University of Peloponnese

Department of Informatics and
Telecommunications

Developing Client-Centric Solutions: A
Hybrid Application Utilizing RESTful
Web Services for Tourist
Accommodations

Karapiperakis Emmanouil
2022 2023 02008

Supervisor: Nikolaos Tselikas

A thesis submitted in partial fulfillment of
the University’s requirements for the
masters degree.

January 2025

Havemotiuo Ilehorovvricou
Tufuoa IAnpogopixic xon TrAemixolvwviody

Avantuén Abocswv Ilpocavatoricuévwy
ctov Ileldtrn: Mo YBeowry Egoapuoyn
nou Xpnowornotel RESTtul YTrnpeolec
AadxtVou yia Tovptotixd Katohduota

Kopamnepdnne Euuavouri
2022 2023 02008

Erifrénwv: Nucdohaoc Toelinoag

Awmopatixr Epyaola

Tavoudiproc 2025

Copyright © Kopoamnepdnne Eupavopuni, 2025.

Me empiholn novtog duxandpatog. All rights reserved.

Anoyopeletoan 1 avtiypapr, oamobrixeuon xou Slavoury Tng mapolLouC
gpyaciog, €€ oloxhfpou 1 TUAUATOC AUTAC, YU EUTIOPIXO OXOTO.
Emteéneton 1 ovotimwon, omodixeuon xou Olavour it OGXOTO un
AEEOOOAOTUNOG, EXTAUDEVTIXNC 1) EQELYNTIXNC PUOTE, UTO TNV TpolTolEoT
VoL OVOPEQETAL) TNYT TEOENEUONC o Vo OLTNRE(Ton TO TUPOV UAVUUL
Eeotfuata mou agopolv tn ypfion tne epyaciag yla x€pd0oxomxd oxonod
mpénet vo omeuBlvovtan mpog touc ouyypogelc. Ou amdec xou T
CUUTEPBOUNTA TIOU TEQEXOVIOL OE OQUTO TO £YYpapo exPpdlouy Toug
ouyyeagelc xau dev mpémel v epunveubel OTL avtitpocwnebouy TiC enioNuEg
0éoeic tou Ilavemotnuiouv Ilehonovvrcou.

Abstract

Customer service and the effort to provide optimal services have always
been a central topic of discussion, particularly in the Tourism sector, which
is one of the main pillars of the Greek economy. Every visitor invests
significant time in selecting the ideal destination for their vacation and
inevitably spends an important amount of money on their stay. Therefore,
it is only natural that they want their experience to meet their expectations.
A key element is the friendly and discreet communication with the property
owner, who should be able to answer questions, provide assistance regarding
the accommodation and the surrounding area when it is needed.
Additionally, the continuous upgrading of services and responsiveness to
customer needs are crucial for creating positive impressions and ensuring
repeat visits. Furthermore, the utilization of modern technologies for better
management of reservations, enhancement of the customer experience and
provision of personalized recommendations can significantly improve the
overall stay experience. This comprehensive approach not only contributes
to increased customer satisfaction but at the same time, enhances the
property's reputation, making it a highly desirable destination for future
guests

For this thesis, a hybrid application was developed, aimed at improving the
communication between a tourist accommodation and its clients, promoting
the property and enhancing the services offered through the collection of
data during the guests' stay. The application is available for both Android
and iOS mobile devices, covering a wide range of devices from small to
larger sizes. For prospective customers, the application offers detailed
information about the property and the surrounding area, as well as the
ability to express interest in booking by selecting their desired dates.
Additionally, customers who have already made a reservation receive login
details upon arrival, granting them access to privileges such as additional
information about the interior of the property, discovery of locations in the
surrounding area through dynamic maps, access to information related to
their stay, communication with a virtual assistant and the ability to directly
contact the host. Finally, the administrator role provides the capability to
dynamically add content to the application, manage users, update availability
and handle incoming booking requests. The administrator can also respond
to live chats with guests and access useful statistical data, which can help
in the continuous improvement of the services offered by the property.

Keywords: Tourism, Customer Service, Web Services, REST
APIs, Web Sockets, Node.js, Express, Cross Platform
Development, React Native, iOS, Android, Heroku, GCP

ITepiinyn

H elumneétnon melatwv xou 1 mpoondbeia mopoxnc BENTIOTOV UTNRECLOY
anoteNolooY TAVTA XEVTEO Oéua oulhtnomng, Ewwd oTov Topéd TOU
Touplopol, o omolog amotelel €vayv amd TOUG XVELOUG TUNWDVES TNG EANNVIXAC
owovopiag. Kdbe emoxéntng emevdlel onuoavtixd xedvo 7yl Vo ETNEEEL TOV
WBAVIXO TEOOPIOUS Ylot TIC OLUXOTEG TOU oL ovamOQELXTA, OlBéTel €var un
EUXATAPEOVNTO YENUATIXO TOCO yiar TN Olopovr) Tou. Elvaw emopévog hoyixd
vo TEplével OTL 1 eumelplar Tou Oo avtamoxpel oTic mpoodoxieg Tou.
Arnopaitnto otowyelo eivon 1 QLN XL SLoXELTIXT] ETLXOLVWVIXL UE TOV LBLOXTHTN
Tou xataaduatog, o onolog mpEnel vo elvan oe Béom va amavtd oe amopleg, vo
Tpoopépel PBondelar OYETIXG UE TO XATAAUPO %ol TNV EUPUTEEYN TEELOYT,
onowdnrote otyur yecwotel. Iapdd\nia, 71 ocuveyhc avaBdduion Tov
UTNEECLOV XL 1) AVTATOXQELOT] OTIC UVAYXES TOV TENATOV OTOTENOUY XAELWDL ylo
TN Onuovpyio BETIXOVY EVIUTWOEWY X0t TN OLUCPINOY TNG EmavanauBavouevng
emoxeotnrag. Emnkéov, n adlonolnon olyypovev texvoNoyudy yio Ny
xo\UTepn Olaelpion Twv xpatrioewy, TN PeXtioon tng eunciplog Tou TENATN Xou
TNV oYY ECATOUXEUMEVOY TEOTACEWY, O0UVOTOL Vo BENTIOOEL TN CUVONXN
eumetplo otapovic. H mpooéyyion auty) dev cuufdiier uovo otnv uxavornoinon
TOV TENATGY, OANG XL OTNV evioyuorn TNg @AUNS TOU XATAADUITOC,
xobotovtag o €vay embuuntd TEooEloUd YLt UEANOVTIXOUS ETUOXETTEC.
o tov ouyxexpévo oxomd, oto mAalolo TG Omiwpatixig epyociag Oa
avomtuyOel wor vBEWwxY epapuoyr, 1 omola Bo amooxornel otn Peltiwon g
EMXOLVOVING €VOC TOUPLOTIXOU XATOADUATOC UE TOUC TENATEC TOU, OTNV
TEoOONCT TOU XATONVUATOC xou OTNV EVIOYUOY TOV TUPEYOUEVOY UTNEECLOV
HECW TN CGUANOYNG BEBOUEVOY XaTd TN dloovh Twv emoxentov. H egopuoyy
O otnplleton ot RESTful apyitextovinry xou Oo elvon Swbéowun tdéo0 yia
xivntée ovoxevéc Android 6co xou iO0S, xalOntoviag éva gupl doua
CUOXELOY amd Uxpol €wg peyanltepou peyéBouc. T toug umodrploug
TENATES, 1 €PopUOYT Dot TEOCPEREL TANPOPORIEC VLol TO XATANUUA Xou TN YVPwW
TeELox N, AABDC o TN BUVATOTATA VAL EXONADCOUV EVOLAPEROY YLoL XEATNON
emnéyovtog Ti¢ embuuntéc nuepounvieg. Emnmiéov, ov meldtec mou Qo €yxouv
7N xdver xpdtnon Ba Naufdvouy xatd v gl Toug oTouxela cLVOESTE oTNY
EQPOQUOYY), ATOXTWVTAS TEOCPAUCT, OE TEOVOULY, OTMS ETUTAEOV TANEOQYORIES Yio
TO €0MTEPXO TOU XATONUUATOS, avaxolUpelc tomobectdv otn ylpw meployy
HECH BUVOUIXOV YoRTOYV, TEOCPUcT, O TANEOYORlEC OYETIXEC WE TN OLUUOVY|
TOUg, ETXOLVWVIOL PE Eovixd Pondd o BuVATOTNTA AUEONC ETUXOLVOVIOG UE
ToV 00deonoTY. TéNog, o pdhoc Tou Bluyelptoth Bo TpocPEpel TN BUVATOTNTA
TeocOixNC BuVOUIXOL TEPLEXOUEVOL OTNY EQopuoYT), Olaxelplong yenotwy,
evnuépwong TN OlabeodTnToc xou Olaxelplong ELOERYOUEVOY UTNUATWV
xpdtnone. O duyeipothc Bo €yel enlong ™) BuvaTOTNTA VoL CUUHETEXEL OTN
CwvTtovh cUVOUIN UE TOUC ETUOXEMTEC XOL Vo AmOXTE TeOcPacn oe yehodo
oTaTIoTXd oTov ela, Ta omolo umopolv va cupfdiouv ot ouveyr Peltiwon
TOV UTNEECLOV XaB®E XaL TOV TUPOYWY TOU TEOCPEREL TO (BLO TO XATAAUYOL.

Aggerg KAewSua: Touvpiopde, Efumneétnon Ilehatdv, YTrnpeoiec
Awldixtoou, REST APIs, , Web Sockets, Node.js, Express, Cross
Platform Development, React Native, iOS, Android, Heroku,
GCP

Contents

1
2

L\ 2 0.1 01U Lo [] N 1
RESTFUL WEB SERVICEScuucituuiiiuiiiuiiiiiiieniiencieecieaiiceeccennsteascsessesenssesssseassens 2
2.1 Introduction t0 Web SCOIVICESceiieeeuueeieeiiiieeseeiiiieeeeetirieeeeeseieeesesaseeeeesennns 2
22 APIS ettt ettt ettt e ettt a et e e e e e e e e e eeeeeeeeeaannaaaaaas 2
2.3 WD SOIVICES. ...cceeeuuuieeeeeeeeeeeeeee et e e ettt e e e e e e e e e et ettt e e e e e e e eeeeaeeens 2
2.4 TPttt ettt e e e e e e e e e e e e e e eee e e e s e 3
2.5 HTTP ROQUESE «eeeveueeeeeeeieeeeeeeieeeeeeteee e e eteeee s e etttee s e e taase s e etasaessesasnaeseenasnanseenesnns 3
2.6 HTTP ReQUESt LiNE...........cccccoviimiiiiiiiiiiiiiiiiiiiiiiiiiiiiiee ettt eeeeceenaaaas 4
2.7 HTTP MEEAOAS. «ceeeeenaaaaaeaeiieeeiiiiiieeeee e e ettt e e e e e e eeetteeaasee e e e e e e eeeeeeeaens 4
2.7.1 Idempotent and Safe MEtROAS................cccciiiiiiiiiiiiiiiiiiiiiieeeeeeeteeeeee e 5
2.8 HTTP RESPDOISE. «.uueueeeeeeeeeeeeeeeiiiiieeeee e e et e ettt ee e e e e eeeeeenenennanaseseeeeeeeenanens 6
2.9 HTTP SLALUS COEceveeiiiieeeeeeiiiiieeeeeeeeeseeeeeieiieiisssaaesssseeeeesearannssssssesseeseemnens 7
2,10 HTTP HEAAELScceuuueereeeeieeieeiiiieeeeeieiee s eettieeseetttee s eetaeeeseettaneseetaenaeseeneenneseenes 9
211 HTTP BOAY uuuuuuiiiiiiiiiieiiiiiiiiiiiiieiiie ettt ettt e e e et e et e et e e s e e s 9
2.11.1 JEON .ttt ettt e e e e e e e e e e e e e e e e e e s e e e s aaaas 9
2112 KL ettt et e e e e e e e e e e e e e e e e e e aneeeee 10
2012 REST APttt e e e e e e e e e e e e e e 11
2.13 REST API DeSign PAtEOrIiS......cuuuuuuuueieieeeseeeeeeeiiiiiiiiaeanessesseeeerereannissassesseeaennes 11
214 API SOCUIILY .vveeveeeeeeeeiieeeeeeeeeeeeeeeeeeseeeeeeeciiteeeeeeeeeeeeeaeeesesseessesessssssssssnssnssnnes 14
2.15 Authentication & AULROTIZATION.cceeeeeeeeiieiiiiiiiiieeteeeeeeeeeeeeeeeeeeeeeans 14
2.15.1 APT KOPS ettt ettt ettt e e e e e e e e e e e e e e e e aaas 14
2.15.2 BAasic AULAOINEICATIONcceeeeeeeiiiiiiiiiiiiiieiieeiaeeeeeeete et e e e e e e e e e e 14
216 CORS ..ttt e e et e e e e e e e e e e 15
NODE.JS & EXPRESS.......ccuciiuuiiiuiiiniiiuiiieiiieeiiteecteeecteaiteeeseasseassssassssensesensssennes 16
3.1 Introduction €0 INOAE.JS............ccoueveeeeevoiuuiiiiiiiiiiiiieteeeeeeeeee e 16
3.2 Setting Up Node.js EnVIFONIENTuuueuueeeeeiieieiiiieiiiiiaaiaeiieeeeeeeieeeeeeeeeees 16
3.3 COIC COICEDLS.eeeeeeeeeeeeeeeeeae ettt ettt et e et e e e e e e e e e e e e e e s s e seaseenee 18
3.4 BIXPIESS . ceeeeeiieeeiiieeeee ettt ettt e et ettt e e e e e eeeeee 18
FoAd MIAAIOWALC....ceeeeeeeeeiieeieeiiiee ettt ettt tae e e eetae e s e etaae e s eeeanneseeenaaens 18
FoA 2 ROULIIG «eeeeneeeeeiiieee ettt ettt et e e et e e e et e s e etaae e s e e taa e s eeenaaees 19
34.3 EXPress EXAIMPIEccuuuuuuiieieeiiiiiieiiiiiieeeeee e ettt e e e e e e ettt 19
3.5 Security and AUEACITICALIONeeeeeeeeeueeieeeieiiiteee et e e e eeeeeee e neeees 20
3.5.1 Error Handlilg..........cccccccccoovmviiiiiiiiiiiiiiiiiiiiiiiiccteeeeeeeeeeee s 20
3.5.2 Environment VAariabDIES..........cc.ccocooeeuiuuuuuuieieiiieiiiiiiiiiiiieeeee e eeeeeeeeeeeeeee e 21
3.95. 3 HTTP HEAUCES «...oeveeeeieaieeiiieeeeeeiiee et e st e s eettre s s eetee e s eeeaaee s eetaaaeeseeeeanens 21
354 RALE LIMITEIIG «eevueeeeeeiiaiieiiiieie ettt ettt e s et e s e e taae e s e e taaneseeenanens 21
3.5.85 Limit REQUESE SIZE.......ccciuiiieaiiiiiieieetettee ettt e e e e e e e e e e e e e e e e 22
3.5.0 Basic AULRENTICALIONccceeeeiieeeeeetetee et 22
BT T T ettt e e et e e e e e e e e e e e e e eenaeeee 23
3.5.8 Monitoring and LOGGIING......ccccuuiiieeeeiiuiuuuiiieeiiieieeeiiitiieeee e e eeeettveeeeneee e 26
3.5.9 Password MAanagementccc.eeuuueeeeeeuueeieeiiieeseetiieeeeetiieeseeteaaeseetnneseeenaanns 28
3.6 API Documentation & Valldation........cccccccouuuuuieeeeieeeiieeieeiseessseeeeesssssessssenneenns 29
BoO.d YAML ettt e e e et e e e e e e e e e e e e e e 29
3.0.2 SWAGGEOI-UI-EXDIESS «eceeeeeeieeieeeeeeeeeee ettt ettt e e eeeeaaaaaeeaeeeaeasaasaaasnasessennes 31
3.0.3 EXpress-openapi-vAlIAATOrccocuuuuumeeeeiiiiiiiiiiiiiiieeeeeeeeeeeeeveeeeee e 31
170 10 4 = 0 [o 33
4.1 INtroduction £0 SOCKEE.J0..........cuuuuuuuueeeeieeiiieeeiiiiiiiiiseeeeseseeeeeeeereresaneeseseeeaeaees 33
4.2 SOCKEE.JO FOALUTES. . ceeveveeeseeeiieeeeeeiiieeeeetitieeseettteeseetasaeseetasaeeseessnnesaerssnnnsaesees 33
4.3 SOCKEL.T0 ATCHIEOCTUTC. c...cccoeiiieeeeieeeeieettetete e e e e e e e e e e 33
L3 1 TTADISPOITS...ceeeeeeeeeiiiiiieii ettt ettt s et s e et e s e e taae e s e e taaae s eeenaaaes 34

