

1 SELECT publication

2 WHERE { publication type Book.

3 Book hasAttribute Title.

4 Book hasAttribute Abstract .

5 Book hasAttribute Body.

6 Book hasAttribute Publisher .

7 Publisher hasAttribute Name.

8 FILTER ftcontains (Title , " olympic ")

9 FILTER ftcontains (Abstract , " olympic " ftand "rio ")

10 FILTER ftcontains (Body , " olympic " ftand " committee ")

11 FILTER ftcontains (Name , "the" ftand "wall" ftand " street " ftand "

journal ")

12 }

Figure 3.3: SPARQL profile examples presenting the utilization of full-text operators.

has two attributes named Title and Body as shown in the third and fourth line of the
profile respectively (Article hasAttribute Title and Article hasAttribute Body). Ad-
ditionally attribute of Title must be filtered and should contain the words “olympic”
and “games” in it’s text field, attribute Body must contain the words “olympic”,
“games” and “rio”. The two FILTER clauses can be found in the fifth and sixth line
of Query 6. The filtering clause must be applied to the attributes Title and Body
respectively, therefore must be included in the respective triples as additional infor-
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mation. The set of triples and quadruples that represent this SPARQL profile is the
following:

q3 =(publication, type, Article)∧

∧(Article, hasAttribute, T itle,

ftcontains(”olympic”ftand”games”))

∧(Article, hasAttribute, Body,

ftcontains(”olympic”ftand”games”ftand”rio”))

(3.3)

Hence that we use a quadruple only where there is a full-text operator that needs
to be applied to the object of a triple.

Example 4 In the same manner we process SPARQL profile 7 (Figure 3.3), where
the user requests for a publication of type Book. Each attribute of this publication
Title, Abstract, Body and Publisher’s Name must be filtered and contain specific
keywords. The filtering clauses can be found in lines eight to eleven of the SPARQL
profile 7. This profile is represented with the following set of triples and quadruples:

q4 =(publication, type, Book)

∧(Book, hasAttribute, T itle,

ftcontains(”olympic”))

∧(Book, hasAttribute, Abstract,

ftcontains(”olympic”ftand”rio”))

∧(Book, hasAttribute, Body,

ftcontains(”olympic”ftand”committee”))

∧(Book, hasAttribute, Publisher)

∧(Publisher, hasAttribute, Name,

ftcontains(”the”ftand”wall”ftand”street”ftand”journal”))

(3.4)

Users typically, are not familiar with the structure of publications to be made
available in a system, when submitting a subscription. Thus, applying specific re-
strictions to the publications may result in missing notifications that may match
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SPARQL profile 8

1 SELECT publication

2 WHERE { publication type *.

3 * hasAttribute Title.

4 * hasAttribute Body.

5 FILTER ftcontains (Title , " olympic " ftand " commitee " ftand "

president ")

6 FILTER ftcontains (Body , " olympic " ftand "rio" ftand " stadium ")

7 }

SPARQL profile 9

1 SELECT publication

2 WHERE { publication type *.

3 * hasAttribute Title.

4 * hasAttribute Abstract .

5 * hasAttribute Body.

6 * hasAttribute Publisher .

7 Publisher hasAttribute *.

8 FILTER ftcontains (Body , " olympic " ftand " committee ")

9 FILTER ftcontains (*, "bbc" ftand " sports ")

10 }

Figure 3.4: SPARQL profile examples presenting the utilization of wildcards operators.

a users’ interest. The need for a more flexible subscription scheme seems neces-
sary in order to better describe users’ interests. Additionally when less restrictions
are applied to the published data a better quality of information delivery can be
achieved. In addition to supporting full-text we extended our publish/subscribe
indexing scheme to support the wildcard operator applied in RDF-triples. With a
combination of full-text and wildcard operators we are able to provide a set of tools
to support more expressive subscriptions tailored to user needs. We provide users
with the flexibility to define profiles where the subject, predicate or object of a triple
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may match any value of the publication. This flexibility results to better content
delivery as the description of interests is more expressive.

Example 5 SPARQL profile 8 (Figure 3.4) demonstrate an example of a user that
subscribes for a publication independently of the type (publication type *) with two
constraints: it must contain a Title and a Body attribute (* hasAttribute Title
and * hasAttribute Body). Additionally the Title and Body attributes must contain
specific keywords on their text fields. The profile is represented with the following
set of triples and quadruples:

q5 =(publication, type, ∗)

∧(∗, hasAttribute, T itle,

ftcontains(”olympic”ftand”commitee”ftand”president”))

∧(∗, hasAttribute, Body,

ftcontains(”olympic”ftand”rio”ftand”stadium”))

(3.5)

Example 6 SPARQL profile 9 (Figure 3.4) gives us an example of the use of wild-
card in the object field while supporting full-text restrictions. In this example a user
subscribes to publications of any type that must have the attributes of Title, Abstract,
Body and Publisher while the publisher may have any attribute ( Publisher hasAt-
tribute *) that contains the words “bbc” and “sports” ( ftcontains(*, "bbc" ftand
"sports")) as shown in the seventh and ninth lines of the profile. The profile is
represented with the following set of triples and quadruples:

q6 =(publication, type, ∗) ∧ (∗, hasAttribute, T itle)

∧(∗, hasAttribute, Abstract)

∧(∗, hasAttribute, Body, ftcontains(”olympic”ftand”committee”))

∧(∗, hasAttribute, Publisher)

∧(Publisher, hasAttribute, ∗, ftcontains(”bbc”ftand”sports”))

(3.6)

We give the flexibility to the users to define a triple that has all it’s fields as
wildcards, (* * *). A profile like this may be applied in order to return all publi-
cations regardless of their structure. By applying a full-text operator the user may
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filter all publications and utilize our system ignoring the structural form of the data
published in our system. The result will be exactly as if the user would be using a
publish/subscribe system without RDF support.

In this section we have demonstrated the usage of SPARQL queries to express
user interests. We show how we transform SPARQL queries to RDF-triples and
how to support full-text operator with this representation. We also showed how
wildcards may be used as a mean to enrich the expressivity of the profile language.
We do not expect from the average user to utilize all the presented capabilities of our
subscription language. However a user can use the full potential of the subscription
language through a suitably adapted and intuitive interface.

3.1.4 The publication model

Conceptually, the context in our system is defined as a publication which is repre-
sented as a set of triples that are expressed using RDF. Hence, the underlying model
is a directed graph which contains a set of nodes that may serve as the subject or
the object in a triple statement. The nodes are connected via properties that are
expressed as the predicate in the triple statement.

In our proposed model we utilize the RDF data language to describe the data
publications. A publication pub is described in a structured manner using RDF-
triples containing additional fields where needed to store the text parts. The usage
of RDF data language renders our system flexible to publication input. RTF may
match an incoming publication, expressed into a RDF-structured manner, against
the profile database by translating each publication into a series of RDF-triples.

Definition 2 We define a publication pub as a series of RDF-triples. Each triple
has three attributes, namely subject (s), predicate (p) and object (o). There is an
additional, field that represent the textual information that an attribute may have.
The following formula is used in order to represent a publication in our system:
pub = t(S1, p1, O1, {text1}) ∧ t(S1, p2, O2, {text2}) ∧ ... ∧ t(S1, pn, On, {textn})
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3.2 Algorithms

We present RTF, an algorithm developed for indexing multi-predicate continu-
ous queries in publish/subscribe ontology systems. We extend the current standard
of the industry for querying RDF data, SPARQL, to support full-text filtering in user
profiles. In this chapter we provide the algorithms and methodologies we developed
for processing SPARQL queries as well as the indexing structures used to repre-
sent RDF-based subscriptions and publications. In Section 3.2.1 In the following
sections we present the algorithm RTF which was developed to study the filtering
problem, and give a detailed analysis of the indexing structures used to store the
RDF-triples. Thereafter the indexing structures for the text part of subscriptions
are presented in Section 3.2.2. The filtering process is outlined in Section 3.2.3.
Finally, in Section 3.2.4 iBroker a state-of-the-art competitor is presented.

3.2.1 The algorithm RTF

In the previous section we demonstrated the idea of representing SPARQL queries in
the form of RDF-triples. In this section we will give the data structures developed to
index RDF-triples and support fast filtering of incoming ontology data. We present
the indexing of the attributes subject, predicate and object, and omit the indexing
of full-text as it will be discussed in detail in Section 3.2.2.

In publish/subscribe systems users pose hundreds of thousands of queries that
must be indexed in an efficient way. User subscriptions tend to contain a plethora
of common elements, and as the number of queries increases so tend to do their
common parts. We aim to exploit those commonalities in order to achieve better
clustering in the indexing phase and leverage this clustering to deliver better filtering
times during the publication phase.

Common solutions to capture profile commonalities in the modern literature
suggest the usage of a two-level hash table [57, 60, 61] as a means to represent RDF-
triples and their correlations. However this approach may miss a lot of clustering
opportunities since clustering common common triples that occur in different users’
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profiles is not possible. On the other hand, our approach is based on tree structures.
Tree structures are often used in applications where clustering of common elements
is essential [1, 6, 11, 37, 72]. The deployment of such structures will provide better
opportunities to capture the common elements between user profiles.

To index sets of RDF-triples RTF uses three main data structures: (i) a forest
of tries that store the three attributes of RDF-triples subject, predicate and object,
and (ii) a hash table that provides efficient access to the roots of the tries in the
forest, (iii) a two level table with linked lists for the indexing of the profiles called
the Profile Table.

RTF during the indexing phase receives a profile that consists of two fields, a
unique profile identifier and a set of conjunctive RDF-triples and quadruples that
represent a SPARQL profile qi. During the indexing phase RTF assigns every triple
a unique identifier ti. The identifier ti will be used to be link every triple to the
profile stored in the RDF-triple forest and in the Profile Table.

Example 7 For instance consider the SPARQL queries presented in Figures 3.2,
3.3 and 3.4. These SPARQL queries were processed into RDF-triples as shown in
Section 3.1.3 and the resulting RDF-triples and quadruples are presented in Ta-
ble 3.2. On the first column of Table 3.2 the profile identifier for each profile is
shown, in the second column of Table 3.2 the set of triples that constitute the respec-
tive profile is presented, while in the third column of Table 3.2 the triples identifier
is unique.

After the assignment of triples identifiers, RTF proceeds for each profile to store
the profile identifier along with the triples’ identifiers into the Profile Table. The
Profile Table is comprised by two fields: (i) the unique identifier of the profile, (ii) a
table that stores the unique identifiers of the RDF-triples and quadruples that form
the profile.

Example 8 Let us consider the SPARQL profile 4 that is presented in Figure 3.2.
The set of RDF-triples and quadruples that represent the SPARQL profile are pre-
sented in Table 3.2. On the first column of Table 3.2 the profile identifier and it’s
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value q1 is shown. The three RDF-triples that represent q1 are shown in the second
column of Table 3.2, while in the third column you may see the unique triple iden-
tifiers assigned to the three triples of q1 t1, t2 and t3 respectively. RTF indexes the
profile identifier and the triple identifiers into the Profile Table. Figure 3.5 presents
the Profile Table after indexing all the profiles, triples and quadruples identifiers
submitted to RTF. At the first cell of the table the profile identifier q1 is stored
accompanied by list {t1, t2, t3} representing the RDF-triple identifiers.

In the same manner of Example 8 all profile identifiers and their RDF-triples’
identifiers of Table 3.2 are indexed into the Profile Table. As presented in Figure 3.5
profiles q2, q3, q4, q5 and q6 are stored in the second, third, fourth, fifth and sixth
cell of the Profile Table respectively.

The triple forest is populated in order to store the triples compactly by exploiting
their common elements. Every triple forest consists of trie nodes n, where:

• An attribute of an RDF-triple, denoted by atrb(n), is stored.

• A list of the children it has, denoted by chld(n), is stored

• If n is a leaf node the n also maintains two lists of triples’ identifiers. One
dedicated to storing the identifiers of triples that bare no full-text operators,
denoted by tripIds(n). While the other list is used to store the identifiers of
triples that bare full-text operators, namely quadruples, denoted by quadIds(n).

When a new profile p arrives RTF iterates through the set of triples t1...ti that
form p. The algorithm indexes every triple tn of the profile p separately in the triple
forest. During the indexing phase RTF searches the triple forest for a suitable place
to index the current triple tc. The first triple that arrives in an empty triple forest,
creates three new nodes ns, np and no that represent it’s three fields subject, predicate
and object respectively. The newly created nodes are linked with a hierarchy of
parent-child, more specifically node no is assigned as a child to node np while node
np is assigned as a child to node ns. This results to a tree T that has as root node
ns and leaf node no while it’s depth equals two. Finally the triple identifiers are
stored into the Profile Table.
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Figure 3.5: The data structure Profile Table after the indexing phase of Algorithm RTF.

Example 9 Consider the first profile q1 of Table 3.2. The first triple of that profile
that is going to be indexed into the currently empty triple forest is t1 namely (pub-
lication, type, Article). Triple t1 is an RDF-triple without any full-text operator.
RTF will use t1’s subject to create the first node ns and use it as a root. The refer-
ence to node ns with atrb(ns) = publication will be also stored to Hash Table using
the atrb(ns) as the key to index it. Subsequently the indexing algorithm will proceed
to the predicate element of triple t1 and create a node np to store it. The newly
created node np will have atrb(ns) = type and will be assigned as a child to the node
ns by making an entry in the list chld(ns). Then RTF will index the object of the
triple t1 by creating one last node named no. The no node will store the object of
t1 namely atrb(no) = Article. In the next step, the algorithm will proceed to assign
the newly created node no to the predicate node np as a child, that was created in
the previous step. This will be achieved by inserting the node no in the children list
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Figure 3.6: The data structure triple forest after the indexing phase of RTF.

of np, denoted as chld(np). Finally RTF, as it indexes a triple without full-text
operators will proceed and store t1’s identifier into the leaf node no namely the list
tripIds(no).

The result of indexing t1 can be found in Figure 3.6, under the trie with the
identifier T1. The list tripIds is shown in the figure under the object node and
enclosed into the square brackets.

RTF when inserting a new triple proceeds with the following steps. The first
triple t1 that arrives, creates a tree with it’s three fields as demonstrated above. The
second triple that arrives will consider to be stored at the existing tree or create a
new tree. In general, to insert a new triple tn, RTF examines the subject sn of the
triple and utilizes the Hash Table to find if there is a candidate tree i.e., a tree Ti

that atrb(Ti) = subject(tn). If a root is found, the indexing algorithm proceeds to
examine the node Ti’s children in order to determine if there is a child that represents
the same predicate as triple’s tn predicate i.e., atrb(chld(Ti)) = predicate(tn). In the
case that a node childi is located that full fills the above requirements RTF examines
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the children of childi that are responsible for indexing the object fields. If in the list
of nodes chld(childi) is found a node childj that atrb(childj) = object(tn). During
the indexing phase if RTF at any give step, fails to locate an existing position,
a tree node, to index a field of tn proceeds to create a new node that stores the
needed field. To complete insertion RTF proceeds to store at the final node the
triple’s tn identifier. The final node is the one that stores the field of the object.
Every leaf node of the forest maintains two separate lists tripIds(n) and quadIds(n).
The first list aims to store the identifiers of triples that have no full-text operator.
While the second list is reserved for storing quadruples, namely RDF-triples that
bear a full-text operator. This differentiation is made in order to keep track which
triples may match immediately during the filtering phase and which must be further
investigated in order to determine if the full-text operator conditions are met. Take
a look at Example 10 for a more thorough look at the insertion process applied by
RTF.

Example 10 Consider the first profile of Table 3.2, q1. The first triple of the profile
is indexed as demonstrated in Example 9. The second triple that arrives at the triple
forest is t2 (Article, hasAttribute, Title). RTF will examine triple’s t2 subject and
try to locate a tree T to index it. As there is only one Tree at the current moment in
the triple forest with a root root(T1) where atrb(root(T1)) = publication, RTF will
determine that there is no existing tree to index the new triple t2. So it will proceed to
create a new tree T2 that will index the attributes of t2. The steps that RTF is going
to follow are exactly the same as described in Example 9 for t1. More specifically
three new nodes ns, np and no with atrb(ns) = Article, atrb(np) = hasAttribute and
atrb(no) = Title respectively will be created. These nodes will be inserted into the
trie, i.e. ns is going to be declared as parent node of np and np as parent node of no.
While the node ns will obtain a reference in the Hash Table. Finally the identifier of
t2, will be added to list of node no tripIds(no). The resulting tree T2 after indexing
the triple t2 seen in Figure 3.6.

We proceed examining how an incoming profile q is indexed by RTF under
existing tries, thus utilizing the clustering techniques.
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Example 11 Consider the first profile of Table 3.2, q1. The first and second pro-
file are indexed as demonstrated in Example 9 and Example 10 respectively. The
third triple that arrives at the triple forest after indexing t1 and t2 is triple t3 of q1

namely (Article, hasAttribute, Body). At first RTF will examine triple’s t3 sub-
ject, Article ,and try to locate a tree T to index it. At the current moment in the
triple forest there are two trees, T1 and T2 where root atrb(root(T1)) = publication

and atrb(root(T2)) = Article. RTF will identify T2 as a tree that can index the
subject of t3 then the algorithm will proceed to examine triple’s t3 predicate where
predicate(t3) = hasAttribute. By examining all children of root(T2) will locate the
one and only child that stores the atrb(child1) = hasAttribute. As t3’s predicate
can be indexed in child1 the algorithm will proceed to examine t3’s object where
object(t3) = Body. The algorithm will examine all chld(child1) and fail to locate an
object with atrb(childk) = object(t3), therefore RTF will proceed to create a node to
store object(t3). The new node will be attached as a child to child1 while the iden-
tifier of triple t3 will be stored to the list tripIds as it is a triple without a full-text
operator. The resulting tree T2 after indexing the triple t3 seen in Figure 3.6 under
the tree with the identifier T2.

After indexing the set of triples t1, t2, and t3 that represent q1 we may see that
the node reusability is high as nodes that represent attributes of the triples are
reused and a compact indexing is achieved. Now let us examine what happens when
indexing quadruples, i.e., RDF-triples that have a full-text operators. In general
RTF when indexes a quadruple proceeds with the following steps. The indexing
algorithm, at first, sets aside the full-text operators and proceeds to find a suitable
place to store the RDF-triple, as described above. When the indexing place is found
RTF instead of storing the triples identifier to list tripIds of the object node, it
chooses to store the ti to list quadIds. In this way during the filtering phase RTF is
aware which triples match and which one will need further investigation. After the
insertion of identifier to the list quadIds RTF will examine the full-text operator
words and index them in a separate indexing structure that is going to be discussed
in Section 3.2.2. As the indexing of triples and their full text operators is a different
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operation we will examine the full-text indexing later in this section.

The list paradigm is easily extendible to more than one full-text operators as a
dedicated list for every full-text operator may exist and the triples that correspond
to this operator may be indexed in this list.

Example 12 Consider the third profile of Table 3.2, q3. We will examine q3 and
the triples that represent it t7, ..., t10 and describe how RTF indexes them in the
triple forest.

The first triple that forms q3 is triple t9 (publication, type, Article), the indexing
algorithm will look up the Hash Table and locate tree T1 that can store the t9. Triple
t9 will be indexed under T1 by exploiting the existing tree T1 which can facilitate
the indexing of subject(t9), predicate(t9) and object(t9) without the creation of new
nodes. The only addition that will be made is at the object node in which the identifier
of t9 will be added in the list of tripIds.

In the next step RTF will proceed to examine triple t10 namely (Article, hasAt-
tribute, Title, ftcontains("olympic" ftand "games")). The indexing algorithm will
look up the Hash Table and locate the tree T2 that can index the triple t10, since
that root(T2) = subject(t10). The child of root(T2) indexes an attribute with value
“hasAttribute”, additionally T2 stores an object node with the same value as object(t10).
The only addition that will be made is at the node’s object list that indexes triple’s
id. This time the list that is going to be updated with the new triple identifier is
list quadIds. As in this case t10 is a quadruple that contains a full-text operator and
must be distincted from the triples without full-text operators. The full text operators
fields will be indexed in the indexing structure especially allocated for this purpose.

In the final step of indexing profile q3 there is one last triple that needs to be
indexed in the triple forest. Namely that triple is t11 (Article, hasAttribute, Body,
ftcontains("olympic" ftand "games" ftand "rio")), a triple with a full-text operator.
In the same manner of indexing the two previous triples, RTF will look for a tree T

where root(T ) = subject(t11), and tree T2 will be located as a candidate. Subsequently
the indexing algorithm will examine the only child of root(T2) and determine that
can index the predicate of t11. Then the two children of the predicate node will be
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examined and a node with atrb(node) = object(t11) will be found. Finally RTF
will determine that t11 is able to be indexed in T2 without creating any new nodes
and will insert an entry with t11 into the list that is responsible for indexing triple’s
identifiers quadIds.

The result of indexing q3 can be found in Figure 3.6, under tries T1 and T2. The
list quadIds is represented as the structure under the object nodes of T1 and T2 and
are encloses into braces.

Example 13 Figure 3.6 shows the forest of triples created when inserting the triples
t1, ..., t26 as given in Table 3.2. The first triple t1 creates the tree T1, the second triple
t2 creates the forest T2. The third triple t3 is indexed under T2 with the addition of a
new object node. The fourth triple t4 is indexed under T1 with an addition of a new
object node, while t5 creates a new tree T3. Similarly, RTF inserts the remaining
twenty two triples.

Finally notice that SPARQL queries that include wildcard operators on their
fields are not treated differently during the indexing phase. In this way grouping of
common elements in these queries is also achieved in the case of wildcards. However,
wildcards are treated differently during the filtering phase of the algorithm as we
will discuss in Section 3.2.3. Figure 3.7 presents the pseudocode for the RDF-triples
indexing. In the next section we give the details of indexing the full-text restrictions
of the profiles.
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Profile

ID
Triplets tripletID

q1

(publication, type, Article) t1

(Article, hasAttribute, Title) t2

(Article, hasAttribute, Body) t3

q2

(publication, type, Book) t4

(Book, hasAttribute, Title) t5

(Book, hasAttribute, Body) t6

(Book, hasAttribute, Publisher) t7

(Publisher, hasAttribute, Name) t8

q3

(publication, type, Article) t9

(Article, hasAttribute, Title,

ftcontains("olympic" ftand "games"))
t10

(Article, hasAttribute, Body,

ftcontains("olympic" ftand "games" ftand "rio"))
t11

q4

(publication, type, Book) t12

(Book, hasAttribute, Title,

ftcontains("olympic"))
t13

Book, hasAttribute, Abstract,

ftcontains("olympic" ftand "rio"))
t14

(Book, hasAttribute, Body,

ftcontains("olympic" ftand "committee"))
t15

(Book, hasAttribute, Publisher) t16

(Publisher, hasAttribute, Name,

ftcontains("the" ftand "wall" ftand "street" ftand "journal"))
t17

q5

(publication, type, *) t18

(*, hasAttribute, Title,

ftcontains("olympic" ftand "commitee" ftand "president"))
t19

(*, hasAttribute, Body,

ftcontains("olympic" ftand "rio" ftand "stadium"))
t20

q6

(publication, type, *) t21

(*, hasAttribute, Title) t22

(*, hasAttribute, Abstract) t23

(*, hasAttribute, Body,

ftcontains("olympic" ftand "committee"))
t24

(*, hasAttribute, Publisher) t25

(Publisher, hasAttribute, *, ftcontains("bbc" ftand "sports")) t26

Table 3.2: Table presenting the RDF-triplets obtained from SPARQL queries of Fig-

ures 3.2 3.3 3.4
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Algorithm index