4.3.2

HHAIDASHAKC.c..coeeeeeniieaeeeiie ettt e e e e ae e s e e aeeaesaeranes 34

4.3.3 Upgrade MeChAnISIM...............ccceeeeveouumuuiiiiiiiiiiiiiiieeieeieieeeiee et 35
4.3.4 Disconnection DELECLIONuueeeieeiuuiesiieiiiiesseeiiiieeseetiiesseerineeseerrnessasesnnnns 36
4.4 SOCKEE.JO EIVENES.....ccevveveeeeeeieeeeeseeeeeeietiieeseeeeeseeeeeeeeeaearasaaeeeseeeeeernrasennnnnnaeens 36
4] BUIlE-IN FVOIES ceuueeieeeiieeiieiiieeeeeeeiee et s et e s e etae s s eetaae s s eetaaeeseeeannseensannns 37
442 CUSLOIM FVOIES cecvvvveeeeeeiiiiiieieeeeeeeeeeeeeetaiieeese e s e e e e e eeeteeasasasseseseseeeeesssesnananneess 37
4.5 NAMESPACE SUPDOIT «.ceeevveeeeeeeieeeeeeeiiieeeeettieeseettaeeseettsaesessssneaseesanaesesessnaeseeeees 37
4.6 FROOIIS oottt ettt et e et s et e et ts e e et s s ta e et s e et s eaneeaaneeanannas 37
GOOGLE CLOUD PLATFORMciuitiiiniiiniiieieiiesesetesaeresastesessesasssssssssesassossssssesanse 39
5.1 (€0 B 7Tl |1 el 7 o) 7 BN UURSPNE 39
5.2 GOOZIE MaADS APH.....cccoooiiiiiiiiiiiiiiiiiiieeee ettt e e 39
5.3 DIAIOGIIOW <.ttt et e et e et e e e e e e e 42
5.3.1 Create ServiCe ACCOUNTcccouuieiieeeeiiiiiiiieeeeeseeeeeeieetiiiiisaseeeeseeeeeeerearaasaneeeas 42
5.3.2 Generate Private KEYccccuuveveviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee e 44
5.3.3 EXPOIrt Private KEY ..cccuuuuuumiiiiieiieiieiietieeeee e ettt eee et 45
5.4 Dialogflow ATCHIEECTUIEccoeeeeeiiieteeeeeee e 45
Goded AGOI ittt et et e e e e e e e e e e e e e e e aeneeeee 45
DA 2 TIEOIIES cceeeeeeeeeeiiieee ettt e e s ettt e s e et e e e et e s e e taa e s e e ean e eeeraaans 46
B S i 17 1 L RO TP P PPP PR PPPPPRPTO 46
S.dd INEEGTATIONS ..uuvvvviiiiiiiiiiiiiiiiiiiiie ittt 47
545 TTAINING ccovvvvniiiiiiiiiiiiiiiiiii e 47
REACT NATIVE......cuuuiiiiiieeiieniiieiiieittateaeetaeisteesetensteassenssssasssssssssonsssensssenssssnnss 48
6.1 TNETOAUCTION «e.oveeveeeiiieeiiieeieeiiiiee et s e ettee s e ttee s e e et e s eetaas e s e eaaaseseeeannsaeeees 48
6.2 LOCAl DOVEIODITIEIIT «...eeeeeeeeeeeieeieeiiiieee et sttt s et ttee s e e teaee s e e taaee s e eraaneeeeeees 48
0.3 FIXPO GO.eevviiiieeiiiiiiiiieieeeee e e e eeeeettaitseees e s e e e et e e e tetasaasseeeseseeeeeeeasasanansaseseaaaaanes 49
6.4 React FUundamentals.cooeuuuuuuuuiiieeieiiiiiiiiiiiiiiieeeee e e e eeeeettteeaee e e e e e eeeeeeee 53
0.4 1 COIMPONEIILS. c.ccceeeeeeeeeeeeeeeieeeeeee ettt ettt e e e e e e e e e e e e e e e s e s e s st ebeeeeeeeeeeeeeeas 53
0. 4.2 TEX ettt et e e e e e e e e e e e et e ettt e bee e e e eeeeeas 54
O.4. 3 PIODS.cccccieeiiiiiiieeeeee ettt ettt ettt s e e e e e e e nanenaas 54
L B 7Y 7= OO SO PUPUPUUPPPPRR 55
0.5 ROACE HOOKS. ...ccceevveeeieeeeieeieeiiiiee e eeteee e eetcee e ettt ee e e e tae e s e e eaae e s e e eaaeeseeeasaeeaeeeen 55
6.6 State Management............c.ccccovuvveeveiiiiiiiiieiiieietteeteeeeee e et et 56
L N €011 ¢ A . U R 56
6.7 INAVIGALIOI c.veveeveiiiiiiiiiiiiiiiiiiiiiii ettt e e et et 57
0.7.1 Install DEPENdEncIEsuuuuueeeeeiieeieiiiiiiiieieeeeeeeeeeeteteeeeee e e e e e eeeeeeeeeenenaes 58
0.7.2 StACKk INAVIGALOLceeeviiieieeeeiiiiiiiieeeeeseeeeeeeeeeieesssaeesseeeeeeeaessaaansaaessesaeesenenensnnes 58
6.7.3 TAD INAVIGATOT «cceuueiieiiiiieeeiiiiiee et ee e ettt ettte e e et e s e e teee s e etaaneseeeeanans 58
0.7.4 Drawer NAVIGALOIcccoeeumuumeiiiiiiiiiiiiiieeeeteeiee ettt eeee e 59
6.8 SSEPTOS ettt et e e e e e e e e e e e e e e e e e e aanaenes 60
6.9 APT INEOGTALION «eeveeeeeeeiaiaiiiiieiieeee ettt e e e e e e e e e e e e e e e e e s e s eeseeeee 62
G. 9.1 FOUCH eueeieeeiieeieiieiee ettt ettt ettt e e ettt e s e e et e s e e taa e s e e aaa e s e e aaa e eeaenaans 62
0.9.2 AXIOS eeieeeeeeeeiiiiiiieeeeeee e e et ettt eeesee e e s e e e e e et ittt et s aa e e e e e e e et e teatbba i aaeaeeeeeeteaeraaeaaas 63
VILLA AGAPI MOBILE APP.......cuiiiiiiiiiiiiiiiiiiiiiiiiiiietetetetesesesesesssasssssasssssssssssssssssssssses 66
7.1 Data MOGEL........coouniiiiiiiiiiiiiiii ittt 66
7.2 TOCIH STACK......uceiiieiiiiiiiiiiiieeeeiiiee s eettiee et taee s e et ee e et s e s e etaaseseeaaaaassaeeannneaes 67
721 REACE INATIVO...cuuueiiieiiiieeseeiiiee s eetiee s eetisee s eetaae s s eetaass s eetatssseetssasssaeessnnsseasennnns 68
T7.2.2 INOAEJS cceeueeeeeeieiiieieeeieeeee ettt e e ettt e e e e e et e e 68
7.2.83 POSEGTOS QL c....oeeveieeeeeeeeiieeeeeee e e e et eeeetteeee e e e e s e e e eeta s e e e s e e e eeeeeaaaaaa e as 68
T 24 SOCKEE.TOccuuueieieeeiiiiiiieiiiiiieieee e ettt e e e e e e e e e e ettt s s e s e e e e e e eeeaeabsanaeeeeas 68
V2.5 HEIOKIUL ccecueeiiiiiiiiiiiiiiiiiiiieee ettt e e e e e e ettt 69
T.2.0 GEEHUD .ttt ettt e e e e e e e e e e e e e e e e e e e 69
To2.7 Gl ettt ettt et e anneaaee 69
7.2.8 Google Cloud PIALIOIIN..........ccccciiiiiiiiiiiiietieteeeeeeeee e 70
729 EXDO GO.uuuuueeeeeeieieiieiiiiiiiiiiiee ettt ettt et e e e e e e e e e e e e e e e e s 70
7.2.10 PIAYWEIGRTE «ooeoeeeeeiiiieeeeeee et eeeeeeetceiee e e e s e e e eeteteaeaisss e e s e e e eeeaeaesessaansseseaaaaanes 70

APPLICATION BACK-END.......ccuiituuirriiiitiniititiiieiiieetietaeietieetsastesasssseseesassssssssessssenns 72