1 BEGIN

2 position← NULL

3 foreach ti ∈ q do B For all triplets forming

4 SPARQL Query q

5 foreach field fl ∈ ti do B For each field fl of ti

6 if node nk such as atrb(nk) = fl then B If a node nk is found that

7 can index fl

8 position← nk B Store the node’s position

9 remove fl B Remove field fl as an

10 indexing position has been found

11 end if

12 end for

13
14 if position = NULL then B If no indexing position has

15 been found

16 create node ns such as atrb(ns) = subject(ti) B Create node ns for the

17 create tree T ′ with root(T ′) = ns subject of ti and use it as root

18 for new tree T ′

19 create node np such as atrb(np) = predicate(ti) B Create node np for the

20 chld(ns)← np predicate of ti and assign it as

21 child to ns

22 create node no such as atrb(no) = object(ti) B Create node no for the object

23 chld(np)← no of ti and assign it as child

24 np

25 if ti has F T operator then B If ti is a quadruplet store ti

26 quadIds(no)← ti in the list for quadruplets

27 indexTest (ti) and index the text constraints

28 else

29 tripIds(no)← ti B Else store ti in the triplets

30 list

31 end if

32 else

33 foreach remaining field fr ∈ ti do B For all un-indexed fields of

34 create node nj such as atrb(nj) = fr ti create node nj to index them

35 chld(position)← nj B Assign each new node to the

36 position← nj previous one as child

37 end for

38
39 if ti has F T operator then B If ti is a quadruplet store ti

40 quadIds(position)← ti in the list for quadruplets

41 indexTest (ti) and index the text constraints

42 else

43 tripIds(position)← ti B Else store ti in the triplets

44 list

45 end if

46 end if

47 end for

48 END

Figure 3.7: Pseudocode for RDF-triple indexing.
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3.2.2 Full-text indexing data structures

In the previous section we separated the indexing phase of RDF-triples and the in-
dexing phase of their full-text constraints. We gave the data structures that RTF
utilises for indexing RDF-triples. In this section we proceed to describe the data
structures that RTF utilises to index the textual parts of the RDF-quadruples. The
text indexing algorithms that are used to facilitate the indexing of text fields are
algorithms FT-Index and FT-Reorg, which are algorithms based on BestFit-
Trie [71] and ReTrie [72] appropriately modified versions to cope with full-text
requirements posted by our SPARQL extension. At first a description on how FT-
Index operates is provided and subsequently FT-Reorg is presented as it is largely
dependent/based on algorithm FT-Index.

Consider the quadruples that were extracted from SPARQL queries 6, 7, 8 and
9 as presented in Table 3.2. In the previous section we presented how RTF in-
dexes their RDF part, now we will demonstrate the indexing their text constraints.
Therefore RTF is going to use of their text constraints and their triple identifier in
order to index them in the data structures of FT-Index. The text constraints from
Table 3.2 are presented solely with their identifiers in Table 3.3.

Algorithm Full-text index

To index queries, that are conjuncts of keywords, Algorithm FT-Index uses two
data structures: a forest of tries that organises the keywords of queries and a hash
table that provides efficient access to the roots of the tries in the forest. For instance,
the queries of Table 3.3 are organised in the structures of Figure 3.8. Each node n

of the trie:

• Stores a keyword of a profile, denoted by kwrd(n).

• If the keywords in a path from the root to node n spell out a profile q then n

also stores a reference to q. The list of all references stored in node n is denoted
by id(n).

• If n is a leaf node then n also stores one list for each profile q, denoted by
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uexp(n, q), containing the keywords of profile q that are not already included in
the path from the root to n.

t10 = {olympic, games}

t11 = {olympic, games, rio}

t13 = {olympic}

t14 = {olympic, rio}

t15 = {olympic, committee}

t17 = {the, wall, street, journal}

t19 = {olympic, committee, president}

t20 = {olympic, rio, stadium}

t24 = {olympic, committee}

t26 = {bbc, sports}

Table 3.3: Text part of RDF-triples.

For instance consider Figure 3.8, where kwrd(n1) = olympic and node n1 stores
one reference to triple t10. Consider also node n2 of trie T3 that stores the text
constraints of q17 = {the, wall, street, journal}. Since kwrd(n2) = {the}, we have that
uexp(n2, t17) = {wall, street, journal}. Finally, note that n2 contains all keywords of
t17 (since t17 = kwrd(n2) ∪ uexp(n2, t17)), thus it also maintains a reference to q5.
The purpose of list uexp(n, q) is to allow for the delayed creation of nodes in a trie;
this allows us to choose which keywords from the uexp(n, q) list will become the
child of current node n depending on the queries that will arrive (and be indexed
in this trie) later on. Note that the intersection of all uexp lists stored at a node n

is the empty set, since if there was a common keyword among them it would have
been expanded to a new node. Additionally, for all uexp lists |uexp(n, q)| > 1 holds,
i.e., lists with exactly one keyword are automatically expanded to a trie node.

The forest of tries is populated in order to store queries compactly by exploiting
their common keywords. When a new profile q arrives, Algorithm FT-Index con-
siders its keywords and inserts them in a (new or existing) trie in the forest. For
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Figure 3.8: The data structure text forest after the indexing phase of RTFutilizing

FT-Index.

this task, FT-Index selects the best trie T in the forest and the best node n in that
trie to insert q (the insertion process is described later in the section). To this end,
FT-Index uses the concept of node reusability, denoted by nr(q, T ), that quantifies
the percentage of q’s keywords that are stored in a path staring from the root of
T and also used by other queries. More formally, nr(q, T ) = |path|

|q| , where |path| is
the size of the longest path from the root of trie T that contains only keywords of
q participating to other queries and |q| is the number of keywords in q. It follows
that 0 ≤ nr(q, T ) ≤ 1, and generally when nr(q, T ) is close to 0 T is considered as a
poor candidate for q, whereas when nr(q, T ) is close to 1 T is considered as a good
candidate.

Example 14 Let us consider the text constraints of triples and their organisation
illustrated in Figure 3.8. We have nr(t10, T1) = 2

2 , since the 2 keywords of t10 are
both stored in a path starting from the root of T1 and also used in a different profile
(i.e., t11). We also have nr(t11, T1) = 2

3 , since only 2 keywords of t11 (out of 3) are
stored in a path starting form the root of T1 and also used in a different profile (i.e.,
t10), as keyword rio is used solely for t11. Similarly, nr(t13, T2) = 1

1 , nr(t14, T2) = 2
2 ,

nr(t15, T2) = 2
2 , nr(t17, T3) = 1

3 , nr(t19, T2) = 2
3 , nr(t20, T2) = 2

3 , nr(q24, T2) = 2
2 and

nr(q26, T4) = 0
2 .
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The algorithm for inserting a new profile proceeds as follows. The first profile
that arrives, creates a trie with a randomly chosen keyword as the root; the remain-
ing keywords are stored at the uexp list of the root. The second profile will consider
being stored at the existing trie or create a new trie. In general, to insert a new
profile q, FT-Index iterates through its keywords and utilises the hash table to find
all candidate tries; i.e., tries having a root storing a keyword of q. To compactly
store q, FT-Index then chooses the trie T among the candidates for which if q was
inserted nr(q, T ) would be maximised. To compute nr(q, T ), FT-Index performs
a depth-limited search with depth limit |q| − 1 in all candidate tries. This search
results in the node n in T where q should be inserted. Note that the chosen path
from the root to n is the longest path in T that exclusively contains keywords of q.
Also, if more than one tries maximising nr are found, FT-Index randomly chooses
one.

To complete insertion, the path from the root of trie T to node n, that already
stores the identifier of a profile p and the set of keywords K, is then extended with
new child nodes having as keywords the intersection of uexp(n, p) and q \K. If all
keywords in q are contained in K ∪ uexp(n, p) then (a) the keywords in q \ K are
expanded to trie nodes to create a path from node n to a trie node m, (b) node
m becomes a new leaf in trie T , (c) id(m) will contain the reference to profile p

(previously stored in id(n)) plus a reference to q, and (d) reference to p is removed
from id(n). In this way, list uexp(n, p) is fully expanded to trie nodes, profile q is
indexed in this subtrie under all its keywords, and node m now indexes two profile
identifiers, namely q and p. Otherwise, if some keywords of q are not contained in
K ∪ uexp(n, p), then the common keywords are expanded to trie nodes to create
a path from node n to node m, and node m will store two new uexp lists, namely
uexp(m, p) and uexp(m, q). Additionally, id(m) will contain references to both p and
q, while p is removed from id(n). Notice that uexp(m, p) will contain the remaining
set of keywords of K ∪ uexp(n, p) that are not contained in q and uexp(m, q) will
contain the remaining set of keywords of q that are not contained in K ∪ uexp(n, p).
Also due to this node expansion process, uexp(m, p)∩ uexp(m, q) = ∅. Finally, if no
keywords of q are contained in uexp(n, p), then a new uexp(n, q) list is created in
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node n and a reference to q is added in id(n). The complexity of inserting a profile
in the forest is linear in the size of the forest.

Example 15 Figure 3.8 shows the forest of tries created when inserting the text
parts of triples t10, t11, t13, t14, t15, t17, t19, t20, t24 and t26 (shown in Table 3.3) in
that order. The first triple t10 creates trie T1 and is indexed under the (randomly
chosen) keyword games. The second profile t11 does not create a new trie but is
indexed under T1, since this maximises its node reusability nr(t11, T1). The third
profile t13 cannot be indexed in T1, since it does not contain the keyword games, and
thus a new trie T2 is created and t13 is indexed under the keyword olympic. Similarly,
FT-Index inserts the remaining seven text parts of triples.

Figure 3.9 presents the pseudocode for the indexing procedure that FT-Index
implements.

Algorithm Full-text reorganize

The second text indexing algorithm that is going to be used is FT-Reorg, an
algorithm presented in [72]. FT-Reorg is a derivative of FT-Index that aims to
reorganize badly clustered text queries. FT-Reorg monitors the number of poorly
clustered queries in the system (i.e., queries with only a few words clustered in the
trie). The reorganization process is triggered when a certain threshold Q of poorly
clustered queries is reached. During the reorganization phase FT-Reorg examines
all text queries q that their node reusability is lower than the given threshold nrmin.
If the currently examined profile qc has a node reusability ratio nr(qc, Tc) < nrmin

the algorithm tries to reposition qc under a new Trie Tn. The new Trie Tn must
provide a higher nr than the current one thus nr(qc, Tc) < nr(qc, Tn).

FT-Reorg operates on the same data structures as FT-Index, which where
described above. For FT-Reorg to facilitate it’s reorganization capabilities uses
an additional table NR where it stores a reference to every text profile in the text
forest with it’s current nr(q, T ). The algorithm maintains updated the table NR

in all cases. More specially when a new profile is indexed by the forest FT-Reorg
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creates an new entry into the NR. While when a list uexp of q is expanded in
order to index a new profile all queries that involve in the indexing are updated
accordingly in NR.

Textual indexing algorithm

FT-Index FT-Reorg

Text forests One RTFi-O RTFr-O

Multiple RTFi-M RTFr-M

Table 3.4: Variations for Algorithm RTF.

As described above the full-text indexing can be handled by two different text
indexing algorithms. Resulting to two variations of RTF, namely RTFi and RTFr.
Algorithm RTFi utilizes the textual indexing algorithm FT-Index, and algorithm
RTFr for the textual indexing algorithm. An other approach to indexing the tex-
tual information is either dedicate one text indexing forest for the indexing of every
textual constraint, or utilize a text indexing forest for every unique attribute that
contains a full-text operator. Thus creating four variations of RTF, algorithms
RTFi-O and RTFi-M that utilize FT-Index with one and multiple textual index-
ing forests accordingly. Algorithm RTFr-O and RTFr-M that utilize FT-Reorg
with one and multiple textual indexing forests accordingly. This four approaches will
be examined in detail in Chapter 4. The four variations are presented in Table 3.4.

Figure 3.10 presents an overview of all the data structures of algorithm RTFi-O
after indexing the profiles of Table 3.3.
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Algorithm index text

1 BEGIN

2 currentNR ← 0

3 position ← NULL

4
5 foreach trie T with root(T ) = k ∈ q do B For all candidate tries

6
7 foreach node n ∈ T such as kwd(n) ∈ q B For all possible storage

8 positions in examining

9 tries perform a DFS

10 calculate (nr(q, T ))

11 if currentNR < nr(q, T ) then B If a better position is

12 found store it

13 currentNR← nr(q, T )
14 position← n

15 end if

16 end for

17 end for

18
19 if position = NULL then B If q cannot be indexed

20 in any existing trie

21 create trie T ′ with root(T ′) such as kwrd(T ′) ∈ q

22 id(root(T ′))← q B Index q in root(T ′)
23 uexp(T ′, q)← q \ kwrd(T ′) B Put the rest in uexp(T ′, q)
24 else

25 if uexp(position, p) ∩ q = ∅ then B If there are not common

26 keywords

27 id(position)← id(position) ∪ q B Index q in position

28 uexp(position, q)← q \ {k0, ..., ky} B Put the rest in

29 uexp(position, q)
30 else

31 expand uexp(position, p) ∩ q B Else expand the common

32 keywords

33 id(m)← q ∪ p B Index q and p at the

34 leaf node

35 id(position)← id(position) \ p B Remove p from id(position)
36 uexp(m, q)← q \ {k0, ..., kx} B Put the rest in two new

37 uexp lists

38 uexp(m, p)← p \ {k0, ..., kx}
39 end if

40 end if

41 END

Figure 3.9: Pseudocode for text indexing.
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Figure 3.10: The data structures triple and text after the indexing phase of RTFi-O.

- 47 -



Data Model and Algorithms

3.2.3 Matching algorithm

In Sections 3.2.1 and 3.2.2 we presented how RTF indexes RDF-triples and quadru-
ples along with their full-text restrictions. We now proceed to demonstrate how our
algorithm filters the incoming RDF publications during the filtering phase.

When an RDF publication pub arrives in the system the filtering mechanism is
initialized as follows. The RDF publication is parsed and every triple pt1, ..., pti that
represents pub is returned accompanied with it’s text field if this is available. After
the completion of parsing pub, every triple and quadruple pt1, ..., pti that represents
pub is processed independently by the filtering algorithm.

At first for every triple ptc, RTF examines the triple forest and tries to locate a
tree T with a root i.e., having atrb(root(T )) = subject(dtc) with the same field as
ptc’s subject . If such tree T is located, RTF begins traversing T in a depth first
manner and examines all predicate and object nodes of T in order to determine if
there is a matching subscription triple. In order to reach from the root of T to a leaf
node every node ns, np and no in the route must fulfil the following requirements:
atrb(ns) = subject(ptc), atrb(np) = predicate(ptc) and atrb(no) = object(ptc). At
any point of the node traversal if a node n is visited with a wildcard field i.e.
atrb(n) = ∗ the filtering algorithm considers the node to satisfy the current field of
ptc and continues to examine the next field of ptc by iterating through the child list
chld(n) of node n. At the arrival of RTF in a leaf node nl the algorithm has matched
all three field of ptc with a tree T. Subsequently the Algorithm RTF examines the
two lists that the leaf node maintains, i.e. tripIds(nl) and quadIds(nl). The triples
identifiers that are located in list tripIds(nl) are recognized as a direct match and are
passed into a hash table named matchedTriplets. While the quadruples’ identifiers
that are located in list quadIds(nl) are triples that contain a full-text operator. The
list quadIds(nl) should be further investigated in order to determine if the text field
of ptc fulfils their set criteria.

Having matched the structure of the incoming publication RTF proceeds to ex-
amine the text field of the publication triple ptc by visiting the text forest. When
a text field is present the filtering procedure for Algorithm RTF proceeds as fol-
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lows. For each distinct keyword kj of text(ptc) (maintained in a linked list created
at the preprocessing step of ptc), the trie of Text Forest that has keyword kj as root
is traversed in a depth-first manner. Notice that only subtrees having as root the
keyword kj contained in the text field of ptc are examined (since only these may
contain potentially matching queries), and a hash table (also created at the prepro-
cessing step of ptc) that indexes all distinct keywords of text(ptc) is used to identify
them quickly. At each node n of a trie, the id(n) list gives implicitly all queries
that match the incoming text field text(ptc). To identify all qualifying queries, this
procedure is repeated for all the keywords of text(ptc). The resulting triples iden-
tifiers are returned in a list named matchedTextIds. The Algorithm RTF must
determine which quadIds(nl) have met their full-text restrictions. This is achieved
by calculating the intersection of the lists quadIds(nl) and matchedTextIds i.e.,
quadIds(nl) ∩ matchedTextIds. The resulting triple identifiers from the intersec-
tion are considered a positive match as both their RDF restrictions and full-text
requirements are met by ptc. The intersection results are also added to the hash
table matchedTriplets.

The filtering process described above is repeated by Algorithm RTF for all triples
pt1, ..., pti of pub and the matched triples are stored in the common hash table
matchedTriplets.

When the filtering of all triples is completed RTF proceeds by examining the
Profile Table. The Profile Table as discussed earlier is a table that represents all
queries q1, ..., qi and their triples that form them. All triples t1, ..., ti that form a
profile qj must match with a publication pub in order to identify qj as a match.
The algorithm RTF iterates through every cell of the Profile Table that represents
a profile qj and examines it. For every qj the list of triples t1, ..., ti that represent
are in turn iterated. The hash table matchedTriplets is used for faster access to
the matched triples identifiers as calculated above during the filtering of the triple
forest and text forest. If every t1, ..., ti of qj is detected in matchedTriplets then
qj is satisfied by pub. During the examination of t1, ..., ti if one triple identifier is
not located into the table matchedTriplets RTF stops the iteration of t1, ..., ti as

- 49 -



Data Model and Algorithms

qi will not match pub and proceeds to examine the next profile qj+1 of the Profile
Table. Finally all users that have a subscription that matched with p are notified
accordingly.

Figure 3.11 presents the pseudocode for filtering RDF publications, while for
space consideration Figure 3.12 presents the pseudocode for filtering the text parts
of an RDF publication.

- 50 -



Chapter 3

Algorithm filter

1 BEGIN

2 matchedT riplets← Null

3
4 foreach triplet pti in publication p do

5
6 foreach tree T with atrb(root(T )) = subject(pti) || atrb(root(T )) == ∗ do

7
8 foreach node n ∈ T do

9 if ∃np ∈ T such as atrb(np) = predicate(np) ∧ ∃no ∈ T such as atrb(no) = object(np)
then

10 matchedT riplets← matchedT riplets ∪ tripIds(no)
11 matchedT extIds← textf iltering(text(pti))
12 matchedT riplets← matchedT riplets ∪ (quadIds(no) ∩matchedT extIds)
13 end if

14 end for

15 end for

16 end for

17
18 foreach query qi in Profile Table do

19 matched← TRUE

20 foreach triplet identifier ti of qi do

21 if ti 6∈ matchedT riplets do

22 matched← FALSE

23 break

24 end if

25 end for

26
27 if matched = TRUE do

28 notify

29 end if

30 end for

31 END

Figure 3.11: Pseudocode for publication filtering.
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Algorithm filter text

1 BEGIN

2 match← Null

3
4 foreach distinct keyword k ∈ d do B Use a linked list for

5 distinct keywords of d

6 foreach trie T with root(T ) = k ∈ d do

7
8 foreach node n ∈ T do

9
10 if kwrd(n) ∈ d then B Use a hash table

11 representation of d to check

12 this

13 if uexp(n, q) ⊆ d then

14 match← match ∪ id(n) B The queries stored here

15 match d

16 n← children(n) B Traverse trie in DFS

17 end if

18 else

19 prune n B Else no need to search

20 in sub-tries

21 end if

22 end for

23 end for

24 end for

25
26 return match

27
28 END

Figure 3.12: Pseudocode for text filtering.
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3.2.4 Competitor

To evaluate the efficiency of RTF we have chosen to implement the only state-
of-the-art algorithm iBroker [57] that is capable of handling RDF profiles with
both structure and text. Algorithm iBroker is a broker for publish/subscribe
systems that makes use of SPARQL queries subscription with phrase support. In
this section we give the basic functionality of iBroker and data structures upon
which it operates and show hot to extend iBroker’s functionality to support full-
text constraints.

Algorithm iBroker utilizes a two-level hash table in order to index the users
subscriptions into the system. The indexing structure that is used consists at the
first level by a hash table. The hash table indexes the unique fields of all triples that
are present into the system. iBroker uses the unique fields’ names as hash keys
to access the cells of the table, while in the cells of the hash table references to lists
of users profiles are stored. The lists in the second level of the indexing structure
maintain three fields of information: the first entry of the lists maintains the unique
identifier ID of the profile q, the second entry, named NextToMatch, is a reference
to an entry of the first-level of the two-level hash, that contain the next triple field
in a chain that forms the profile q, and the last field of the list is parameter V alue

that stores the text keywords the user has set.

The algorithm iBroker uses the two-level hash table in order to store the queries
in a chain-like manner. Every profile is formed by following the NextToMatch

references to the first level of the hash table until an empty NextToMatch field is
visited. This procedure is applied by the algorithm iBroker during the filtering
of a publication event. As there is no defined hierarchy that outlines the filtering
sequence, an incoming publication may match any of it’s fields in the first level of
the hash table. The result is that iBroker must examine all the profiles in the
corresponding list of the first match. After iBroker examines all the profiles, it
will proceed to examine their NextToMatch entries and likewise the algorithm will
continue to examine every NextToMatch entry until there is none left. In the case
that iBroker starts from fields that belong to a profile p but are not part of the
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first triples that form it, we can not be sure if it’s a complete or partial match for the
profile. Subsequently, without additional matching techniques the profile p can not
be determined as positive, resulting to false positives for iBroker. This problem
can be solved by utilizing the Profile Table as described in a previous section. As the
RDF triples that form a profile p are assigned different identifiers and stored into the
Profile Table, thus creating a guided chain of match for every triple identifier which
must match in order to satisfy a profile. This approach eliminates the majority of
false positives but extreme cases where the first triple of a profile matches partially
can not be solved efficiently.

iBroker implements a text value matching system for filtering the text fields of
the publications on the system. The model that iBroker supports for the indexing
and filtering is text phrase matching but not full-text filtering. In order to evaluate
iBroker against RTF we have extended the ability of iBroker to index full-text
subscriptions. This was achieved by replacing the V alue field with a list of words.
The implemented list of words may support both phrase and full-text matching as
described in Section 3.2.2. Finally we have extended the functionality of iBroker
to index and filter SPARQL queries that contain wild-card operators.

Example 16 Consider the queries q1 and q4 of Table 3.3. The result of indexing
those queries in iBroker’s data structures is presented in Figure 3.13. Due to
space consideration we don’t present the rest of the queries, as done earlier for
RTF. Additionally the Profile Table presented in Figure 3.5 is the same for both
algorithms.

In this chapter we have presented the Algorithm RTF, an algorithm developed to
index SPARQL-based subscriptions extended with full-text operators. Subsequently
we have given the data structures and methodologies for indexing RDF-based profiles
along with their text constraints. Finally we outlined our competitor, the state-of-
the-art Algorithm iBroker, and described how we modified and extended it to
support the profile language described in Section 3.1.1. In the next chapter we
proceed by presenting the evaluation of the Algorithm RTF with a diversity of
experiments.
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Experimental evaluation

In this chapter we discuss the experimental evaluation of the algorithms presented in
Chapter 3.2. At first we demonstrate the data, profile and publication sets used in
our evaluation process. We proceed outlining the configuration parameters selected
for the algorithms set-up. Thereafter we give the metrics used in our evaluation
and the technical configuration of our algorithms and experiments implementation.
Finally we present and analyse the results obtained from the process of evaluating
RTF and iBroker.