8.1 DATADASE. ... ceeeeeeeeeeeeeee et et e ettt e e aee e e te e e et ee e e e e e st e et e e aaeeran e araaaanaas 72
811 PQAAMUN euuueeeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitttteee ettt 72
B.1.2 Create DALADASEceeeeeeeriieeeeeeiieeeeeetieeeeeeteeeeesettesesseataeeesssstaeesssrnaeeaserannns 74
F B S/ 1) 11 1 LA 76
A B B B oY L= OO PURRPPNN 79
F A B B @0 13777 7T SO 82
B 1.0 QUELY TOOL .uuceueeiiiiiiiiiiiiiiiiiiiiiiieiittttett ettt ettt 82
B 1.7 BACKUD ceceeeeeiieeeiiiiiiiet ettt e e ettt 84
8.2 INOGE.JS SEIVEL ...eeueeeeeeeeeeeetetteee e e e e e e ettt e e e s e e e e eeeeetaananane e e e e e eeeeeene 89
82.1 Application Dependencies..........ccccuuuuvouuuuuuuuuueeueeiiiiieieeeeaeeeaaeeaeeeeeeaeeeeseeeeeees 91
8.2.2 Environment VAIIADIESciieueiieuieieiieeeiieeeeiieseteeeeiieeetiaeesae e et e seaeeaannaaees 92
82.3 Connecting the Database to the NOAE.JS SErver...........ccccoviiiiieeiieiriuieiaanannns 92
E.2.4 CUSLOIM FITOIS c....ccoveeeeeeeeeieeeee et ee et eeee e e te e e et e e eae e s et e eaaeeeanneaees 92
8.2.5 Authentication MIAAIOWATESccueeeeeuveeeeeeiieeeeeeeiieeeeeeeieeeeeeeiteeeeerereeeessernnns 93
826 API DOCUIMNENTATION.ccc.ceuveeeeeeeerieeeesiiieeeeriiieseeresniesessesnieeessssnaaeessssnaaeessssnnnns 97
F A D ¢ 101 1 7= B O NN 98
8.2.7.1 N e Yo e 1= SO PN 99
82.7.2 WIETEE JROULOS couueveveievaeiiiieieie et eeee e eae et e e eae s e e e e ats e eaae s aeaseaaansaaannaees 99
B.2.8 CONUIOLIOIS. c....cceeveeeeeeeeeeeeeeee e e e ete et e e e ate e et e eea e e sataeesaaeesaaeeenaeessnnaeees 99
8.2.9 Create ROOE FIlE............cuueuuiieeiieeeieeeeieeeeeeeeeee ettt e eie e et e e aie e e s e e ate e s e e eaaanas 119
8.3 SOCKCE.IO SCOIVOI ..ccvvveeeeeeeiieeeeeeeeieeeeeteeeeeeeteeeeeeettieeeesatteeeesastesessastasessasranaas 122
8.3.1 Application Dependencies..........cccouuuuuuuuuueueeeeiieeieieiieeiaaaaeieeeeeeeeeaeeeeneeeees 122
8.3.2 Environment VAIIADIOSciieueeiiiieieiieiiieeeeiieeetieeseieeeaiieeesneeearaeeenneeaennnns 123
E.3.3 MIAAICWAIES «...ceevceveeaieiiieeeiiee e eeee e ete e tee e ete e e tte s et e saaasaeaaeaeaassenaneaaannns 123
E.3.:4 INITIATE SOIVOI.....ccceueeeereeeeeiee e eeee e ete e eeeeeeteeeaateeeaeeesseessneeesseesennesennnns 124
B 0 B I (e 1 1 7 O RSE 124
B.3.60 AAMIN PANEL......ccccovuveeeeeeeeiieeeeeeeeeeeeeeieeeeeeeeeeeeerteeeeesateeeeeraaeeeeesaataeaeesaaaans 126
84 PIAYWEIGAE TESES.ceeeeeneeeaeeeeeeeiietieeeee e e ettt e e e e e e et et e e e e eeeees 128
APPLICATION FRONT-END.....cccuituiiuiieireirecreceecreceeceeceecencsecsnssscssssscsssssssscssssnssncansne 129
9.1 Create React INALIVE ADDcouuueuuuuieieeeeeseeeeeiiiiiiiisisasesssseeeserernsenassssessaeaees 129
L B B | 2) B U PP TR RRUURRRPPINY 129
9.1.2 ASSOUS ceceeeereeeeeeeieeeeeeeee e e e etee e e ettt e e et re e e et e e e et e e et a e e rat———aarat———aaraaa_ 130
9.1.3 TTANSIATIOIS «...cevveeeeeeeeeeeeeiee e eeee et ee e tte e e eeeeteeeaae e st e e st s esteeerneessnnaaennnns 131
.14 SEOTCuuuncaeeereeee et e e eee e e et tee e e e et tee e e e aat e e e e saateaeesattaaeesastaeeesartaaeesrannns 132
L B R @ o)1 1171 1 17 SO U 136
B I oo L= TSR RPPRRNt 136
O.1.7 UG ereeeeeeeeee ettt e ettt e e e e ee e e e et e e et e e e e r e e e rata e e raaaans 136
Do 1.8 ADD ettt ettt et e e e e e e e e e e e e e e e e nbeaaaaaee 138
9.1.9 SCIOOIIS c.cevveeeeeeeieee e eeeeee e eette e e e ettt e e e e et te e e e saat e e e e saataeseesasteseesastaeeesasteaeesesnnns 142
92 | 17 S 143
92,1 LOGITN SCIOOI «..ceeeeeeiiiiiiiiiiieiieieeeetee ettt e e e e e e e e e e e e e e eeeeeeeee 143
9.2.2 HOIE SCIOCII......ueeeeeeeraeeeeeiiieeeeeeteeeeeeeteee e e ettt eeeeeeaateseesatneeeeeraaaeeesasnnaeessannns 144
9.2.3 INSIAC SCIOCI.......ccceevereeieeiiiieeeeeiieeeeeeeieee e ettt eeeeeettteeeesataaeeessaaeeeesasnnsaessennns 146
9.2.3.1 Image Viewer COMPONENL..............cocevveevevovineiiiiiiiiiiieiieeeeeeeeeeeeeeneeeneeneeaas 146
9232 LISt Of BOIOITES. c...caeeveeeeeieeeeeeeeeee e e e eee e e tte e e e ee e e te e e s te e s et e s aae e s e e asannns 147
9.2.4 QULSIAC SCIOOI....ccccevvveeeeeeeerieeeeeeiieeeeeetieeeeeeeaeeeeesrateeeeesattaeeeesattaeessasraaeesernnns 148
9.2.8 ACLIVITIES SCIOECINcevvveeeeeeerieeeeeeiieeeeeeeteeeeeesateeseessaseseesssseaeesrsnaeessessnaaeesesnnns 149
9.2.0 LOCALIONS SCIOOINcccuveeeeeeeieeeeeeeiiieeeeeetiee e e ettt eeeeeertieeeesatteeeeeraaaeessasnneaaesssnnns 150
9.2.7 MAD SCLOCII....ccuueeeeeeiieeeeeeiiiieeeeeeteeeeeetteee e e ettt eeeeertaeeeesatneseesstnnaeasessnnsaesssnnns 153
9271 IMATKEIS ... coeeeeeeeeeeee ettt e e ee e ae e e e e e aeeeeteesateesaaeesaneernanns 154
9272 SOATCIH [IIEOIS. c..cceeeeeeeeeeeee e e et e e eee et e e et ee e e et e e aae e e e e eenanas 156
92.7.3 MATKEE DEEAILS......cceeveeeeeaeeeee e e e et e e ee e et e e e tie e s e e e aae e s e e asaanns 158
9.2.8 BOOKING I€QUESE SCIEEI......uuuueeeeeieeeeieiiiiiiieeeeeeeeeeeeeetietieeee e eeeeeeereneeeeees 160
9.2.9 ADOUL US.uuuieieeeeiieeeiieeeee ettt e e e ee e e e tee e e et e e e s aaae e e e saabeeeeeaaaans 163

10

1

12
13

9.3 GIUEST et ettt ete et e et ettt et et st s rasstaeesaesaaeeaneranesanenas 164

9.3 1 GUESE PIOLIlE.......cceueaaeeeeeeeeiee e eeee et eeeeeeetteeeette e aeeeataeesateeeaseesaaaeesannns 164
9.3.2 My HOICu.cccccoeeeiiiiiiiiiiiiiiiiiiiiiiiiiettttt ettt ee ettt e e et 167
9.3.3 CRALDOL c...uueeeeeeeiieeeeeeeee et eee e e eeee e e e et te e e e e vt e e e e seate e e e sattaseesaataeeesasraaeeesesnnns 172
9.3.4 LIVE CRAE GUESE..ccccuuveeeeeeeiieeeeeeteeeeeeetieeeeeevteeeeesrateseesatteseesasnaeeesasraeeeseannns 174
9.4 . We /77717 OO RUSPNN 177
9.4.1 Admin DAasHDOAIU.............ceeeeeeeieieeeeeeeiiiiieieeeeeeeeeeererarereaeeeeeeeeeeesesrarnns 177
9.4.1.1 User Management...............ccceeeviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 177
9.4.1.2 BOOKING ROGUESES «.uvvvveeveiiiiiiiiiiiiiiiiiiiiiiiiiiiiitinetette e ee e 183
94.1.3 AVATIADIIIEY ettt ettt e e e e e e e e e e e e e e e 185
9.4.1.4 LIOCATIONS. «..ceevuieeeeeeeeeee et eeee et e et e et e et ee e et s e ete e et e e eteeeanearanaernnaaennnns 186
G.4.2 CRAITS coeeeveeeeeeeeeeee e et eee e ee e et e e e ae e e eeeeaeeeaaeesateeessaeessteessneesaaneesnnnns 188
9.4.3 LIVE CRAT...ccuuaaeniiaeeaaeeee e eeeeeeee et e e ee e e te e e aate e s aeeesaeeeateeareesanaaaaanns 189
HEROKUeiiiiiieiiteienctecenetecencrecencescencescescsscasessssssssssssssssssssssssssssssssssssssennsansnnsnne 190
10.1 Heroktl INErodUCEIONcceuueeeeuieieieeeieeeeieeeeeee e etieeeeeeeete e e et e e sae e e aneeeaneeeenns 190
10.2 Create APPLCATION.ccceeieiiiiiiiiiiiiiiieieeeeeeeeeeete ettt e e e e e e e e e e e e e e e 190
JO.3 DYII0S cuueeeeeeiiieeieeiiiee e eteee ettt e e ettt e e et taee e s ettt e s e e tta e s e e taa s e e eaaa e e aaan e eaaes 191
104 Slugs & BUIlAdDACKS.cuuuuueieiaeiiiieeiiiiiiiiiieeeeeeeeeeeeeetettiiessee e e e e e e eeeeaeseaaea s 191
10.5 HEEOKU CLL.....ooeaaeeeeeeeeeeee ettt e aee et e e e e aate e s et eeesaeeeaneesaneeenns 193
J0.6 AQA-OIIS.ccuuuceeeeeeiieeeeeeeeee et eeeetee e e etee e e e aaee e e e eaa e e e e saataeeeerastaeeesasteeesenanns 193
10.6.1 HEIOKU POSUGIES «veeeeeeieeeeieeitieeee e e ettt e e e e ettt eee e e e e eeeeee 7193
10.6.2 PAPEITTAIL...cccoovuieiiieiiiiiiiiiiiieeee ettt e ettt e eeee 196
10.6.3 HErOKtU SCROAUIET.cceveeeeeeeeeeiiiieeeeeiieee e eeteeeeeeeveeeeseatee e e e esaneeeesann s 196
0.7 CL/OD oottt ettt ettt st e st e s st e s ebte e ssabee e s sbaeeseasees 198
10.8 FROICASE PrOCESS ... ceeveeeeeeeeeeeeeeeee e eee e ee et eeeee et te e e ee e e ae e s ateeesaeeeaneeeanaesaas 204
DEPLOYMENT FOR MOBILE APPLICATIONcuceuitititncencencencencencencencencencescsncencencene 206
11.1 Metadata CONFIGUIALION............ceuuuuuuueeeeeeeseeeeeeeeeieeieeaeeseeeeeeeerrrannaeaasaaaeens 206
11,2 BUIld APDICALION. ..cecccceveeeeeeeeieieeeeeeeeeeeeeeeeiaieesaaeesseseeeseesaeansnsaesssseeeeesennnnns 206
11.3 Deployment fOr 108uuiiieeeiiiiiieiiiiiiiiiieeeee e e eeeeeteteesssee e e s e e eeeeesearaa s 210
11.4 Deployment for ADAIOIdcccueeeiiimeiuieeiiiiiiiiiiieieieeiiteeeeeeeeeeee e e 214
11.4.1 INEEINAT TEOSEIIG eeeeeeeeeeiiiiiiiiiiiiiiiiiiiiiiiiiictee ettt e e 215
11.4.2 ClOSEA TOSEING.c.ueeeeeeeeeeeiiiee ettt e et e e e e e s s enreeeeeeeaas 216
11.4.3 U i ole 11 (o1 (o) RNt 217
CONCLUSION & FURTHER DEVELOPMENTcuiiuiiuieeieeieeceecenceeceecencencencsscencsncsncanes 219

REFERENGESo ettt ettt ettt e te e ceetee e sasesaseeasessssssssssssasssasennns 220

List of Figures

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

© 00 N O O = W N =

SR R R W W W W W W W W W WRNNDNNDNDNDNDDNDNN R R B2 2R
W N P O © 0 O T WN P O O WO Uik WNEFEFOO©OWNNO Ut i Whh 4+~ O
1

= APT TranSacCtion .uu..ieueeieeueeeruereieeeiieeerieeeieeeenseeeriesernssenssasnsessssrnnsennneees 2
WED SEIVICES tivuniiriiiitieriie it et st e ete s et s et e et s et seaneeesnesasnsennnsannnnes 3
(01] I\ (oo 1) USRS 3
HTTP ReQUES «.cenieiiieiiiee et 4
Request LNe coouneeniiiiei e 4
HTTP RESPONSE wuevniiuiiiniiiiiiieiiiiete ettt ettt e e et s e e e eanaes 6
HTTP HEAEIS ceuniiniiiiiieeiie ettt et te et e et e e e e et e et e e s e aanaas 9

JSON @XAMPIE.ceuniiiiiiiiiie ettt e e e 10
XML XAMPIE tuuetiriiieeiieetee ettt et et e e e e et s et e et e eaa e eea e erae s 11

REST APttt ettt e et s e s e e s e easeaaseaanseaes 11
Basic Authentication Scheme.........coveviiiiiiiiiiiiiriiiniiiinreiierere e eeneenienes 15
610) 27 S USRS UPURTPPUPRRPRt 15
Install NV oot a e ea e e e e e e ees 17
NVM INSEAIIET ettt et et e e e et e ee e e e et e eaneaanas 17
ALY R 77c) 53 (o) o E PRI 17
MAAAIEWATE. 1eeueetireii sttt et et e et s et s et e et s et s eannseruesaannsaennsannnnns 19
ROUBINE ettt ettt eee et e e 19
B T ORI 24
Decoded JW T ...ttt et e et s ae e e s ea e eaeaanas 25
JWT USE tuiiniiiiiie ittt ettt e et et e e e e s et e et s e eansannesanaaanns 25
ExXpress-statius-1onitor ..o e 27
Berypt eXample .. e 28
SWAZLEET UL ittt et 31
S T016] (<] 78 (o TP PTRPTRPPPRPPRE 33
Socket.io Handshakeccoueviiiiiiiiiiiiiniiiiiiin s eni s 34
Upgrade MechaniSmc..veueeineieiiiiiriiieir ettt ee e e eeeeneees 35
Disconnection Detectioncciuviuieueiieiiiriiiiieiiieeiireie e eeeeieeieereeanes 36
SOCKEE. 10 ROOINIS. .uuivuiieriiiiie ettt ere e er e e e s erie e eae s eaesenaaas 38
L€ 1G] U P ST PPUP PP PPPPRRPRt 39
APIS & SOIVICES..uiiiuiiiiiiitieeiii e et et et e et ete e et e eaeserte e st e eanaenaanas 40
API CredentialS ..eeiuue e eiieeiieeeeee et e e et e e e et e et e eria e st s eanaeaaas 40
N o B NG R 41
FAN Sl ST 5103 7=y U SPR 41
Enable AP .ottt e e e e e e ees 11
|) FE (o= i o APPSR 42
SEIVICE ACCOUNTS . eivuniertririeritererieretierererereeeeriesenesernsserresernnsennnsenneses 42
Service AcCOUNtS LiSt cuuvivueriiueiiriiiiiiiriiieieiieeerie s e e erieeerieeaiaenins 43
Create Service Account 18t SEEP......ceveiiuieriiiiiiriiiiiie et eeeie e 43
Create Service Account 2nd SEEP ceveeereriuieririeiorieiiiereeieeeeeiiieeeeeaieees 43
Generate Private Key cooceeeeiiiiiiiiiiiiiic e 44
Create NEeW Key..ooweeumiiiiiiieieiiie ettt eeee e 44
Ky TP ettt ettt et 44
EXPOTt KEY ettt 45