4.1 Data and profile set

In order to evaluate the developed algorithms we used the set of publications
DBpedia1. The DBpedia corpus is a collection of data that contains structured
information. The information that form the corpus of DBpedia are extracted from
the Wikipedia domain. The informations gathered in DBpedia concern the English
part of the Wikipedia domain and form a knowledge database that describes 4
million items. A major part, namely 3.22 millions publications, of the DBpedia
corpus, has been classified into an ontology resulting to 529 different classes which
are described by 2.3 thousand different properties. It is understood that the data
collected in the DBpedia collection cover a wide variety of topics. The diversity in

1http://www.dbpedia.org
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Description Value

Items 4M

Classes 529

Properties 2, 333

Average publication size (words) 53

Maximum publication size (words) 14, 425

Minimum publication size (words) 1

Table 4.1: Characteristics of the DBpedia corpus.

topics and structural data is providing a plethora of publications that are represented
in a RDF manner making DBpedia corpus the perfect candidate for evaluating our
algorithms.

As we need to evaluate our algorithms both on their structural and text matching
capabilities, we utilize DBpedias’ textual information. The majority of the publi-
cations in the DBpedia corpus carry both structural and textual information. The
textual information of every publication are representations of human generated con-
tent and published at the Wikipedia domain. This characteristics gives an additional
advantage to the DBpedia corpus as it provides a solid set of textual information.
The vocabulary extracted from the DBpedia publications consists of 3.14 millions
unique words. The maximum textual information present in a publication is 14, 254
words, while the average information available in a publication is 53 words.

The diversity in the content of the DBpedia corpus accompanied with the in-
formation on structural and textual level, renders it as the perfect candidate for
evaluating our algorithms indexing and filtering efficiency. Table 4.1 summarises
some key characteristics of the DBpedia corpus.
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4.1.1 Profile set

Since we are examining an information filtering scenario it is important to investigate
the behaviour of the algorithms when varying the profile data set. As no database
of real-life profiles was available except by obtaining proprietary data (e.g., by a
news alerting system) we designed and simulated three different experimental set-
ups. The aim of these profile sets is to evaluate the performance of our algorithms
under three different filtering scenarios. By capturing and studying the most com-
mon scenarios that can emerge in the publish/subscribe paradigm, we provide a
comprehensive understanding of the performance that the algorithms can achieve.

The main profile collection The main collection of profiles that is going to be used
in our evaluation is formed by conjunctions of RDF-triples and quadruplets baring
full-text operators. The RDF-triples were constructed by utilizing the 529 classes
and 2, 333 properties that were extracted by the Wikipedia domain and are available
in the DBpedia corpus. By utilizing structural and textual data from the DBpedia
corpus we can simulate the profile creation with great precision to real RDF-based
profiles. Each profile that was generated for the main profile collection may contain
at most 4 RDF-triples. Each RDF-triple, in a profile, can contain a full-text operator
with a probability of 50%. The full-text operators contain conjunctive terms that
are selected equiprobably among the multi-set of words that form the DBpedia
corpus textual vocabulary. While the full-text operators do not contain more than 3
textual terms. The main profile collection aims at evaluating the algorithms under
an average filtering scenario where the database is filled with profiles consisting
more from structural restrictions than textual. A subscription usually bears more
structural constraints in order to select a specific type of publication with specific
properties and classes while the textual constraints refine the publication selection
and using a small amount of keywords the thematic matching can be achieved.

The second profile collection The second profile collection is formed by conjunc-
tions of RDF-triples baring no full-text operators. The lack of full-text operators
aims to studying the structural filtering of the algorithms. Omitting to include
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Parameter Description Baseline

value

Ip Number of incoming profiles 20K

Ipub Number of incoming publications 5K

DB Number of profiles indexed in the database 100K

FTpr Percent of triples that contain full-text 50%

restrictions in a profile

Table 4.2: Parameters’ description and baseline values.

full-text operators into the profiles will stress-test the algorithms and focus on the
part of structural filtering. The presence of full-text operators into the main profile
collection restricts the matching of a major percentage of the RDF-triples. In this
filtering scenario the RDF-triples can match at a higher percentage with an incom-
ing publication thus giving a closer look at the structural matching capabilities of
the algorithms. The algorithms that can leverage their filtering capabilities at any
type of database should be able to perform equally or better compared to the main
profile collection.

The third profile collection The third profile collection aims to stress-test the
algorithms and focus on the textual part filtering. While all RDF-triples contain
full-text operators the algorithms that we evaluate will demonstrate their scaling
capabilities when they index databases that contain a high percentage of full-text
restrictions.

4.1.2 Publication set

In order to evaluate the three data sets described above, we selected 5000 publica-
tions from the DBpedia corpus. The publications selected had both their structural
and textual information as extracted and processed from the Wikipedia domain. The
selected publications are used in every filtering event during the algorithm evalua-
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tion. By maintaining the same publication through the evaluation of our algorithms
we assert that the algorithms are evaluated against the nature of the profiles that are
inserted for indexing. While the publications represent human generated, real-life,
data giving an accurate predication of how the algorithms perform.

4.2 Metrics employed

In our evaluation, we present, compare and discuss a series of metrics in order
to determine and understand the algorithms performance. We present and compare
the memory requirements of each algorithm under the varying data sets. As all
algorithms index the same profile databases, a lower memory requirement indicates
a more compact clustering of data while a higher memory footprint a less compact
database. We give the insertion time of each algorithm i.e., the amount of time
needed to index a set of profiles into the database in order to determine which algo-
rithm can be faster at the indexing phase. Additionally, we demonstrate the filtering
time to measure the filtering performance of each algorithm. i.e., the amount of time
needed to locate all continues profiles satisfied by a publication. We juxtapose the
insertion and filtering time results and discuss which metric presents a more clear
picture of the algorithms performance when it is needed. Finally we present the
algorithms differences in both insertion and filtering times and demonstrate how
they differentiated during the size increase of the profile database.

Table [Reference] summarises the parameters examined in our experimental eval-
uation with their baseline values.

4.3 Technical configuration

All the algorithms shown in the experiments of this section were implemented
in C++, and an of-the-shelf PC with a Core i7 3.6GHz processor and 8GB RAM
running Ubuntu Linux 12.04 was used. The time shown in the graphs is wall-clock
time and the results of each experiment are averaged over 10 runs to eliminate any
fluctuations in time measurements.
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4.4 Algorithm configuration

In this section we discuss the algorithms configuration. There is a number of
parameters that need to be considered in order to tune the RTF’s performance. We
proceed presenting the selected configuration values for RTF.

4.4.1 Text indexing configuration

As demonstrated in Chapter 3.2 RTF utilizes the usage of two algorithms for the
indexing of the textual part of the full-text operators. The first algorithm described
is FT-Index which indexes the terms that are present into full-text operators by
using forests of tries. The algorithm FT-Index doesn’t need any special configura-
tion as it indexes the textual parts with the order they are inserted. As discussed
in Chapter 3.2 FT-Index utilizes a greedy way to index the terms, thus selecting a
node in a forest of tries where the node re usability is maximized.

The second algorithm that is described is a variation of FT-Index namely FT-
Reorg which utilizes a reorganization mechanism in order to maximize the trie
compactness. FT-Reorg tries to overcome the problem of insertion order and
aims to reposition the textual parts of profiles in a better position when their node
re usability is at a low percent. FT-Reorg exploits newly created position into
the forest of tries that were not available during the indexing phase of a specific
textual part. The reorganization mechanism is triggered after a specific number of
queries has been indexed into the forest. When this number of text parts is reached
the reorganization process is triggered as some clustering opportunities are likely to
have arisen. While the text-parts are reorganized only after they fall under a pre-
determined threshold of node re-usability. After carefully evaluating FT-Reorg
we concluded that the reorganization process must be triggered after 500 thousands
new text parts have been indexed, this guaranties us that the new positions in the
forest are created. While the threshold that a text part must has fallen under is
determined at 0.8. The above parameters ensure that the trie forest has an optimal
node re-usability level that can be achieved given these sets of words.
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Parameter Value

Ip 100K

Ipub −

DB 100K − 500K

F Tpr 50%

Figure 4.1: Insertion time of the variations of RTF.

4.4.2 RTF configuration

As discussed in Chapter 3.2 RTF can uses a single or multiple forests of tries in
order to facilitate the indexing of the text part of the profiles. We have conducted
experiments in order to determine the best set-up for RTFṪhe evaluation of the
variations of RTF is conducted with the main profile collection as it is the closest
to a real-life scenario of a profile database. As the RDF-part indexing is the same
for all RTF’s variations, the main purpose of this comparison is to determine the
the performance of the text indexing and text filtering of the algorithms.

Comparing indexing time

Figure 4.1 presents the time that the four variations of RTF consume in order to
insert Ip = 100K new profiles in a database of varying sizes. The insertion times
represent both the indexing phase of the structural restrictions of the profiles as
well as the indexing of textual restrictions in the corresponding structures. While
the measurements for the RTFr-M and RTFr-O include the reorganization time
the algorithms use in order to reposition the text parts of the profiles in better po-
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sitions. We observe that the insertion time of all algorithms increases as the size
of the database increases. This is a logical consequence of the manner that the
four variations of RTF operate during the indexing phase. As the database size
increases RTFr-M, RTFr-O, RTFi-O and RTFi-Mmust consider more positions
to index the structural and textual parts of the profiles. The algorithms RTFr-O
and RTFi-O perform slower during the indexing phase while the database size in-
creases. RTFr-O and RTFi-O consume more time as they maintain a single text
indexing structure that offers more clustering opportunities, thus a high percentage
of the time is spend looking for the position that maximizes the node re-usability.
RTFr-O is the slowest of both as it utilizes textual reorganization techniques thus
spending more time repositioning badly clustered text parts. On the other hand
RTFi-Odoes not implement any reorganization technique, which gives it a lower in-
sertion time compared to RTFr-O. Algorithms RTFr-M and RTFi-M spend less
time in the insertion as they employ the usage of multiple textual indexing forest.
RTFr-M is slower compared to RTFi-M as the maintenance of multiple forests
forces algorithm RTFr-M to explore a higher number of possible positions to index
the text parts of a profile. While the reorganization for multiple forests consumes a
high percent of the time spent in the indexing phase. RTFi-M utilizes no reorgani-
zation technique, thus spending less time in the indexing phase while the available
positions for indexing a text part of a profile are reduced due to the existence of
multiple text indexing opportunities speeding up the insertion procedure.

Figure 4.2 presents the differences in insertion times of the four variations of
the algorithm RTF in absolute numbers. The presented difference concern the
variations that use one text indexing forest against the variations that use multiple
text forests, thus RTFi-O and RTFr-O are compared against RTFi-M and RTFr-
M. In more detail, algorithm RTFi-M spends less time to index an input of profiles
Ip = 100K to an empty database compared to RTFi-O. Namely RTFi-M spends
4.6% less time than RTFi-O and it’s lead is maintained, while their difference
increases to 29.25% for every new Ip = 100K profiles and the database size increases
from DB = 400K to DB = 500K. Algorithms RTFi-M also spends less time in
the indexing phase compared to RTFr-O. Their difference when filling an empty
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Figure 4.2: Insertion time difference between the variations of RTF.

database with Ip = 100K, thus going from DB = 0K to DB = 100K, is at 29.4%
percent. While the lead of RTFi-M is maintained through out the indexing phase
against RTFr-O, it reaches 44.62% as the database size increases from DB = 400K

to DB = 500K. This behaviour can be explained as follows: As the text forests of
RTFi-M increase in size better clustering opportunities arise for every text part of a
profile thus RTFi-M places the candidate text parts into better indexing positions
into it’s forests. On the other hand we can see that RTFr-M needs more indexing
time to index the first Ip = 100K, thus going from DB = 0K to DB = 100K,
compared to it’s competitors. Namely RTFr-M needs 37.1% more time to index
Ip = 100K to an empty database compared to RTFi-O. The difference decreases as
the database size increases, thus when the database increase from DB = 400K to
DB = 500K and 100K new profiles are inserted RTFr-M consumes 6.17% less time
compared to RTFi-O. The same behaviour we can observe comparing RTFr-M to
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Figure 4.3: Memory consumption of the variations of RTF.