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

44 - DIalogflow ES ..ioieiiiiiiiiiiiiee et e s ae e aa e 45
S 11 <) 01 7= PSP PPPRPTRRPRTRR 46
46 - INteEIationS . cceu i ettt eea e 47
AT = TTAININE cetiniiiiiiee ettt ettt et e ee e e eeneees 47
A8 = SNACK ettt ettt e e e e e 49
49 - Create EXPO ADPD oeeiiiiiiiiiiiie ettt eeaaaa s 49
50 - EXPO APDP DetailS .cuiiuuiiuiiiiieiiieie e 50
D1 = ROOt File o 50
52 - Install EXPO ADD ittt eae e s eae s ea e eae e aanns 51
ST I 1 72N - ¥ o) o JU OO U PP PP 51
B4 - Available APDS ciiiiiiiiiiiie et 52
DY = BUILA A DD ittt et et eeaan s 52
56 - Context APT ...ttt eeaa s 57
BT = Stack NAVIZATOT tevuiiriiiiietiie ettt et e et e et s e eea e eeaaeeeenns 59
58 - Drawer Navigator INactiVe.......cceeeeieiiiiiiiiiiiiiiiiiri e 60
59 - Drawer Navigator ACHIVE......icieviiiieiiiiriiiieiiiie et eeeeeenaeeenns 60
B0 = SEYLES ettt ettt ettt e et et e e et e e eaa e e eeaaa e 62
61 - API INteEration «ee.ueeeeieueeeiiee ettt ettt e et e eeeaae e 65
62 - Data Model ... oot 67
63 - TeCh STaACK..ciu ettt 71
64 - Install Post@reSQLi. oo i 72
65 - POStEres VerSIOn .iuueiiueieeeeiiiiiieeieeieeieriie et eteetete et eteeeeenneenseennees 72
66 - STArt DBo.eeiiiiiiiiie et et et e eeeaae e 72
67 = PAAMING .ciiiiiiiii ettt ettt e e e e 73
68 - Available SErversco.iii it 73
69 - Create Database 1St SEED wereeurreiuiiiiiiiiii it 74
70 - Create Database 2nd SEEP ceueieeueriiiiiiiiiiiieiie e 74
71 - Create Database Definition....c.ccieveiiiiriiiiniiiiniiiiniiiieieiie e eeeen 75
72 - Create Database SeCUTILY «ieuuereeruirriiiiiieetiiie ettt e eeeeaeee 75
73 - Create Database SQLcoiiuiiiiiiiiiiriiiiniiie e s e eee s eae e eeans 76
74 - Database SChema......ccuuuiiiiiiiiiiiiiiei et 76
75 = PUblic SChema ..oveuneiiiiiii e 77
76 - Create new Schema 18t SEED «eeuereruiiiiiiiiiiiiii e, 78
77 - Create new Schema 2nd SEEP ceuereruiiieiiiiiiiiie e 78
78 - DataBase Tables....oiiuiiiiiiiiiiieiiieii et ee e e e e 80
79 - Create Table 1St SUEP .icueiiieiiieiiieiieiieeieei et ete e e e e ee e e e e eaanes 81
80 - Create Table 2nd SEEP..iieteueriiiieeeeiiie ettt et e e 81
81 = USers Table.ccuu ittt 82
82 = Add COIUMMS. . iiiiiiiiiiiie ettt ettt e e et e e 82
83 = QUETY TOO0L ettt 83
84 - Query Tool EXampleccouiiiiiiiiiiiiiiii e 83
85 - Query Tool Alternative Methodovevuveieiiiiiiriiiiiiiiieieneiie e 84
86 - QUETY TOO0l SEIECT..cuuiiiuniiiiriiiir ittt et et e et s erieseaaeseeasanaeas 84
87 - Pgadmingd Backup....oeeeuieiiiiiiieiiiieiiiee et 85
88 - Select Database 10 BacKup....ccouuieiiiiiiiiiiiiiiiiiiii e, 86

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

89

90

91

92

93

94

95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

- Backup General Settings.....ccicveveiieriiiniiiieiiieriineeiineeie e eeineeenns 86
- Backup Data Configurationccccieiiiiiiieriiiiinneiiiiee e eeeenae. 87
- Backup OpHions ceeuueiiiiuii ettt 87
= Backup File cunoeiiiiir e e e 88
= Server RepPOSITOTY ... ieu ittt 89
- Initialize the SeTVeTco.ciiiii i e 90
- Install Basic Dependencies......cceveuuevieiiiiiiiiieiiiie it eeveeeennn 90
= MOIY SCIIPES evernnierireiieriirrete et et e et e et e eee e et eetaeseenseannesasnsaenns 91
- Basic Authentication Dialogcccveiiiiiiiriiiiiieiiiiniiiineeiieeeiereeneeeineeennns 95
- Basic Authentication Middlewarecccoeeeeiiniiiiiiiiniiiiiiieeiieeeeeennn. 97
= SWAGEET.FAML ..ieiiiiieiiiiie ettt e e et e eeaae e 98
- ApPlLcation ROULES....oiiiiueiiiiiie ettt 99
- Login Controller........oiiiuuiiiiiiiiiiiiiieeiic e 101
- Get Users Controller ... iiiiiiieiie e e e e 102
SR € <1 v 05753 e} oY o) 1 <) N 103
- Create User Controllercueiiiiiiiiiiiieiiieieiie ettt 104
- Update User Controllercciieeiiiuiiiiieriieiiie et eeee e e eeens 106
- Generated PDF ..o e 108
- Gmail APp Passwordeeeevueiiiiiiiiieeeiie e e 109
- Booking Request Email.......coueiiiiiiiiiiiiiiiiii e, 111
- Create Booking Controllercc.eeveeiuiieeiiiiriiiiieeeeie et eeeaneee. 111
- Get Bookings Controllerciceuiieiuiiiiiiiiiiiiiieeie et 112
- Delete Booking Controller........ccuuevieeiniiiiiieriiiiiieiiiieieiiiieeeeenees 112
- Add Availability Controller.........c.eeieiiuereeiiierieiiiereeeieeeeeiieeeeeeanne 113
- Get Availability Controllereeueeerieiiiereeiieeeeiieeeeeiee e eeeaaaens 114
- Get Markers Controller.......cueiiieieieieieriiriiiinreiereiererererieeenaneeens 114
- Get Marker By Id Controllercoceeuuireiiiiiriiiiiieieiiieeeiiieeeeennnne. 115
- Create Marker Controller........ccoiieiuiiiiiiiiiiiiiiiiiiiiie e, 116
- Delete Marker Controlleroceuuieieiiiiiiiiiiiiniiiiee et 116
- DialogFlow Controllerccuuuiiiiiiiiiiiiiiiiiiiiiineiiiee e 118
- Problem Email.....ccoooniiiiiiiiii e 118
- Problem Controller.......ciiueviiieiiiiiiieieie et ere e 119
- Email Notification ceu..eeeeeeeeieiiiee et 123
- Socket.io Admin Panel.......ccouiiiiiiiiriiiiiiiiiiieee e 126
= SoCKet DEtails cuuuieiineiiiiiie e 127
- Room Details ..ceuueieniiiiiiieii e 127
I D17 11 - PP 127
- Event DetailS ..oceiei i e 128
- VT £ T PPN 131
I B DU U PPN 131
- Global State Management..........ccuueeieeiiiireiiiireiiiiieeeeie et eeeeaane 135
= AUTR SEACK. ettt e 139
- Authenticated StACK........ieviiiiiiiiiiieieiie et 140
- Navigation SYSEEI c..uviieeeiriiiiiiiieiiieeiie et 141
- Remember Me Functionality......ccoeeeveriiiiiiiiiiiiiiiiiiiiiiieiieeeeeenn. 141

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

SELEINGS SCIEEIL.ceuuniiriierieriiettre ittt reieeteeeereeetassaeeseariesarnssannseannees 142
LOZIN SCIEEM cevniieiiiiie ettt e eeeaa e 144
5 103 TR 1) (<1 ¢ B PP 145
LTSy Te LR o) < <) s PP 146
Image Modal....c.o.iiiiiiiiiii e a e 147
Benefits coveii e 148
OULSIAE SCIEEIN cvevuniiiiiiiieriiet e eeteeeieeeeeeete e et eaeaseariesarnseannseannees 149
ACHIVITIES SCIEEIL uvvvuiiriririeeiieeiiereeteeetiereriesernserieserensernnsernesennnsenes 150
LOCAtIONS SCIEEIL ..vvvuiiieriiieeiiieeiireeieeetier et s ereseriesetnnsernnseriesasnnsenes 151
Access Device's LOoCation ..viiieriierriiunieiieriiiereinieriereiieeernneeniesenneenes 153

Map Search Filtersc.ceieuiiiiiiiiiiiiiiiii et 156
Marker Search ExXample.....ccooiiiiiiiiiiiiiiiiii e eaas 157
Search EXamPIecvuiiiiiiiiie e 157
Dropdown Search Filter.......cooiieiiiiiiiiiiiiieiiiee e eaaaas 158
Marker NaAIE ..uvuniiiiieiiieei ettt e e ee e ea e e e e enanas 159
Marker Details coouuiieiie i a s 160
Booking Request SCreen........ccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicee e 161
Booking Request Select Dateseueeviiiiiiiiiiiiiiiiiiiiiieeiiiiiiiinee. 161
Personal Information Card.......cccccoveieiiiiiiiiiiiiiiiiiie e 162

Country PiCKer....cocouuiiiiiieiiii e 166
Fidit USET ettt 167

13 A6 B 0 8 17 51 R 171
R 0Te) AL 7Y I N 171

Chatbot Welcome MeSSage «.ccuuuvireeneriiiiiiiiiiiiieiiiiie et 173
Chatbhot MESSAZES tevvuuntiriuireiiiireriiiee e et ettt e erene e et e eeennanes 173
Connect With HOSt...uiiiueiiiiiiiiiiiie e 174
JOIN ROOIMN «vuieiiiiiiii ettt eee et e e e e e enes 175
Live Chat MeSSAZES ..eieeeuuereiiiiieeeiiiee ettt eettee e et e e et e eeeaaa e 175
Live Chat TyPing cee.eeeeeueee ettt ettt e e e 176
Leave ROOIM ciuuiniiiiiiiiiii ettt ere e e e eaaes 176
USEIS Table cuuiiniiiiiieiiie ettt e e e e e e eaes 177
Users Table Filters...ciciviiiiiiiiieiiieiiie et e eee e e e eaes 178
Filter ReSUltS cuuiuniiiii e 178

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

Fidit USETuuniiiieiie ettt st et et st e et s e e e eeas 179
|8 036 TR v U1 179
Add USEr 1St SEEPD .iuiiuiiiiiiiiiiie et e et e e e e et e e e e e eaanas 180
Add USer 2Nd SEP..uiiuiiiniiiiiieiiie e eeie et e ieeaeeete e e e eeeaeeae e et eanaeannas 181
Add USer 3rd SEEP ceeveeeeriruieiiiriiiireiieeetiererierernretiesetasernnseriesennnsenns 181

Add USer 4th SEEP cuiiueeiiiiiiie e e e et e e e e e eaaas 182
Add USer 5th SEED vuevievriiiiiiiiieiiir et r et st erie e et e ennneeniesananeenns 182
Add User SUDIMISSION vuuvvuiiiniiiiiieiiieeii e et eeie e e e e i e eae e e e e eaanas 183

Booking Requests..c..cieeieiiiiiiiiiiiiiie e 184
Booking Request DetailS.....ccuieiuiiiiiiiiiiiiiiiiiicieieie e, 184
g 7o N1 Y oYUy PP 185

Edit Availabiliby «oeeueereeiiereiiiee ettt e e e 185
LiOCATIONS c ettt ettt e eas 186
P Vo o B 2 4 G =1 <) o SN 187
Add Marker 2nd StEP ceeenieiiiiieiiieei e aas 187
Add Marker 3rd SEED..cceuueeeeiuie ettt eeae 188
CRATTS SCIEOTL.ceuuu ettt ettt et e ettt e e et e e et e eeenaa e 188
Pie CRArtS. oo eeeeee ettt 189
Live Chat Admin.....cooooeeeiiiiiie et eeea e 189
Heroku Create ApplCation......ciieeeeerieiiiiereriiiereeiiieeeetieeeereieeeeennnnns 190
DYNO Ty POS eetniiiiiiiie ettt et e et e et et et e e s e e e eaanes 191
BuildpacKs ..uin i e 192
Add OIS ettt e e e e 193
Heroku Postgres Add Oml.....c..eeiveeiiiiiiiiiiniiieiiie e eeve e ev e 194
Heroku Postgres OVerviewcceveeuiieiuiiiiiieiiieiceeie et 194
Heroku Postgres Settingsc..oeveeeemeriiiiiiiieiiiiiiiiienceiiie e 195
Heroku Postgres Dataclips «...coceeeeeviiiiiiiieiiiiiiiiiiiiiiiiiinecieicceeeen 195
Connect t0 Heroku PoStEresc.ceviveiieriiiieiiiiniiiineiiieeeie i eenns 196
Papertrail oo 196
WHhich NOAE .euneiiiiiii ettt 197
Heroku Schedulercouuiiiiiiiiiiiiie et 198
Heroku Create Pipelinecc.oeiiuiiiiiiiiiiiiiiiiiiiiiiiiiie e, 199
Create StAZING ADD «ueeeetrueeeeiiie ettt eetie e etieeeettiaeeeetaeeeetaaeeeeeaannas 199
Configure Automatic Deploysc.cceeuriuuiiiiiieiiiiiiiieeeeeiiiieee e 200
Enable Automatic Deploys.....ciiieiiiiiiiieriiinriiinieiereieretiereriesenieenns 200
Configure Pipeline TestSceiiviriiiieiiiiriiiirieiie et eeieeeie e eenas 201
Enable Review ADPDPS..iccuueiiiiiieieiiieeeiiiie ettt eette et eeeaaa e 201
Review Apps Configuration........cceeeeieeiuiereiiiiirieiiieeeetiie e eeeeaenn. 202
Raise PR 203
Pipeline OVErvIEW .c.uieuuiiieiiiieii ettt et e eeas 203
Application Promotione..ceeeeeeeriiiiiie e e e 204
Release ProcCesscouviieiiiiiiiiiiiiiii e 205
BN o) 30 101 1 PSPPI 206
InStall €aS-Cli..ieeeuieeieeiee ettt e 207
FaS JOZIN cuniiiiii e a e 207

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

Fas DUl ..ceuieiiii e e 207
B, SOM ettt e a e 207
Eas.json Configurationcceeeeeuieiiiiiieieiiiee et 208
Profile Build......oeeiiuuiiieiieiie et 209
Build for 105 i e 209
72y v = 1051 (c B 209
Install the APD ciriieiieei e e aa s 210
Build Details...couuieeiiiiiiieiiee e 210
Submit 10S Build ccceuuiiiiiiiiiiiii e 211
EXPO SUDMISSION cetttiiiiiiieieiiiie et 211
Build Upload to App Store COonnectcceeeeeeeeueeeeeineeeeineeeeennnnn. 211
Build Details..ceuu e 212
Submissions Detailsccuueiiueiiiiiiiiieiie e 212
New Version Configurationeveeeevereereruererureriereiierernneerierennnenns 213
Add Build ..o et 213
Add Build Modal.....cceeeemiriiiiiieeiiie et 214
Google Play ConSOleccuuueiiiiniiiiiieeeeiiie ettt ettt eeeaaeee 214
BN o) o3 B 1CY =51 B PP 215
Internal Testing ...ccueeeuie ettt 216
App Informationooeeeeeieiiiiiiie e 216
CloSEd TESTITIE vvevuniieneitieriie et ettt et e et e eee e et s et e anaseanaeees 217
Apply for Access t0 Production.....cc...ceevevuereinnieriereiinrennnerierennnnenns 217
PIay StOre . ettt 218

1 Introduction

Villa Agapi is a tourist accommodation located in Greece, specifically on
the island of Crete, with over 20 years of experience in the tourism industry.
Every year, it welcomes hundreds of guests, offering high-quality services.
To keep up with technological advancements, the host recognized the need
for an app that not only promotes the property but also enhances the guest
experience. Given that the host already collaborates with companies
managing bookings, the primary purpose of the app is to serve guests after
they have made their reservations, with most guests learning about its
availability upon arrival. Since travelers often do not have access to their
personal computers while on vacation but rarely part with their mobile
devices, priority was given to creating a mobile-friendly solution.
Additionally, since guests come from various countries, providing multi-
language support is essential to ensure a smooth and personalized experience
for everyone.

Considering the dominance of iOS and Android in the mobile market, the
app should support both platforms, including older devices and various
screen sizes. To achieve this, a hybrid mobile application was built using
React Native, allowing it to run smoothly on both iOS and Android from
a single codebase.

To further enrich the app’s features, such as dynamic maps and virtual
assistant services, the Google Cloud Platform was integrated, offering support
for these functionalities. As the app is dynamic, a server was created using
Node.js with the Express library, allowing guests to access Villa Agapi's
resources through REST APIs. The relational database PostgreSQL was
chosen to store essential guest and service data. To facilitate real-time
communication, Socket.io was used alongside Node.js and Express, providing
live updates and event-driven interactions. The backend infrastructure, as
outlined, is hosted on the Heroku platform.

This multi-language, user-friendly app ensures that Villa Agapi can offer its
international guests a seamless, technologically advanced experience,
enhancing their stay and overall satisfaction.

[1]

2 RESTful Web Services

2.1 Introduction to Web Services

Every day a user gains access to a huge amount of information, whether
by opening an app on their phone or visiting a website through a web
browser. Without actively taking any steps, the user obtains information
provided by various services, raising questions about the source of the
information and the way it is transmitted from one end to the other.

This communication is facilitated through Application Programming
Interfaces (APIs), allowing businesses to share their resources with the public
and providing users, who can be anywhere in the world, access to them.
The services that support this bidirectional communication via the internet
are known as web services. As the internet is used as the medium for this
information transmission, the HTTP protocol plays a crucial role in achieving
this communication, serving as the foundation for the REST
(Representational State Transfer) architecture, a type of web service used
in developing web applications for exchanging information between client
and server.

2.2 APIs

APIs (Application Programming Interfaces) are a set of rules and protocols
that facilitate communication between two software components. They
provide a software-to-software interface defining the contract for applications
to communicate with each other without requiring user interaction. Each
transaction involving APIs consists of three main parts:

e Sending a request
e Processing the request
e Returning a response

APIs enable seamless interaction between different software systems, allowing
them to exchange data and functionalities efficiently.

Request

Web app in

Response Internet Web server Database
browser

Figure 1 - API Transaction

2.3 Web Services

A Web Service is a software system or component designed to support
machine-to-machine interaction over a network. In simple terms, it is an
API that utilizes the internet for data transmission, encapsulating the
following assertion:

[2]

e FEvery web service implements an API.
e However, not every API necessarily constitutes a web service.

1. request

m— - Machine 2

2. response

Figure 2 - Web Services

24HTTP

HTTP (Hypertext Transfer Protocol) forms the cornerstone of the World
Wide Web, facilitating the retrieval and display of web pages through
hyperlinks [4]. Operating at the application layer of the OSI (Open Systems
Interconnection) model, it enables the seamless exchange of information
between interconnected devices across the internet. This protocol establishes
the rules and conventions governing communication between web browsers
and servers, ensuring data transfer and user interaction with online resources.

__Human-computer interaction layer, where
applications can access the network services

>
]
°
=
=|
o
<
m
o

__Ensures that data is in a usable format and is

PRESENTATION LAYER where data encryption occurs

m"

__Maintains connections and is responsible for
controlling ports and sessions

SESSION LAYER ‘

__Transmits data using transmission protocols

TRANSPORT LAYER ‘ .8~ including TCP and UDP

NETWORK LAYER ‘ £l — Decides which physical path the data will take

DATA LINK LAYER — Defines the format of data on the network

PHYSICAL LAYER — Transmits raw bit stream over the physical medium

Figure 3 - OSI Model

2.0 HTTP Request

An HTTP request defines how a client, such as a web browser, requests
access to information from a server. A properly formatted HTTP request
consists of:

e The request line

e HTTP headers

e The body

[3]

POST fdata/epiflogin HTTP/1.1

ost: c328-2a@2-587-807d-c380-9188-6378-abdd-16ae. ngrok. 1o
User-Agent: Expo/1817565 CFNetwork,/1418.8.3 Darwin/22.6.0
Content-Length: 39
Accept: */*
Accept-Encoding: gzip, deflate, br
Accept-Language: el-GR,el;q=8.9

Content-Type: application/json
{"username": "admin®, "password”: "admin"}

Figure 4 - HTTP Request

2.6 HTTP Request Line
The Request line typically consists of three parts:

HTTP method: A command that informs the server of the action
expected to be performed.

URL path: The path identifying the server's resource (e.g.,
/data/api/login).

HTTP version number: The version of the HTTP protocol
specification that the request follows.

In addition, a request line may or may not include:

Query string: Additional text information managed by the server,
following the path and separated by the '?' symbol.

Scheme and host components of the URL: Known as an absolute URI,
usually used when the request needs to pass through a proxy server.

POST fdata/sapislogin HTTR/1.1

Figure 5 - Request Line

2.7 HTTP Methods
The HTTP method defines the action expected to be performed by the

server:

GET: Exclusively used for retrieving data from a server using the
request's URI as an identifier. It can include parameters in the URL
(as part of the path or query string) or headers but not a body.
Considered a safe method as it retrieves data without modifying the
server's resource in any way. Upon successful completion, GET
typically returns data in JSON or XML format to the client, as
described by the accept header set by the client. Additionally,
incoming requests may or may not include additional headers such
as If-Modified-Since, If-Range and If-Match, making GET a
conditional method. The server responds only when the conditions
described in the request are satisfied, reducing unwanted network
usage. Upon success, the GET method returns a status code 200
(OK), while errors may result in:

o 400 (Bad request): Indicates an incorrect request.

o 401 (Unauthorized): Indicates the user is not authenticated.

[4]

o 404 (Not found): Indicates the requested resource does not
exist, the path specified in the request does not correspond to
an existing server resource.

e POST: This method allows headers and a body. It is typically used
in two scenarios:

o Creating data within a collection (database).

o Executing business logic described within server controllers.
Input to these functions usually comprises data included in the
request body. Upon success, the server typically responds with
status code 201 (Created), indicating data creation. In cases
where no data was inserted, it may return 204 (No Content).
However, POST method does not necessarily equate to data
creation, it can also simply execute functionality, in which case
the server may respond with 200 (OK).

e PUT: Updates an existing record. If the record described in the
request does not exist, a new one is created. Known as Upsert (from
update/insert), sending the entire body each time. Usually, the
identifier indicating the record to update is included in the URI. The
server's response depends on the action taken:

o 201 (Created): Indicates a new resource was created.

o 200 (OK) or 204 (No content): Indicates successful update of
an existing resource.

e PATCH: Similar to PUT, but updates only parts of a resource by
sending instructions on how to complete it, rather than the entire
body as with PUT.

e DELETE: Used to remove data according to the URI. Upon success,
returns either 200 (OK) or 204 (No content). Using status code 204
is recommended when returning the representation of the deleted
resource is unnecessary, which helps avoid unnecessary network
congestion and improves performance.

e HEAD: Similar to GET, but only returns response lines and headers.
It does not transfer entity data, only metadata, thereby reducing
network bandwidth usage. Often used for checking purposes after
modifications and for verifying link validity and accessibility.

e OPTIONS: Determines the capabilities of an HTTP server, including
supported headers for interacting with a specific resource. Although
OPTIONS does not perform CRUD (Create, Read, Update, Delete)
operations, it provides the client with information on how to interact
with the specific resource. The client can specify a URL address for
the method, allowing it to refer to a particular resource. An asterisk
(*) can be used when the client wishes to obtain information about
the entire server.

2.7.1 Idempotent and Safe Methods

Some HTTP methods can be called multiple times without causing any
issues, always returning the same result and without producing unintended

side effects, while others cannot. This categorization leads to defining
methods as Idempotent and/or Safe:

[5]

e Idempotent: Characterized by the fact that the method, when called
multiple times, always results in the same outcome and does not
produce side effects.

e Safe: Characterized by the fact that it does not modify the state of
a resource.

HTTP Method Idempotent Safe Method

GET YES YES
HEAD YES YES
OPTION YES YES
DELETE YES NO
PUT YES NO
PATCH NO NO
POST NO NO

2.8 HTTP Response

An HTTP response is sent from a server to a client with the purpose of
providing the requested resource, confirming the completion of a requested
action, or notifying about an error encountered while processing the
request consists of:

e The status line

e HTTP Headers

e The body
The status line on the other hand comprises three parts:
1. HTTP Version
2. Status Code
3. Reason Phrase

HTTP/1.1 2@ 0K

X-Powered-By: Express
Access-Control-Allow-Origin: #

Content-Type: application/json; charset=utf-8
Content-Length: 215

ETag: W/"d7-DtiGyX+BXzL+REXNxDbKKYIraPsyY"
Date: Wed, @1 Nov 2823 16:25:21 GMT
Connection: keep-alive

{"token":"eyIhbGci0ilIUzIINIISInRScCI6TkpXVCI9. ey11c2VybmFtZSIEImFkblluTin
id¥N1cklkIjoyNTksImlhdCTAMTYSODg INTkyMSwiZX b joxhjk40DUSNTIxFQ. vOnfMBILFw

alUyPEz]chHAdSngOWEoUdsvet] - cUGWA"™ , "username" : "admin®, "userId"”: 259}

Figure 6 - HI'TP Response

[6]

29HTTP Status Code

HTTP defines 40 different status codes through which the client is informed
about the outcome of its request. These are categorized into the following
groups:

e 1xx Informational

e 2xx Success

e 3xx Redirection

o 4xx Client Error

e 5Hxx Server Error

Below is a table featuring commonly used status codes [1]:

Status Reason Phrase Description
Code

Indicates that the request has been
200 OK processed successfully.

Indicates that the request has been
processed and a new resource has been
201 Created created successfully.

Indicates that the request has been
received by the server and is being

202 Accepted processed asynchronously.
Indicates that the response body has
204 No Content been purposely left blank.
Indicates that a new permanent URI has
Moved been assigned to the client’s requested
301 Permanently resource.

Indicates that the response to the request
303 See Others can be found in a different URI.

Indicates that the resource has not been
modified for the conditional GET request
304 Not Modified of the client.

Indicates that the request should be

accessed through a proxy URI specified
307 Use Proxy in the Location field.

Indicates that the request had some

malformed syntax error due to which it

could not be understood by the server.

Probable reason is missing mandatory
400 Bad Request parameters or syntax error.

Indicates that the request could not be
401 Unauthorized authorized, possibly due to missing or

[7]

403

404

405

408

409

414

415

429

500

501

502

503

Forbidden

Not Found

Method Not
Allowed

Request
Timeout

Conlflict

Request URI
Too Long

Unsupported
Media Type

Too Many
Requests

Internal Server
Error

Not
Implemented

Bad Gateway

Service
Unavailable

incorrect authentication token
information.

Indicates that the request was understood
by the server but it could not be
processed due to some policy violation or
the client does not have access to the
requested resource.

Indicates that the server did not find
anything matching the request URI.

Indicates that the method specified in
the request line is not allowed for the
resource identified by the request URI.

Indicates that the server did not receive
a complete request within the time it
was prepared to wait.

Indicates that the request could not be
processed due to a conflict with the
current state of the resource.