RTFr-O. The starting difference in insertion time is at 37.12%, when the database
size increases form DB = 0K to DB = 100K. While the difference of RTFr-M
against RTFr-O reverses, thus RTFr-M needs 6.17% less time compared to RTFi-
O when the database increases from DB = 400K to DB = 500K and 100K new
profiles are indexed. This behaviour is attributed to the following: As the textual
database increases in size the reorganization procedure is triggered multiple times
to reposition and cluster the textual parts into better positions. The reorganization
process by clustering similar text parts together reduces the available positions into
the text forest thus reducing the search time during the indexing phase of RTFr-M.

Comparing memory requirements

Figure 4.3 presents the memory requirements of the four variations of RTF. We can
observe the memory that the algorithms RTFi-O, RTFr-O, RTFi-Mand RTFr-M
use in every step of the insertion process for a database that starts empty (DB = 0K)
and finally indexed 500K profiles (DB = 500K). We can observe that all algorithms
increase their memory usage as the database size increases. The algorithms that uti-
lize a reorganization technique for the textual part occupy more space in the main
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memory compared to the variants that do not utilize a reorganization technique,
namely RTFr-M and RTFr-O. Algorithm RTFr-M occupies 1145MB when the
database size DB = 500K and algorithm RTFr-O uses 863MB from the main
memory. We can observe that RTFr-M and RTFr-O occupy the majority of
their memory requirements when indexing the first 100K of profiles. Algorithm
RTFr-M reserves 563MB when indexing the first 100K databases while RTFr-
O occupies 283MB. This can be explained as follows: The algorithms during the
initialization phase reserves the memory that is required for them to operate. As
RTFr-M and RTFr-O utilize reorganization techniques for repositioning badly
clustered text parts they keep an index of all the profiles that must be repositioned
during the reorganization phase, thus requiring more memory compared to RTFi-M
and RTFi-O. RTFr-M needs more memory to operate, as opposed to RTFr-O,
as the maintenance of multiple forest requires more memory for the indexing and
reorganization structures that are used. Comparing the rest for the memory require-
ments when the initialization phase has been completed we can see that RTFr-M
and RTFr-O do not require more than 150MB to index every Ip = 100K new pro-
files. Algorithms RTFi-M and RTFi-O also reserve the majority of their memory
requirements during the indexing phase. Namely RTFi-M requires 190MB when
indexing Ip = 100K in an empty database, in the same setting RTFi-O requires
183MB. While both RTFi-M and RTFi-O do not require more than 150MB to
index every Ip = 100K new profiles. Finally RTFi-M has bigger memory require-
ments when indexing a database DB = 500K compared to RTFi-O, where RTFi-M
uses 740MB and RTFi-O reserves 731MB. Their difference can attributed to the
following: Algorithm RTFi-M maintains more text indexing structures thus requir-
ing more memory for the text indexing structures while RTFi-M maintains a single
text indexing structures.

Comparing filtering time

Figure 4.4 presents the filtering time that the four variations of RTF consume in
order to filter an incoming publication both structurally and textually for varying
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sizes of the database. The filtering time of a publication is the average time the
algorithms the algorithms needed to filter the selected 5000 RDF-based publications
as described in Section 4.1.2. We observe that the filtering time that all variation
of RTF consume, increases as the size of the database increases. As the database
size increases RTFi-M, RTFi-O, RTFr-Mand RTFr-Oneed to spend more time
searching in the indexing structures for profiles that match the incoming publication.
We can observe that the filtering performance is similar for all the algorithms with
small differences. Algorithms RTFr-O and RTFr-M take the most time to filter
an incoming publication with the database of profiles they index. Although they
implement textual reorganization techniques the do not exceed the performance of
RTFi-M and RTFi-O. This can be attributed to the nature of the textual parts
of the profiles as they do not contain a great amount of textual information thus
not maximizing the re organization capabilities of RTFr-O and RTFr-M. While
the algorithms RTFi-M and RTFi-O perform better during the filtering phase.
The algorithm RTFi-O has the lower filtering time per publication as it utilizes
a single text indexing structure for the textual parts of the profiles. On the other
hand RTFi-M by maintaining multiple indexing forests loses in performance as it
must check more indexing structures for every publication in order to determine the
matching profiles.

Figure 4.5 presents the differences in filtering time of all the possible configura-
tions of algorithm RTF in absolute numbers. The presented difference study the
variations that use one text indexing forest against the variations that use multi-
ple text forests, thus RTFi-O and RTFr-O are compared against RTFi-M and
RTFi-O. We can see that the differences between the algorithms are minimal. More
specifically algorithm RTFi-O spends more time to filter index the database when
first filled DB = 100K profiles compared to RTFi-M and RTFr-M. However their
differences are little, namely RTFi-O performs 2.58% faster compared to RTFi-M
while RTFi-O delivers 5% faster the filtering results for a publication compared to
RTFr-M. As the database size increases for every Ip = 100K new profiles we can
see that RTFi-O keeps performing better compared to RTFi-M and RTFr-M.
Algorithm RTFi-O delivers faster matching results when the final database size is
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Figure 4.4: Filtering time of the variations of RTF.

DB = 500K and it’s differences although minimal between RTFi-M and RTFr-
Mare 0.66% and 1.99% accordingly. Comparing RTFr-O we can observe that it is
performing higher filtering times compared to RTFi-M and RTFr-M when filtering
DB = 100K profiles. Namely RTFi-M filters 0.84% faster an incoming publication
compared to RTFr-O. While RTFr-M filters 0.11% slower an incoming publication
compared to RTFr-O. We observe that while the database size increases there are
some differentiations in the filtering times when comparing RTFr-O and RTFr-M.
Finally when the database size reaches DB = 500K there is a slight change in the
hierarchy, RTFi-M is faster by 1.19% against RTFr-O and RTFr-M is slower by
0.11% against RTFr-O.

Conclusions

We studied the four possible variations of RTF, presented insertion and filtering
times as well as the memory requirements of all the algorithms. As we study a
publish/subscribe system we focus on the filtering performance of the algorithms,
the filtering of incoming publications is resource intensive. Profile indexing can be
handled by the server at any given time, a server can implement buffering techniques
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Figure 4.5: Filtering time difference between the variations of RTF.

when indexing a high number of profiles, although a high number of subscriptions
rarely occurs simultaneously. On the other hand publication events can flood the
server at any give moment, publish/subscribe systems usually have a high amount
of publishers that can publish at any given moment thus rendering the publication
filtering crucial. For the above reasons we select two variations of RTF as optimal,
although their filtering performance is equivalent. Although algorithms RTFr-O
and RTFr-M implement textual reorganization techniques, they seem to perform
slightly slower compared to algorithms RTFi-O and RTFi-M. This can be explained
as follows: The profiles indexed contain at most 3 text terms in every full-text oper-
ators thus not allowing RTFr-O and RTFr-M to perform a better reorganization
as the indexing opportunities are limited resulting to not differentiate from the algo-
rithms that implement any database optimization technique. Algorithms RTFi-O
and RTFi-Mare selected and in the rest of the experimental evaluations will be
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used comparing against iBroker.

4.5 Results for the general profile collection

In this section, we present the experiment conducted in order to evaluate the
variants of algorithm RTF against the algorithm iBroker as presented in the lit-
erature [57]. In more detail we evaluate algorithms RTFi-O, RTFi-M and iBroker
using the general profile as described in Section 4.1.1, while we present the memory
requirements, the indexing and filtering times of the algorithms. In Section 4.4.2
we presented the four variations of RTF indexing in a database of DB = 500K

size. Although we conducted experiments for large databases for the variations of
RTF we can not present them against iBroker, where it is needed we are going
to present the most important of these measurements.

Comparing insertion time

This section presents the time every algorithm spends in order to index a standard
input of Ip = 20K new profiles in a database with varying sizes.

Figure 4.6 presents the insertion time that algorithms RTFi-O, RTFi-M and
iBroker spend to index Ip = 20K new profiles into their database. We observe
that the algorithms increase their time needed to index the new queries as the
database size increases. The algorithms RTFi-O and RTFi-M need more time to
index the same amount of profiles Ip = 20K compared to iBroker. Additionally
the two variations of RTF increase their time requirements faster compared to
iBroker. This performance in the insertion phase can be explained as follows:
The algorithms RTFi-O and RTFi-M utilize trie-based data structures in order to
index the structural restrictions of the profiles while capturing the common textual
restrictions of all profiles. Additionally RTFi-O and RTFi-M utilize trie-based
structures to index the full-text requirements of the profiles and capture the common
textual constraints that form them. The search for clustering common structural and
textual restrictions into trie based structures result to slower indexing performance
as opposed to iBroker. On the other hand iBroker does not utilize any clustering
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Figure 4.6: Insertion time of algorithms iBroker and RTF.

technique during the indexing phase, thus resulting to lower insertion times.

To better demonstrate the differences in insertion increase between the proposed
algorithms and their competitors Figure 4.7 summarises the absolute differences of
iBroker compared against the competitor algorithms RTFi-O and RTFi-M. We
present the differences in insertion time when varying the database sizes when in-
serting Ip = 20K new profiles. We can observe that iBroker spends lees time
during the indexing phase and the difference against RTFi-O and RTFi-M in-
creases. More specifically when the algorithms index the Ip = 20K to an empty
database, iBroker spends 133% less time compared to RTFi-M. The differences
between iBroker and RTFi-M are maintained during the increase of the database
size. When iBroker indexes the final Ip = 20K, thus going from DB = 80K to
DB = 100K the difference reaches 166%. Likewise iBroker is faster compared
against RTFi-O, as it needs 163.7% less time filling the first Ip = 20K to an empty
database. When iBroker indexes the final Ip = 20K it needs 179% less time.
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Figure 4.7: Insertion time difference of algorithm iBroker against RTF.

Comparing memory usage

We have also executed experiments to specify the memory requirements for each
of the presented algorithms. Figure 4.8 exhibits a good overview of the results for
varying DB sizes. Algorithm RTFi-O has the lowest memory requirements using
183MB for storing the whole profile database DB = 100K and all indexing compo-
nents. Algorithm RTFi-M memory usage is at 190MB for storing the same profile
database. Algorithm iBroker occupies the higher amount of memory requiring
313MB to index a database of DB = 100K profiles. The variations of RTF have
low memory requirements as the utilizes clustering techniques to capture the com-
mon elements of the profile bot on structural restrictions and textual. RTFi-O has
lower memory requirements compared to RTFi-M as it utilizes a single textual in-
dexing structure thus capturing more common elements achieving a more compact
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Figure 4.8: Memory consumption of algorithms RTF and iBroker.

forest. While RTFi-M by utilizing multiple forests misses clustering opportunities
requiring more memory to index the profile set. iBroker does not utilize any clus-
tering techniques thus needing more memory to store all the elements of the profiles.
Finally we observe that RTFi-O and RTFi-M reserve the majority of their mem-
ory when indexing the first Ip = 20K to an empty database. This behaviour can
be attributed to the initialization of the indexing structures that the algorithms
use. Namely RTFi-O reserves 73MB when indexing the first Ip = 20K profiles
and RTFi-M reserves 75MB. For every new Ip = 20K inserted into the database
RTFi-O and RTFi-M do not require more than 28MB to facilitate the indexing of
the new profiles. On the other hand iBroker reserves 84MB of memory to index
the first Ip = 20K profiles into an empty database while it requires approximately
more than 60MB of memory to index every set of Ip = 20K new profiles.