Indicates that the request URI length is
longer than the allowed limit for the
server.

Indicates that the request format is not
supported by the server.

Indicates that the client sent too many
requests within the time limit than it is
allowed to.

Indicates that the request could not be
processed due to an unexpected error in
the server.

Indicates that the server does not
support the functionality required to
fulfill the request.

Indicates that the server, while acting as
a gateway or proxy, received an invalid
response from the back-end server.

Indicates that the server is currently
unable to process the request due to
temporary overloading or maintenance of
the server. Trying the request at a later
time might result in success.

[8]

Indicates that the server, while acting as
Gateway a gateway or proxy, did not receive a
504 Timeout timely response from the back-end server.

2.10 HTTP Headers

HTTP headers are used to transmit additional information between the
client and server via request and response headers, respectively. They are
further categorized into four groups:

e Entity headers: Contain metadata regarding the body of resources,
such as Content-Length.

e General headers: Provide information applicable to both requests and
responses, such as connection details.

e C(lient request headers: Included only in requests sent to the server.
Information related to authorization, encoding and preferred language
of the client are included in this category.

e Server response headers: Included only in responses sent from the
server back to the client. Information such as the age of the response
and ETag for caching purposes are characteristic examples.

HTTP Request/response

HTTP Header
HTTP Body General Header

=htrml=

<heads

e CleanT oriaks<itle Requ est/Res ponse

=link rel="styleshest” href="link™>

Jlnk re1="shyleshest Rref=in Header

by

<h1=Heading</h1= Entlty Header

;:fbody>

=htrl=

Figure 7 - HT'TP Headers

2.11 HTTP Body

The HTTP body consists of data sent either when a client makes a request
or when a server responds. It can be an image or text file, a video, or
simply text. When sending text data, proper formatting is required for it
to be successfully transmitted and processed by the server. The most widely
used text formats include [5]:

e JSON
e XML
2.11.1 JSON

JSON (JavaScript Object Notation) stands out as a lightweight and flexible
data exchange format. It is commonly used in web services over the HTTP
protocol. JSON is human-readable and easy for machines to parse and
generate. Although derived from a subset of the JavaScript programming

[9]

language, JSON is independent from JavaScript itself, relying instead on
conventions widely adopted in programming communities such as C#, C++,
Java, Python and others.
Structurally, JSON revolves around two fundamental elements:

e A collection of name/value pairs, records and structures.

e An ordered list of values, represented as arrays, vectors, lists, or

sequences.

In JSON, an object contains an unordered set of name/value pairs enclosed
in curly braces ‘{}’ with each pair defined by a colon ‘" and separated by
commas ‘,” When using JSON as a text format in an HTTP request, the
header should be appropriately set to Content-Type: application/json.

Figure 8 - JSON example

2.11.2 XML

XML (eXtensible Markup Language) serves as a flexible and extensible
markup format for data exchange. Renowned for its human-readable nature,
XML facilitates both manual and automated processing. In contrast to JSON,
it is not tied to any specific programming language and provides a general
way to structure and organize data. It has gained prominence as a W3C
standard and is widely used across various domains, including network
services, configuration files and data representation.

XML structures data using tags enclosed in angle brackets ‘<>’ to form
elements. These elements can have attributes and contain nested elements,
enabling hierarchical representation and parent-child relationships. While
JSON emphasizes simplicity and ease of use, XML's strength lies in its
flexibility and ability to represent complex hierarchical structures in a
standardized and structured manner.

[10]

Whether used for configuration files or data exchange between heterogeneous
systems, XML remains a robust and adaptable choice in the realm of markup
languages.

Figure 9 - XML example

2.12 REST API

The term REST (Representational State Transfer) and its associated
principles were introduced by Roy Fielding in his doctoral dissertation titled
“Architectural Styles and the Design of Network-based Software
Architectures” [3] presented in 2000. Fielding was among the authors of the
HTTP/1.1 specification and played a pivotal role in shaping the World
Wide Web as it exists today. REST is a widely adopted architectural style
for designing web applications. It leverages the HTTP protocol, applying
defined headers and employs four fundamental functions: Create, Read,
Update, Delete (CRUD). These correspond to HTTP methods and align with
actions that can be performed on a database system.

ey
@ [POST | DELETE HTTP REQUEST

JSON | XML | HTML HTTP RESPONSE

CLIENT REST API SERVER

Figure 10 - REST API

2.13 REST API Design Patterns

There are some best practices to follow when designing a REST API [6]
some of which are listed below:

e Accepting and Responding with JSON: JSON format has become
standard for data transfer, compatible with nearly all internet
technologies. On the client side, JavaScript includes built-in methods
like the fetch API for encoding and decoding JSON. Similarly, server-
side technologies have libraries for JSON decoding, simplifying data
handling without extensive conversions. While other data transport
methods exist, each with their own advantages, XML, for instance,
can replace JSON but lacks broad framework support without data
transformation into a more usable format, often ending up as JSON.
Conversely, JSON's versatility and readability make it the standard

[11]

choice. The difficulty of handling XML data from the client side,
especially in browsing programs, makes it a challenge to transmit
data normally. Additionally, JSON's smaller size in comparison to
XML results in faster data transmission rates improving overall
performance. Finally, to ensure that the response of the REST API
application is interpreted as JSON by the clients, the correct
specification of the Content-Type in the response header is required.
After the submission of the request, the Content-Type must be set
to “application/json”. This parameter informs clients that the response
includes data in JSON format, allowing them to correctly interpret
and manage the information.

Using HTTP Methods for CRUD Operations: It is crucial to utilize
well-known HTTP protocol methods such as GET, POST, PUT,
DELETE for CRUD operations, rather than corresponding functions.
Implementing Nested FEndpoints: To achieve better organization,
grouping requests containing related information is recommended.
Therefore, when an object can involve an additional object, a
corresponding endpoint must be designed for that scenario.

Proper Error Handling: The REST API should be designed to prevent
and manage errors correctly. In case an error is identified, an
appropriate message should be returned, along with the corresponding
status code following the HTTP protocol rules (400, 404, 500, etc.).
Emphasizing Security Practices: Information exchanged between client
and server must be confidential, as private data is usually sent and
received. Therefore, the use of SSL/TLS is considered necessary.
Additionally, measures must be taken to ensure that each user receives
only the necessary information. This is achieved by establishing roles
among users or adding authentication to requests.

Temporary Data Storage (Caching) for Performance Improvement:
Data retrieval from local cache is possible instead of constantly
querying the database whenever data for a user needs to be retrieved.
By wusing local memory, users receive their data more quickly,
although caution is required as data may not be correctly updated
(outdated).

Adherence to Naming Best Practices: Some certain informal rules
should be followed [7] when naming REST APIs, some of which are
outlined below:

o Avoid the use of capital letters in URIs.

o Use a forward-slash (/) in the URI path to indicate hierarchical
relationships between resources. For example, if we want to
expose the hobbies of a specific user, a URI like
/users/{id}/hobbies could be used.

o Avoid using a trailing forward-slash in the URI to prevent
confusion for users.

[12]

Jusers/{id}/hobbies/ //bad practice

Jusers/{id}/hobbies //good practice

o Prefer the use of hyphens (-) instead of underscores (_) when
combining words in the URI. This practice improves the
readability of URISs.

application_users/{id}/favorite_colors //bad practice

application-users/{id}/favorite-colors //good practice

o Avoid using file extensions in URIs, as they affect the clarity
of requests, increase the length of URIs unnecessarily and
generally do not provide any advantage.

application-users/{id}/favorite-colors/list.json //bad practice

application-users/{id}/favorite-colors/list //good practice

o Avoid using CRUD operations in URI names. The purpose of
each URI is to identify the resources offered, not to describe
the expected action. This purpose is fulfilled by the HTTP
methods themselves.

HTTP GET data/api/users/{id} //get a specific user
HTTP PUT data/api/users/{id} //update a specific user
HTTP DELETE data/api/users/{id} //delete a specific user

o Use query parameters for filtering and controlling collections.
Often, only specific information from a resource is required.
Therefore, it is reasonable to perform sorting, pagination and
filtering actions using query parameters instead of composing
new requests.

data/api/users //get all users

data/api/users?country=GREECE //get only users from Greece

[13]

2.14 API Security

The resources provided by servers through APIs may be accessible to the
general public or restricted to those with appropriate authorization. To
appropriately restrict access, APIs implement identity verification
(authentication) and permission granting mechanisms (authorization).
Different security threats to APIs can be categorized into the following
categories:

e Authentication

e Authorization

e Message or content-level attacks

e Man-in-the-middle attack

e DDoS attacks (distributed denial-of-service)

2.15 Authentication & Authorization

The concepts of authentication and authorization, although related, are often
confused. Authentication determines the identity of a user attempting to
access a server resource, whereas authorization defines the permissions and
access level of the user making a request. For example, in the scenario
where someone wants to attend a concert. If they are not certified, entry
will be denied. Therefore, they must obtain a ticket by going to the box
office and presenting their ID to verify their details, which may include age
restrictions. This process is called authentication, where the user must prove
their identity to gain access to a resource (entry to the concert). Upon
successful verification, they receive a ticket, which the holder can use to
enter the concert. This process is called authorization. It's worth noting
that the ticket does not display personal details of the holder, such as name
or age, it simply confirms that the holder now has access to the resource.
Two well-known and commonly used categories for authentication and
authorization are API Keys and Username & Password.

2.15.1 API Keys

An API key is used to identify the application consuming an API. API
keys provide a simple authentication mechanism for applications, allowing
an API to determine which applications are using it. They consist of a
series of random characters and numbers provided by the API provider and
is unique to each user (application). When a developer decides to integrate
an API into their application, they receive the key generated by the provider
and incorporate it into their code, including it in the authorization headers
of each request sent to the service. This way, the provider can verify if the
request for resources is valid and respond accordingly.

2.15.2 Basic Authentication

Username and password authentication is the most common form of
authentication. In this method, the client presents the server with a unique
username and a secret password. The server compares the received
credentials with those stored in its database and grants access to resources
only after successful authentication and authorization

[14]

For a request to a REST API, the client can send these credentials through
the request headers using the Basic Authentication Scheme:

e The username and password are combined with a colon in between:
username:password.

e The resulting string is encoded using Base64.

o The authorization method and a space (Basic) are prefixed to the
encoded string in the “Authorization” header.

This way, the server can verify the credentials and respond accordingly.

John Doe 1 GET /data/api/users HTTP/1.1

f , 2. HTTP/1.1 401 Unauthorized
-+

3. GET /data/api/users HTTP/1.1
Authorization: Basic xmYnxS)J ==

4 HTTP/1.1 200 OK

-

Figure 11 - Basic Authentication Scheme

2.16 CORS

Cross-Origin Resource Sharing (CORS) [8] is a security mechanism based
on HTTP headers, allowing a server to specify any origin other than its
own from which a browser should permit resource loading. An example of
this is XMLHttpRequest and the Fetch API, which follow the same-origin
policy. For security reasons, browsers prohibit cross-origin HTTP requests
initiated by scripts. This means a website using these APIs can request
resources only from the same origin from which the website was loaded,
unless the response from other sources includes the necessary CORS headers.

CORS aware no CORS
b —EPNNC) —EEEC)

Hosts http://example-a.com http://example-b.com http://example-c.com
A
3 5
2 o
5 HTML, CSS @
JS g
v
.
XMLHttpRequest [
http://fexample-a.com - @

Response denied

Figure 12 - CORS

[15]

3 Node.JS & Express
3.1 Introduction to Node.js

Node.js is an open-source, server-side runtime environment that allows
developers to execute JavaScript code outside of a web browser. Built on
Google's V8 JavaScript engine, it provides a non-blocking, event-driven
architecture, making it efficient for handling 1/O operations.
Node.js is especially valuable for developing web applications and RESTful
APIs.

It operates on a single process and is not creating a new thread for every
incoming request. It features a standard library with asynchronous I/0
primitives that prevent JavaScript code from blocking.
When Node.js performs I/O operations such as reading from the network,
accessing a database, or interacting with the filesystem, it does not block
the thread or waste CPU cycles while waiting. Instead of that, Node.js
continues to handle other tasks and resumes the operation once the response
is received. This approach enables Node.js to manage thousands of
concurrent connections with a single server efficiently, eliminating the
complexities and potential bugs associated with managing thread
concurrency.

3.2 Setting Up Node.js Environment

To set up a Node.js environment, both Node.js and npm (Node Package
Manager) are required [9]. npm is the default package manager for Node.js
and plays a crucial role in its ecosystem by managing and distributing
JavaScript libraries and tools. It allows developers to install and manage
packages required for Node.js applications and define project dependencies
through a package.json file. Additionally, npm enables developers to define
and execute scripts for common tasks, such as testing, building and deploying
applications. These scripts, specified in the package.json file, can be run
using npm commands.

Node.js and npm can be installed using various methods, but the
recommended approach is through nvm (Node Version Manager). Nvm is a
tool specifically designed to manage multiple versions of Node.js on a single
machine, making it easy to switch between different versions. It can be
installed from the official GitHub repository and it is compatible with all
major operating systems, including Windows and macOS.

[16]

README.md

Notice: We have started full time work on , the successor to NVM
for Windows.