Comparing filtering time

This section discusses the results concerning the filtering time required to match an
incoming publication against a database of profiles. The time shown in the graphs
represents the average time spend to filter a collection of ID = 5K publications.
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Figure 4.9: Filtering time of algorithms iBroker and RTF.

Figure 4.9 shows the time in milliseconds needed to filter an incoming publica-
tion against a profile database of different sizes. Observe that filtering time increase
for all algorithms as the profile database size increases. Algorithms RTFi-O and
RTFi-M, that utilize clustering techniques for the storage of the profiles achieve the
lowest filtering time, suggesting better performance than their competitor iBroker.
Algorithms RTFi-O and RTFi-M are less sensitive to the profile database size in-
crease compared to iBroker. RTFi-O and RTFi-M can match against a database
faster an incoming publication searching the trie based forests and match publica-
tions in bulk. While iBroker searches and matched every profile independently
when filtering publication.

Figure 4.10 summarises absolute differences in filtering time for iBrokeragainst
it’s competitors. All differences are computed for varying database sizes. Note that
negative numbers in differences indicate that less time is required for RTFi-O and
RTFi-M for filtering incoming publications. When algorithm RTFi-M indexes a
database size of DB = 20K it performs 99.3% less time compared to iBroker.
Their difference is maintained for all database sizes studied and when the database
size reaches DB = 100K their difference is at 98.94%. When algorithm RTFi-
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Figure 4.10: Filtering time difference between RTF and iBroker.

O indexes a database size of DB = 20K it performs the matching process of a
publication 99.34% faster compared to iBroker. Finally when algorithms RTFi-
O and iBroker index DB = 100K, RTFi-O is 98.91% faster.

Figure 4.11 shows the time in milliseconds needed to filter an incoming publica-
tion against a profile database of different sizes for all the variations of RTF. The
results demonstrate the performance of the algorithms for database sizes greater
than DB = 100K. We can see that the time increases for all algorithms as the
profile database size increases. The algorithms exhibit a similar performance as dis-
cussed in Section 4.4.2. Their clustering and reorganization techniques gives them
the ability to easily match incoming publications into large databases spending few
milliseconds. The ranking of the algorithms is slightly altered during the database
increase placing RTFi-O at the top of the performance scale for the maximum
database size DB = 500K.

- 76 -



Chapter 4

0

200

400

600

800

1000

1200

1400

1600

100 150 200 250 300 350 400 450 500

F
il
te
ri
n
g
ti
m
e
(m

se
c/
p
u
b
)

Hundreds of profiles

RTFr-O
RTFr-M
RTFi-M
RTFi-O

Parameter Value

Ip −

Ipub 5000

DB 100K − 500K

F Tpr 50%

Figure 4.11: Filtering time for all the variations of RTF.

4.6 Results for the second profile collection

In this section, we present the experiment conducted in order to evaluate the
algorithms RTFi-O and RTFi-M against the algorithm iBroker. In more detail
we evaluate algorithms RTFi-O, RTFi-M and iBroker using the second profile
collection as described in Section 4.1.1. The second profile collection is formed by
RDF-based profiles that do not bare any full-text operators, making this collection
a perfect candidate to evaluate the structural matching capabilities of the proposed
algorithms. We present diagrams concerning memory requirements, the indexing
and filtering times of all the algorithms for database sizes up to DB = 100K.
Finally we give the most important results for larger databases for the variations of
RTF.

Comparing insertion time

In this section we give the time requirement of algorithms RTFi-O, RTFi-M and
iBrokerfor indexing Ip = 20K new profiles in a database of profile with varying
sizes.
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Figure 4.12: Insertion time of iBroker and RTF for the second profile collection.

Figure 4.12 presents the insertion time that algorithms RTFi-O, RTFi-M and
iBroker spend to index Ip = 20K new profiles of the second profile collection
into their databases. We observe that the algorithms increase their time needed
to index the new profiles as the database size increases. The algorithms RTFi-
O and RTFi-M need more time to index the same amount of profiles Ip = 20K

compared to iBroker. Additionally the two variations of RTF increase their time
requirements faster compared to iBroker. This performance in the insertion phase
can be explained as follows: The algorithms RTFi-O and RTFi-M utilize trie-
based data structures in order to index the structural restrictions of the profiles
and capture their common elements. The search for clustering common structural
restrictions into the trie based structures results to slower indexing performance as
opposed to iBroker. Comparing the numbers of Figure 4.6 that demonstrates the
insertion times for the main profile collection against Figure 4.12 we can see that the
algorithms RTFi-M and RTFi-O double down their time requirements when their
are no textual restrictions to be indexed. While iBroker has little time difference
when there are no textual restrictions to index.

To better demonstrate the difference in insertion increase between the proposed
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Figure 4.13: Insertion time difference of iBroker and RTF for the second profile

collection.

algorithms an their competitors Figure 4.13 summarises the absolute differences of
iBroker compared against the competitor algorithms RTFi-O and RTFi-M. We
present the differences in insertion time when varying the database sizes when in-
sertion Ip = 20K new profiles. We can observe that iBroker spends less time dur-
ing the indexing phase and the difference against RTFi-O and RTFi-M increases.
Namely when the algorithms index the first Ip = 20K to an empty database, iBro-
ker spends 41.8% less time compared to RTFi-M. The speed of iBroker is main-
tained during different database sizes. When iBroker indexes the final Ip = 20K,
thus going from DB = 80K to DB = 100K the difference falls at 39.4%. Likewise
iBroker is faster compared against RTFi-O, as it needs 44.4% less time inserting
the first Ip = 20K to an empty database. Finally, when iBroker indexes the last
Ip = 20K it needs 40.7% less time compared to RTFi-O.
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Figure 4.14: Memory consumption of RTF and iBroker for the second profile collec-

tion.

Comparing memory usage

We have also executed experiments to specify the memory requirements for each
of the presented algorithms. Figure 4.14 exhibits a good overview of the results
for varying database sizes. Algorithms RTFi-O and RTFi-M have the lowest and
same memory requirements thus 168MB. Algorithms iBroker occupies the highest
amount of memory requiring 291MB to index a database of DB = 100K profiles.
The variations of RTF have low memory requirements as they utilize clustering
techniques to capture the common structural elements of the profiles. Both present
the same memory usage as indexing this profile collection does not require any text
indexing structures. Thus creating identical forests for the structural restrictions
indexing. iBroker does not utilize any clustering technique for the structural
restrictions indexing thus needing more memory to store all the elements of the
profiles. Finally we observe that the variations of RTF reserve the majority of their
memory when indexing the first Ip = 20K to an empty database. This behaviour
can be attributed to the initialization of the indexing structures that the algorithms
use. Namely bot RTFi-O and RTFi-M reserve 68MB of memory during the first
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Figure 4.15: Filtering time of iBroker and RTF for the second profile collection.

indexing phase and do not require more than 25MB to facilitate the indexing of
the new profiles. On the other hand iBroker reserves 82MB of memory to in-
dex the first Ip = 20K profiles into an empty database while it requires at most
68MB of memory to index every set of Ip = 20K new profiles. By comparing the
results against the main profile collection (Figure 4.8) results we observe that al-
gorithms RTFi-O and RTFi-M decrease significantly their memory requirements,
thus showing a good scalability

Comparing filtering time

This section discusses the results concerning the filtering time required to match an
incoming publication against a database of profiles. The time shown in the graphs
represent the average spend to filter a collection of ID = 5K publications.

Figure 4.15 shows the time in milliseconds needed to filter an incoming publi-
cation against a profile database of different sizes. Observe that the filtering time
increases for all algorithms as the profile database size increases. Algorithms RTFi-
O and RTFi-M that utilize clustering techniques to store the profiles achieve the
lowest filtering time, suggesting better performance than their competitor iBroker.
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Figure 4.16: Filtering time difference between RTF and iBroker for the second profile

collection.

Algorithms RTFi-O and RTFi-M are less sensitive to the profile database increase
compared to iBroker. RTFi-O and RTFi-M can match against a database faster
an incoming publication searching the trie based forests and match profiles in bulk.
While iBroker searches and matches every profile independently when filtering a
publication.

Figure 4.16 summarises absolute differences in filtering time for iBroker against
it’s competitors. All differences are computed for varying database sizes. Note that
negative numbers in differences indicate that less time is required for RTFi-O and
RTFi-M for filtering incoming publications. Algorithms RTFi-O and RTFi-M
utilize the same indexing structure to store the structural restrictions of the profile
also as there are no full-text restrictions to the second profile collection algorithms
perform in the same manner. Namely, algorithms RTFi-M and RTFi-O when
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Figure 4.17: Filtering time of the variations of RTF for the second profile collection.

indexing a database size of DB = 20K perform the process of matching a publication
99.55% faster compared to iBroker. Their difference is maintained for all database
sizes studied and when the database size reaches DB = 100K their difference is at
99.51%.

Figure 4.17 shows the time in milliseconds needed to filter an incoming publi-
cation against a profile database of difference sizes for all the variations of RTF.
The results demonstrate the performance of the algorithms for database sizes greater
than DB = 100K. We can see that the time increases for all algorithms as the profile
database size increases. The algorithms exhibit similar performance as all variations
of RTF utilize the same indexing structures to capture and store the structural re-
strictions of the profiles. Their clustering techniques gives them the ability easily
match incoming publications into large databases spending few milliseconds.

4.7 Results for the third profile collection

In this section we present the experiments conducted in order to evaluate the
algorithms RTFi-O and RTFi-M against then algorithm iBroker. In more detail
we evaluate algorithms RTFi-O, RTFi-M and iBroker using the third profile
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Figure 4.18: Insertion time of iBroker and RTF for the third profile collection.

collection as presented in Section 4.1.1. The third profile collection is formed by
RDF-based profiles that bare full-text operators on all triples that form them, mak-
ing this collection a perfect candidate to evaluate the textual matching capabilities
of the proposed algorithms. We present diagrams concerning the indexing times,
filtering times and memory requirements of all the algorithms for database sizes up
to DB = 100K. Finally we present the most important results for larger databases
for all the variations of RTF.

Comparing insertion time

This section present the time every algorithm spends in order to index a standard
input of Ip = 20K new profiles in a database with varying sizes.

Figure 4.18 presents the insertion time that the algorithms RTFi-O, RTFi-M
and iBroker spend to index Ip = 20K new profiles into their database. We ob-
serve that the algorithms increase their time needed to index the new queries as the
database size increases. The algorithms RTFi-O and RTFi-M need more time to
index the same amount of profile compared to iBroker. Additionally the two vari-
ants of RTF increase their time requirements faster compared to iBroker. This
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Figure 4.19: Insertion time difference of iBroker and RTF for the third profile collec-

tion.

performance in the insertion phase can be explained as follows: The algorithms
RTFi-O and RTFi-M as discussed and in previous sections utilize trie-based struc-
tures to index and capture the common element of the structural and textual parts
of the profiles. The search for existing places to index a profile in the trie based
structures results to slower indexing performance compared to iBroker. On the
other hand iBroker does not utilize any clustering technique during the indexing
phase, thus resulting to low insertion times.

To better demonstrate the differences in insertion increase between the proposed
algorithms and their competitors Figure 4.19 summarises the absolute differences
of iBroker compared against the competitors algorithms RTFi-O and RTFi-
M. We present the differences in insertion time when varying the database sizes
when inserting Ip = 20K new profiles. Note that negative numbers in difference
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indicate that less time is required for RTFi-O and RTFi-M indexing the incoming
profiles, while the positive numbers indicate that more time is required compared
to iBroker. We can observe that iBroker spends less time during the indexing
phase and the difference against RTFi-O and RTFi-M changes slightly. Namely
when the algorithms index the first Ip = 20K to an empty database, iBroker
spends 206% less time compared to algorithm RTFi-MṪhe lead of iBroker is
maintained during the increases in database size against RTFi-M. When iBroker
indexes the final Ip = 20K, thus increasing the database size from DB = 80K to
DB = 100K the difference increases at 287%. Likewise iBroker is faster compared
against RTFi-O, as it needs 230% less time inserting the first Ip = 20K to an empty
database. Finally when iBroker indexes the last Ip = 20K it increase the difference
with RTFi-O up to 348%.

This differences great differences in the insertion performance of RTFi-O and
RTFi-M can be explained as follows: The third profile collections contains a great
amount of full-text operators. Algorithms RTFi-O and RTFi-M try to capture
the common elements of the textual restrictions into their indexing structures thus
consuming a great amount of time searching for the best available position. In
contrast iBroker stores the textual restrictions into lists of string and does not
implement any clustering technique, resulting to low insertion times.

Comparing memory usage

We also executed experiment to specify the memory requirements for each of the
presented algorithms. Figure 4.20 exhibits a good overview of the result for varying
DB sizes. Algorithm RTFi-O has the lowest memory requirements using 196MB

for storing the whole profile database DB = 100K and all indexing components.
Algorithm RTFi-M’s memory usage is at at 203MB for storing the same profile
database. Algorithm iBroker occupies the highest amount of memory requiring
326MB to index a database of DB = 100K profiles. The variations of RTF have
low memory requirements as they utilize clustering techniques to capture the com-
mon elements of the profiles both structural and textual restrictions. RTFi-O has
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Figure 4.20: Memory consumption of RTF and iBroker for the third profile collection.

lower memory requirements compared to RTFi-M as it utilizes a single textual in-
dexing structure thus capturing more common elements achieving a more compact
forest. While RTFi-M by utilizing multiple forests misses important clustering op-
portunities requiring more memory to index the same profile set. iBroker does
not implements any clustering techniques thus needing more memory to store all
the element of the profiles. Finally we observe that RTFi-O and RTFi-M reserve
the majority of their memory when indexing the first Ip = 20K profiles to an empty
database. This behaviour can be attributed to the initialization of the indexing
structures that the algorithms use. Specifically RTFi-O reserves 76MB when in-
dexing the first Ip = 20K profiles and RTFi-M reserves 80MB. For every new
Ip = 20K profiles inserted into the database RTFi-O and RTFi-M do not require
more than 30MB and 31MB to facilitate the indexing of the new profiles accord-
ingly. On the other hand iBroker reserves 84MB of memory to index the first
Ip = 20K profiles into an empty database while it requires more than 40MB of
memory to index every set of Ip = 20K new profiles.
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Figure 4.21: Filtering time of iBroker and RTF for the third profile collection.

4.7.1 Comparing filtering time

This section discusses the results concerning the filtering time required to match an
incoming publication against a database of profiles. The time shown in the graphs
represent the average time spend to filter a collections of ID = 5K publications.

Figure 4.21 shows the time in milliseconds needed to filter an incoming pub-
lication against a profile database of different sizes. Observe that filtering time
increase for all algorithms as the profile database size increases. Algorithms RTFi-
O and RTFi-M, that utilize clustering techniques for the storage of the profiles
achieve the lowest filtering time, suggesting better performance than their competi-
tor iBroker. Algorithms RTFi-O are less sensitive to the profile database size
increase compared to iBroker. RTFi-O and RTFi-M can match against to the
profile database faster an incoming publication searching the trie based forests and
match publications in bulk. While iBroker searches and matches every profile in
the database independently when filtering a publication.

To better demonstrate the differences in filtering decrease between the proposed
algorithms and their competitors Figure 4.22 summarises the absolute differences
of iBroker compared against the competitors algorithms RTFi-O and RTFi-
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Figure 4.22: Filtering time difference between RTF and iBroker for the third profile

collection.

M. All differences are computed for varying database sizes. Note that negative
numbers in differences indicate that less time is required for RTFi-O and RTFi-M
for filtering incoming publications. When algorithm RTFi-M indexes a database
size of DB = 20K it uses 99.1% less time compared to iBroker. The performance
of RTFi-M is maintained for all database sizes studied and when the database
size reaches DB = 100K their difference is at 98.54%. When algorithm RTFi-
O indexes a database size of DB = 20K it performs the matching process of a
publication 99.1% faster compared to iBroker. Finally when algorithms RTFi-O
and iBroker index a DB = 100K, RTFi-O performs 98.46% faster compared to
iBroker.

Figure 4.23 shows the time in milliseconds needed to filter an incoming publica-
tion against a profile database of different sizes for all the variations of RTF. The
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Figure 4.23: Filtering time of the variations of RTF for the third profile collection.

results demonstrate the performance of the algorithms for database sizes greater
than DB = 100K. We observe that the time increases for all algorithms as the pro-
file database increases. All variations of RTF exhibit similar performance as all of
them utilize the indexing structures to capture and store the structural and textual
restrictions of the profiles. Additionally if we compare the filtering performance of
the variations of RTF when the database size is DB = 500K against iBroker
(Figure 4.21), we see that iBroker spends approximately the same filtering time
for a publication when the database is at DB = 80K. The algorithms exhibit similar
performance as discussed in Section 4.4.2. The ranking of the algorithms is slightly
altered during the database increase placing RTFi-O at the top of the performance
scale for the maximum database size DB = 500K.

4.8 Conclusions

In this section we discuss the findings we received from the experimental evalu-
ation of our proposed algorithm RTF and it’s competitor iBroker. We designed
three different profile datasets and evaluated our algorithms under three different
filtering scenarios.
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We presented and discusses the insertion time the algorithms require in order
to index the same profile volume in their database. We have shown that the four
variations of RTF consume more time in order to index the same profiles in their
database compared to iBroker. This can be attributed to the nature of data
structures the four variations of RTF utilize. As all variations of RTF utilize
clustering techniques to index the structural and textual restrictions of the profiles
more time is required in order to locate a position to insert a profile into their data
structures. While iBroker by not utilizing any clustering techniques it performs
better in the indexing phase.

By comparing the memory requirements of the algorithms we have shown that
the four variations of RTF reserve less memory to index the same profile input. This
can be attributed to the clustering techniques used as more profiles are indexed under
same positions thus creating more compact databases. On the other hand iBroker
due to the nature of it’s profile indexing structures requires more memory to store
the same profile input.

We presented the filtering times and their differences of the four variations of
RTF and iBroker for different database sizes. The results suggest that all four
variations of RTF outperform the filtering capabilities of iBroker. This excellence
is attributed to the nature of the data structures used by RTF, by clustering similar
profiles together the filtering process is sped up as more profiles can be matched in
groups.

Finally, we conducted all the experimental evaluations for three different profile
datasets in order to determine the performance of our algorithms for different sce-
narios. The main profile collection aimed for an average case scenario where user
profiles where filled with 50% of full text restrictions. The second profile collection
aimed for a case scenario where there were no full-text restrictions and we studied
the performance of the structural matching of the algorithms. The third profile col-
lection aimed to stress test text filtering capabilities of the algorithms. In all three
case scenarios all four variations of RTF outperformed the competitor algorithm
iBroker.
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Conclusions

In this final chapter of our thesis we will present an overview of the research con-
ducted, we will highlight our main contributions and provide possible directions for
future research.

5.1 Summary

In this thesis we studied the problem of full-text support on ontology based
publish/subscribe systems. These systems can facilitate the users needs in explor-
ing new information, and may be applied in many domains, such as news alerting
systems, RSS feeds and digital libraries. The users by utilizing these systems can
achieve great benefits in their need of information delivery, (a) they receive person-
alized and filtered results that match their interests, and (b) they may stay informed
by resorting in a timely information delivery guaranteed by the publish/subscribe
system.

In order to facilitate user needs we studied the SPARQL query language and
proposed an extension for full-text subscriptions. The developed extension supports
full-text subscriptions with capabilities that can easily support all typical Boolean
operations applied on text, such as conjunctions, disjunctions, negations proximity
and others.

Furthermore we developed the Algorithm RTF that can index hundreds of thou-
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sands of user profiles expressed in SPARQL with full-text operators. Additionally
Algorithm RTF is able to filter incoming publications more than 98% faster than
existing state-of-the-art solutions in the bibliography.

The developed algorithm RTF was tested against the typical data structures of
a two-level hash table and more specifically against algorithm iBroker [57]. We
designed and conducted three different experimental evaluations. The goal of our
experiments was to approximate real-life scenarios and test our algorithm under
regular and extreme cases. In this way we demonstrate the efficiency of algorithm
RTF against the current state-of-the-art.

We attribute the filtering performance of RTF to the clustering techniques it
utilizes in organizing the user profiles into trie-based data structures. RTF separates
the user profiles in two parts: one where the RDF restrictions are described and one
where the full-text restrictions are defined. Thus RTF indexes the two separated
parts of the profiles under two similar data structures each one with it’s own unique
characteristics. The RDF-part of every profile is indexed under trie-based data
structures that can capture and cluster the common parts of the profiles that form
the database. Furthermore the textual part of every profile is indexed under trie-
based structures. In their turn the trie-based structures are more adequate and
specialised to index the text terms that form a textual restriction. In this manner
RTF clusters the most common structural and textual parts of the profiles thus
providing excellent performance during publication filtering. In contrast, current
state-of-the-art solutions focus only on the semantic matching part of the profiles,
thus neglecting the optimization of the filtering process. This may lead to systems
that do not scale and are unable to support growing number of profiles together
with efficient information delivery.

5.2 Contributions

In this section we summarise the contributions of this thesis. We presented
a SPARQL query language extension in order to support full-text operators. We
aimed to increase the flexibility in profile definition and supply the users with ex-
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pressive tools in order to better define their interests. Additionally the proposed
full-text extension increases the precision of the delivered information to the user as
a publication must match to higher number of restrictions.

We presented a novel algorithm coined RTF (acronym for RDF Text Filtering),
indexes subscriptions defined in the SPARQL query language. We provided users
with better expressivity, by extending the SPARQL query language with full-text
operators. The utilization of full-text subscriptions enhances the flexibility and ex-
pressiveness of the subscription language. Additionally, we identified and developed
four different indexing algorithms to facilitate the structural and textual restriction
indexing of the profiles. Namely the four variations of algorithm RTF that were
presented are RTFi-O, RTFr-O, RTFi-M and RTFr-M.

Furthermore we modified the and extended the competitor algorithm. We ex-
tended the state-of-the-art publish/subscribe solution iBroker [57] algorithm. iBro-
ker is able to support the full-text extension of SPARQL we had introduced. In this
way, extending the support of not only text containment but also full-text keyword
matching.

Finally, we designed and conducted experimental evaluations with real-world
data comparing a state-of-the-art algorithm against our proposed solutions, and
concluded that our proposed algorithm outperforms the state-of-the-art in terms of
filtering efficiency by at least 98%.

5.3 Future directions

In this section we discuss the open problems of Information Filtering in ontology
based publish/subscribe systems and the directions we will focus on in our future
work.

With the increased information availability, information filtering systems must
be able to deliver highly personalized results to the user and reduce the irrelevant
publications. In order to achieve more accurate results, we would like to extend
the support of the proposed data models to all typical Boolean operations applied
on RDF and text representations. Additionally we intend on supporting semantic
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matching and study it’s impact in the information delivery accuracy.

Additionally, the constant increase of publication volume drives the need for de-
veloping highly scalable publish/subscribe systems. Lately there has been a thrive
towards cloud-based computational solutions, thus creating opportunities to develop
algorithms that are able to utilize them. The proposed algorithm RTF utilizes trie-
based structures that render it a proper candidate for exploiting either shared mem-
ory or cloud-based architectures parallelization. We would like to study the aspects
of this problem and supply a solution for multi-processor parallel, publish/subscribe
systems.

Finally, the last years the research concerning graphs is becoming important as
there is a plethora of applications in linked data, social networks and bioinformatics
(e.g. protein-to-protein interactions). We would like to study the problem of In-
formation Filtering over graph models. Imagine users that have the ability to pose
queries expressed in sub-graphs and graph data that are constantly updated with
new edges and vertices. The contributions of such research can be applied to linked
data, social networks and many more.
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