Complete to provide your thoughts and sign up for progress updates

NVM for Windows

The /! /! recommended Node.js version manager for Windows.
» This is not the same thing as nvm! (expand for details)

omwnond ot & powncess Fo.v [

Sponsors

e Butler Logic

© ncivicual sponsars |7 e o]

Figure 13 - Install NVM

Sponsor this project
g coreybutler

© Sponsor

Used by 8

TeC. O

Contributors 75

& & i

Languages

Go Inna Setup
® Batchiile ® Other 1.8%

After moving to the repositroy, the installer should be selected (nvm-
setup.exe) for Windows:

Contributors

NG =

v Assets

Figure 14 - NVM Installer

Join discussion

After following the steps from the installer, the user can verify if the

installation

was succesfull by running the command “nvm -v”:

2 Windows PowerShell

PS C:\Users\manos> nvm
1.1.11

Figure 15 - NVM version

[17]

The following NVM commands are the most useful and commonly used:
e nvm install <node version>: Install a specific version of Node.js
e nvm use <node version>: Use a specific version of Node.js
e nvm Is: See all the installed versions of Node.js
e nvm current: Check the current Node.js version

3.3 Core Concepts

e Event-Driven Architecture: Node.js is built on an event-driven
architecture, allowing it to efficiently manage asynchronous
operations. It continuously monitors the message queue for events
and executes the associated callback functions when an event is
detected.

e Non-blocking 1/O: Node.js uses non-blocking I/O operations to handle
multiple operations concurrently without using multiple threads. This
makes it highly efficient for I/O-heavy tasks, such as serving HTTP
requests or interacting with databases.

e Modules: Node.js uses a module system (CommonJS) to organize
code into reusable components. Modules can be built-in (like http or
fs), third-party (installed via npm) or custom. The require function
is used to import modules.

e Promises and Async/Await: To manage asynchronous operations more
effectively, Node.js supports Promises and the async/await syntax,
providing a cleaner way to handle asynchronous operations.

e Streams: Streams are objects that enable users to read data from a
source or write data to a destination continuously. Node.js offers four
types of streams: Readable, Writable, Duplex and Transform. Streams
are particularly efficient for managing large amounts of data.

3.4 Express

Express [10] is a flexible framework for Node.js, released as free open-source
software under the MIT license. It is designed for creating web applications
and APIs. Express has become one of the most popular choices for building
web servers and APIs in the Node.js ecosystem. Its lightweight nature allows
developers to quickly create RESTful APIs or web applications, making it
an excellent tool for both beginners and experienced developers. A user can
download the library by running the command “npm install express”.

3.4.1 Middleware

Middlewares are software components that act as intermediaries between
clients and data, implementing business logic rules. In the context of web
services, middlewares implement and expose API methods that are used in
HTTP requests, providing access to the server's request (req) and response
(res). Middlewares can perform the following actions:

e Execute code

e Modify requests and responses

e End the request-response cycle

e C(all the next middleware

[18]

To call the next middleware, the “next()” function must be invoked.

Request

Response

<:I<: : B ; <:I

Figure 16 - Middleware

3.4.2 Routing

Routing refers to how an application decides to respond to an incoming
request by defining an endpoint (PATH) and an HTTP method. Each route
also includes a handler that manages the incoming request.

MODEL

. app.METHOD(PATH, HANDLER)

representation of the table columns CONTROLLER
ROUTER
/ getAll()
App.js > GET
> create()

 E— POST -
{] s PUT

T update()

—_— DELETE

\‘ delete()

Figure 17 - Routing

3.4.3 Express Example

The process begins with importing the library into the node application,
assuming it is already installed on the local machine. After that an instance
of Express is created, which will act as the node server. A route is defined
at the path ¢/’ using the GET method. When a request reaches this path,
the respective middleware handles the request. The middleware receives
information about the incoming request, such as headers and body through
the req object, while the server's response corresponds to the res object.

[19]

Using the res.send() method, the server's response is sent back to the client.
Finally, the application listens on port 3000 to accept incoming requests:

const express = require('express')

const app = express()

app.get('/', (req, res) => {
res.send("'hello world")

)
app.listen(3000)

DD T W N =

3.5 Security and Authentication

In today's digital world, data privacy and security are vital. Protecting
Node.js applications from vulnerabilities is crucial. Key security measures
include input validation, secure data storage and defenses against common
threats like SQL injection and cross-site scripting (XSS). Whether someone
is developing RESTful APIs, building web applications, or managing
microservices, maintaining data integrity and confidentiality through strong
security practices and regular audits is essential [11].

3.5.1 Error Handling

Handling errors in REST APIs with Node.js and specially with the Express
library involves implementing middleware to capture and manage exceptions.
Express allows for centralized error handling by defining an error-handling
middleware function that takes four parameters:

1. err
2. req
3. res
4. next

This middleware should log the error details for debugging purposes and
send a standardized error response to the client, often including an
appropriate HTTP status code (like 400 for bad requests or 500 for server
errors) and a well described error message. Additionally, it's good practice
to handle specific error types differently, such as validation errors,
authentication issues, or database connectivity problems, to provide more
better feedback. By effectively managing errors, developers can ensure their
API is robust, user-friendly and easier to maintain:

app.use((err, req, res, next) => {
res.status(err.status).send({
error: true,
status: err.status,
statusDetail: err.statusDetail,
type: err.name,
message: err.message,

1)

© 00 J O U = W N~

s

[20]

3.5.2 Environment Variables

Environment variables are important for securing an application's codebase.
They are specified in .env files located in the root directory of the
application, with the actual values accessible only on the hosting platform.
For local development, .env.sample or env.local files are typically provided
in the repository, allowing developers to modify these files for testing
purposes. Additionally, these variables are not exposed to the front end.

In Node.js, the dotenv package is commonly used for managing environment
variables and it can be installed using the command “npm install dotenv”.
After installation, the user should declare the environment variables in the
.env file using the format VARIABLE_NAME='variable_value'. The following

code snippet can be used to introduce one environemt variable in the code:

1| require("dotenv").config();
2 | const variable = process.env.VARIABLE_NAME;

3.5.3 HTTP Headers

The default HTTP headers in Express are not very secure and usually
include information that should not be exposed, like X-Powered-By.
Additionally some important headers are missing and should be added to
address various security aspects, including the prevention of cross-site
scripting (XSS) attacks.

To enhance security, the Helmet library can be installed via npm using the
command npm install helmet. Helmet secures the application by setting the
most important security headers. The following code snippet can be used to
introduce the helmet library:

const express = require('express');
const helmet = require('helmet');

const app = express();

S T W N~

app.use(helmet());

3.5.4 Rate Limiting

Rate limiting is a technique for securing backend APIs and managing traffic
flow between client and server. By controlling the rate at witch user’s
requests are processed, rate limiting helps prevent malicious attacks like
DDoS and brute force, enusres that servers are not overloaded and maintains
a smooth flow of data. This method allows developers to set specific
constraints on user activity such as limiting an unsubsribed user to three
password attempts during login within a defined time frame, often referred
to as a “window”. Once this limit is exceeded, then any additional request
is blocked, enhancing both security and performance by preventing excessive
strain on the server.

[21]

A popular rate limiting package for Node.js is the “express-rate-limit”, used
to limit repeated requests to public APIs and/or endpoints. It can be used
globally for every request:

import { rateLimit } from 'express-rate-limit'
const limiter = rateLimit({
windowMs: 15 * 60 * 1000, // 15 minutes
limit: 3, // Limit each IP to 3 requests per ~window™
standardHeaders: 'draft-7',
legacyHeaders: false,
})
// Apply the rate limiting middleware to all requests.
app.use(limiter)

© 0 J O Ut = W N~

Or explicity as a middleware for speciffic endpoints:

1| app.post('/reset_password', limiter, (req, res) => {
2 7/ ooo
3IH

3.5.5 Limit Request Size

In Node.js, the default request body size is set to 100 KB. In some cases,
the server may need to accept larger files like PDF,CSV, etc. But it is
important to balance this requirement with security considerations. To
reduce the risk of DDoS attacks, where attackers might attempt to flood
the server with excessive data, the request body size limit should be
increased cautiously. This can be managed by adjusting the body-parser
middleware configuration, as demonstrated below:

const express = require('express');
const bodyParser = require('body-parser');

const app = express();

// set the request size limit to 2 MB
app.use(bodyParser.json({ limit: '2mb' }));

N O O = W N

3.5.6 Basic Authentication

The Basic Authentication scheme that has been discussed in the section
2.15.2 Username & Password can be easily implemented using the Express
library. This can be achieved by using middleware that checks for an
authorization header in incoming requests. In the provided code snippet
“require(“dotenv”).config()” is used to load environment variables from a
.env file, allowing for the secure storage of sensitive information like
usernames and passwords without exposing these values in the codebase.

The middleware function then checks if the Authorization header is present
in the request. If the header is missing, it responds with a 401 Unauthorized

[22]

status, indicating that the client must authenticate itself to get the requested
response. The WWW-Authenticate header is set to indicate that Basic
Authentication is required.

If the authorization header is present, the middleware decodes the Base64
encoded username and password using Buffer.from() and splits the decoded
string into its respective username and password. These credentials are then
compared to the values stored in the environment variables
BASIC_USERNAME and BASIC_PASSWORD.

If the credentials match, the middleware calls the next() function, allowing
the request to proceed to the next middleware or route handler. If the
credentials do not match, the response is once again set to 401 Unauthorized
and the WWW-Authenticate header is set to indicate the requirement for
Basic Authentication.

1 | require("dotenv").config();

2

3 | module.exports = (req, res, next) => {

4 const authheader = req.headers.authorization;
5

6 if (lauthheader) {

7 let err = new Error("Not authenticated!");
8 res.setHeader("WWW-Authenticate", "Basic");
9 err.status = 401;

10 return next(err);

1| !}

12

13 const auth = new Buffer.from(authheader.split("™ ")[1], "base64")
14 .toString()

15 split(":");

16 const username = auth[0];

17 const password = auth[1];

18 if (

L username == process.env.BASIC_USERNAME &&
et password == process.env.BASIC_PASSWORD

21) {

22 // If Authorized user

23 next();

24 } else {

25 let err = new Error("Not authenticated!");
26 res.setHeader ("WWW-Authenticate", "Basic");
27 err.status = 401;

28 return next(err);

29 }

30| };

3.5.7 JWT

The JWT, or JSON Web Token [12], is a self-contained method for securely
transmitting information between different parties in the form of a JSON

[23]

object. It is commonly used for authentication and authorization on websites
and API services. JWTs consist of three parts:
o Header: Specifies the algorithm used for signing (typically HS256 or
RS256).
e Payload: Contains the actual data.
e Digital Signature: Ensures the integrity and authenticity of the token.

—
Signature

\ JSON Web Token

Figure 18 - JWT

JSON Web Tokens (JWTs) are a widely used method of authentication.
When a wuser logs in, if the provided credentials are valid, a JWT is
generated on the server and returned to the client. The client then presents
the JWT in subsequent requests to the server to prove their previous
authentication. This is usually done through a header in the format
Authorization: Bearer <JWT-token>. As shown in the following code snippet,
the data includes the username and user ID, while the digital signature is
a base64-encoded value. The token's validity is set to one hour and the
default algorithm is HS256 unless otherwise specified.

const token = jwt.sign(
{
username: username,
userId: queryResult.rows[0].id,
}s
process.env.JWT_PRIVATE_KEY,
{ expiresIn: "1h" }
e

0 3 O U = W N

As a result of the code above, a token in the following format is generated:
ey JhbGciOiJIUzIINilsInR5cCloTkpX VCJ9.ey J1c2VybmFtZSI6ImFkb Wiuliwid
X NlicklkljoyNTksImlhdCI6GMTY 5Nz Q1 Mz MwMSwiZX hwiljoxNjk3NDU20TAxf
Q. INFr4GDoa5Bpz DTFESK BIfHpSMB1kbGSiL2wkd21E30
Upon successful decoding of the token [13], the following information is
retrieved:
e username: The username used when the token was signed.
e userlD: The ID used when the token was signed.
o iat (issued at): The timestamp of when the token was signed, in
Epoch Unix Timestamp format, representing the number of seconds
since January 1, 1970.

[24]

o exp (expires): The timestamp indicating when the token will expire,
using the same logic as the iat field.

Decoded

HEADER: AL

—~—

"alg”: "HS256",
“typ”: CJWT

w

PAYLOAD: C

WERIFY SIGNATURE

dnV10mSvZGU=

} [0 secret basef4 encoded
Figure 19 - Decoded JWT

After a succesfull login, the user will receive a token, which will be used in
subsequent requests that require authorization by adding it to the request
headers as shown in the image below:

ﬂ 1. POST data/api/login

‘3. 200 Return JWT

- 4.Send JWT as auth header

‘6. Response to the client
200/401

2. Create JWT

5. Check token sent
from the client

Figure 20 - JWT Use

To implement this check programmatically using the Express library, an
additional middleware is required. This middleware is called before the final
controller and is responsible for verifying whether the JW'T received in the
request matches the one that was generated when the user logged in:

[25]

1 | const jwt = require("jsonwebtoken");
2
3 | module.exports = (req, res, next) => {
4 let token;
5 if (!!req.get("Authorization")) {
6 token = req.get("Authorization").split(" ")[1];
7 }
8
9 let decodedToken;
10| tryd
11 decodedToken = jwt.verify(token, process.env.JWT PRIVATE KEY);
19 } catch (err) {
13 err.statusCode = 500;
14 res.status(500).json({
error: "Internal Server Error",
15 .
6|
17
18 if (!decodedToken) {
19 const error = new Error("Not authenticated");
20 error.statusCode = 401;
21 throw error;
22 }
23 next();
24| };

3.5.8 Monitoring and Logging

Monitoring and logging are very important for maintaining the health and
performance of a Node.js application built with Express. To effectively log
HTTP requests and errors, the morgan logging library can be integrated
into the Express app. Morgan provides real-time insights by capturing details
about incoming requests, such as method, URL, status code and response
time, which can be outputted to the console or saved to a log file for
further analysis. After the user installs the package by running the command
“npm install morgan”, it can be integrated into the application as
demonstrated in the code snippet below:

const express = require('express')
const morgan = require('morgan')

const app = express()
app.use(morgan('combined'))

app.get('/', function (req, res) {
res.send('hello, world!")

© 00 N O Ut =W N

1)

=
=

For monitoring the server's health, the express-status-monitor package offers
a lightweight solution. This package provides a real-time, interactive

[26]

dashboard that tracks metrics like CPU usage, memory consumption,
response time and throughput. After the user installs the package by running
the command “npm install express-status-monitor”, it can be integrated into
the application as demonstrated in the code snippet below:

const express = require('express')
const app = express()

I R

app.use(require("express-status-monitor")())

By incorporating both morgan for detailed logging and express-status-monitor
for real-time monitoring, developers can ensure that their Node.js application
remains stable, responsive and easy to debug:

Express Status ™ M 15M

CPU Usage

0.0% L

Memory Usage

80.1MB

Heap Usage

37.3MB

One Minute Load Avg

1.67 —

Spent in Event Loop

0

Response Time

6.95ms N\, —

Requests per Second : J

2.00

Status Codes
2%x
Jux
dxx

® Sxx N

Status page made by Dynobase with ¥ with Socketio & Chartjs

Figure 21 - Express-status-monitor

[27]

3.5.9 Password Management

Securely storing passwords and credentials in Node.js applications is essential
for protecting sensitive user data. Passwords should never be stored in plain
text on the server. Instead of that approach, a secure hashing algorithm
should be used. These algorithms are intentionally designed to be slow and
computationally intensive, making it difficult for attackers to crack passwords
through brute-force or rainbow table attacks. A widely used and highly
recommended algorithm for this purpose is bcrypt. For a node application,
berypt library [14] can be installed by running the command “npm install
berypt”. Some key features of this algorithm are outlined below:

e In addition to incorporating a salt for protection against rainbow
table attacks, berypt is an adaptive function: over time, the number
of iterations can be increased to make it slower, ensuring it remains
resistant to brute-force attacks

e While bcrypt.js is compatible with berypt's C++ bindings, it is
written in pure JavaScript and is therefore approximately 30% slower.
This reduction in speed effectively limits the number of iterations
that can be processed in a given time frame.

e The maximum input length is 72 bytes and the generated hash values
are 60 characters long.

The input to a berypt function consists of the password (up to 72 bytes),
a cost factor and a randomly generated 16-byte salt value. Bcerypt uses
these inputs to compute a 24-byte hash. The final output of the function
is a string in the following format:

$2<a/b/x/y>$[cost[$[22-character salt][31-character hash]

Password

B23512F7jKkt3Px50d2jUck4CcOwgiNOM7MHQO . Se3jLr3sUmu20LVL7 2YLi

1 2 3

1. Berypt version
2. Cost factor
3. 22-character salt value

Figure 22 - Berypt example

Berypt can be easily integrated into a node.js application as demonstrated
in the code snippet below:

[28]

© 00 J O Ut = W N

el e e e e T
O N O U = W N+ O

const bcrypt = require("bcryptjs");

async function createUser(password) {
return await bcrypt.hash(password, 12);

}

async function login(plainPassword, hashedPassword) {
let match = await bcrypt.compare(plainPassword, hashedPassword);
return match;

}

async function main() {
let hashedPassword = await createUser("admin");
login("password"”, hashedPassword); //false
login("admin", hashedPassword); //true

}

main();

3.6 API Documentation & Validation

API Documentation refers to a collection that includes all the necessary
information about the APIs available on the server, offering features such
as:

An example of an API documentation tool is Swagger [15], a suite of tools

A list of available requests

e Request descriptions

o Execution examples (e.g., example body, example responses)
e The ability to execute requests

e Support for multiple servers (Development, UAT, Production)
e Authorization configuration where needed

used for developing and describing RESTful APIs.
3.6.1 YAML

YAML [16] is neither a programming language nor a markup language,

despite its acronym standing for “Yet Another Markup Language”. Instead,
it is a simple format used to represent structured data, often found in

configuration files:

e openapi: The current version

e info: Information about the documentation, such as title and version

e servers: The available servers
e tags: Categories used to organize requests for better management
e paths: The available requests

[29]

© 00 J O Ut = W N

AR R R R R R R W W W W W W W W W WNNDDNDNDNDNDNDNDNDDLN R e e e e e
N O U & W DN O O© 0 O T i W N MFEF O O©OWWNOCUU i W O O© 0 O Ut i W N+~ O

openapi: 3.0.1
info:
title: Villa Agapi App API documentation
description: API documentation for Villa Agapi App.
version: 1.0.0
servers:
- url: http://localhost:8082
description: development server
- url: https://online-server.com/
description: production server
tags:
- name: users
description: API requests for users
paths:
/data/api/user/{id}:
get:
tags:
- users
summary: Get user by ID
description: Retrieve user information by their ID.
parameters:
- name: id
in: path
description: ID of the user to retrieve.
required: true
schema:
type: integer
example: 1
responses:
"200":
description: Successful response
content:
application/json:
example:
user:
- id: 1
name: user
email: user@user.gr
created date: 2023-09-01 07:06:00
arrival: 2023-11-08 07:40:27
departure: 2023-11-08 07:40:27
firstname: Manos
lastname: Karapiperakis
cleaningprogram: [2023-11-09, 2023-11-09]
phone: 90000000
country: Greece,
role: admin

[30]

3.6.2 Swagger-ui-express

Swagger-ui-express is a middleware that allows developers to easily integrate
interactive API documentation into their Node.js applications. By using a
swagger.json or swagger.yaml file, it generates a visually appealing and user-
friendly interface for exploring and testing API endpoints. This live
documentation is hosted on the server and can be accessed via a designated
route, offering real-time interaction with the API. It supports features like
request validation, response visualization and multiple authentication
schemes, making it an essential tool for both development and API consumer
communication. It can be easily integrated into a Node.js application, as
demonstrated in the code snippet below:

const swaggerUi = require("swagger-ui-express");

const yaml = require("yamljs");

const swaggerDocument = yaml.load("./swagger.yaml");

const app = express().use("/data/api/doc", swaggerUi.serve, swag-
gerUi.setup(swaggerDocument));

T W N =

If the user navigates to the specified path, they will see the result of the
file displayed within a graphical interface.

Villa Agapi App APl documentation

API documentation for Villa Agapi App.

Servers

[http:/llecalhost:8082 - development server ~

authentication Authentication of the user after login. After a successful response, a token can be retrieved and used as bearer auth for other requests
/data/api/login Userlogin

USers APIrequests for users
fdata/api/user/{id} Getuserby D
/data/api/user/{id} Update userby D
/data/api/users Getalistof users

/data/api/users Create a new user

Figure 23 - Swagger Ul

3.6.3 Express-openapi-validator

Express-openapi-validator is a middleware for Express.js that helps validate
API requests and responses against specific standards, typically defined in
a configuration file. OpenAPI is a specification for building APIs, providing
a standardized way to describe the structure and behavior of RESTful APIs.

[31]

By integrating express-openapi-validator into an Express.js application,
developers can enforce validation rules defined in an OpenAPI specification
(e.g. Swagger.yaml). This ensures that incoming requests conform to the
specified schema and that outgoing responses match the expected format.
Additionally, authentication handlers can be integrated, allowing developers
to specify which requests require authentication directly within the
Swagger.yaml file.

As a result, any request or response that doesn't meet the defined criteria
in the documentation file will be blocked, returning an error message. This
adds an extra layer of security to the server by ensuring that only compliant
data is processed.

module.exports = async () => {
await new OpenApiValidator({
apiSpec: "./swagger.yaml",
validateSecurity: {
handlers: {
BearerAuth: bearerAuthenticator,
BasicAuth: basicAuthenticator

}s

s
}).install(app);

© 00 N O Tt = W N

—
=

Handlers are simply functions written in JavaScript that take the request
and check whether the headers are valid. The implementation of Bearer
Authentication is demonstrated in the code snippet below:

1 | const jwt = require("jsonwebtoken");

2 | const { AuthError } = require("../lib/errors");

3

4 | const bearerAuthenticator = (req, scopes, schema) => {

5 try {

6 const token = req.header("Authorization").replace("Bearer ",
7|

8 req.jwtPayload = jwt.verify(token, process.env.JWT PRIVATE_KEY);
9 if (req.openapi.schema["x-acl"]) {

10 const jwtScopes = new Set(req.jwtPayload.scopes);

11 const reqScopes = new Set(req.openapi.schema["x-acl"]);
12 const intersection = new Set(

13 [...regScopes].filter((x) => jwtScopes.has(x))

14)5

15 if (intersection.size > @) return true;

16 else throw new AuthError("Invalid Scopes");

17 }

18 return true;

19 } catch (e) {

20 throw new AuthError("Invalid Token");

21 1}

22| };

[32]

4 Socket.io

4.1 Introduction to Socket.io

Socket.IO [17] is a library that enables real-time, bidirectional communication
between clients and servers. It simplifies the development of applications
that require instant updates or live interaction, such as chat applications
and online games.

Client Server

Figure 24 - Socket.io

The Socket.IO connection can be established with different low-level
transports:
e HTTP long-polling
e WebSocket
e WebTransport
Socket.IO will automatically pick the best available option, depending on:
e The capabilities of the browser
e The network

4.2 Socket.io Features

Some of the key features that make Socket.IO stand out include the
following:

e HTTP long-polling fallback: If the WebSocket connection fails or is
interrupted for any reason, the connection will fall back to HTTP
long-polling.

e Automatic reconnection: Under certain conditions, the WebSocket
connection between the server and client may be lost without either
side being aware. Socket.IO uses a “heartbeat” mechanism that
regularly checks the connection, detects potential disconnections and
automatically reconnects the user if necessary.

e Packet buffering: When the client disconnects, packets are
automatically stored in a temporary cache and sent once the client
reconnects.

e Acknowledgements: Socket.IO provides a flexible way to send and
receive requests and events.

e Broadcasting: On the server side, an event can be broadcasted to all
users or only to specific users within the same “room”.

e Multiplexing: Namespaces allow for the organization of application
logic over a single shared connection.

4.3 Socket.io Architecture

The bidirectional communication channel between the Socket.IO server and
the Socket.IO client is established using a WebSocket connection whenever
possible, with HTTP long-polling used as a fallback.

[33]

The Socket.IO codebase is divided into two distinct layers:

e The low-level plumbing: Known as Engine.lIO, it is responsible for
establishing the low-level connection between the server and the client.
Its responsibilities include:

o Handling various transports (such as WebSocket and HTTP
long-polling) and managing the upgrade mechanism.
o Detecting disconnections.
e Socket.IO itself: This is the higher-level API that builds on top of

Engine.IO to manage the application's communication logic.

4.3.1 Transports

Two transport methods are implemented in Socket.IO:
e HTTP long-polling: This consists of multiple successful HTTP
requests:
o Long-running GET requests to receive data from the server.
o Short-running POST requests to send data to the server.

e WebSocket: The WebSocket transport establishes a WebSocket
connection, providing a bidirectional, low-latency communication
channel between the server and the client.

4.3.2 Handshake

During the initiation of the connection, the server sends certain information
as outlined below:

o sid: It represents the Session ID and must be included in the sid
query parameter in all future requests.

e upgrades: This is an array containing a list of the best connection
options supported by the server (e.g., websocket).

e pinglnterval: Used in the heartbeat mechanism for automatic

reconnection.
e pingTimeout: Also used in the heartbeat mechanism for automatic
reconnection.
15 minutes ago Duration 8.45ms L P 94.71.169.1;

GET /socket.iof

Summary Headers Rawr Binary Replay -
CQuery Params
ElO 4
t CqBlCen
transport polling
200 OK
Summary Headers Rawr Binary

118 bytes text/plain; charset=UTF-&

B{"sid": "cI9fzUnZTOYdFLtfAAAA" , "upgrades": ["websocket™], "pingInterval”:258

Figure 25 - Socket.io Handshake

[34]

4.3.3 Upgrade Mechanism

By default, the client establishes the connection using HTTP long-polling,
as demonstrated earlier during the handshake. The upgrades array also
included WebSocket as the optimal option supported by the server.
This happens because a WebSocket-based connection is not always possible.
For example, it may be blocked by a firewall, antivirus software, or even
not supported by the browser itself, although WebSocket is now supported
by about 97% of browsers.
From the user's perspective, an unsuccessful WebSocket connection can
result in up to a 10-second delay, which is undesirable. Therefore, the
priority is to first create a reliable connection via HTTP long-polling,
followed by upgrading to WebSocket when possible.
During the upgrade process, the client performs the following steps:
e Confirms that the outgoing buffer is empty.
e Switches the state of the current transport to read-only.
e Attempts to establish a connection using a different transport method
(WebSocket).
o If successful, terminates the previous transport method (HTTP
polling).

GET /socket.iof

Summary Headers Rawr Binary Replay -~

Query Params

EID 4
sid etOMzPTesle_vefAAAC
transport websocket

101 Switching Protocols

Summary Headers Raw Binary

HTTP/1.1 181 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-kWebSocket-Accept: 1xHwBhCdsk84NIpbAbl/I0ijaV=
Vary: Origin

Access-Control-Allow-Credentials: true

Figure 26 - Upgrade Mechanism

[35]

4.3.4 Disconnection Detection

The connection is considered closed in the following scenarios:

1. An HTTP request (either GET or POST) fails.

2. The WebSocket connection is terminated, such as when the user
closes the browser tab or the mobile app.

3. The socket.disconnect() method is called, either from the server or
the client side.

Additionally, there is a heartbeat mechanism in place to ensure the
connection between the server and client is still active:

e At regular intervals (defined by pinglnterval), a value returned during
the initial handshake, the server sends a PING packet to the client.

e The client then has a limited period, set by the pingTimeout value
(also provided during the handshake), to respond by sending a PONG
packet back to the server.

e If the server does not receive a response within the combined time
frame of pinglnterval + pingTimeout, it assumes the connection has
been lost.

This mechanism is essential for detecting issues such as connection drops or
network instability and it allows the server to handle disconnections more
efficiently. For example, if a client becomes unavailable due to network
issues or the user suddenly closes their browser or app, the heartbeat
mechanism will detect this, ensuring that stale connections don't persist
unnecessarily. This approach helps optimize resources and maintain an
efficient communication flow between the client and server:

GET /socket.io/

HANDSHAKE

{"sid""cl9fzUhZTOYdFLIFAAAA" "upgrades"["websocket"], "pinglnterval™-25000 "pingTimeout™
20000,"maxPayload™: 1000000}

SEND PING PACKET

RTT (ms)
SEND PONG PACKET

RTT <= (pingInterval + pingTimeout)

Figure 27 - Disconnection Detection

4.4 Socket.io Events

Socket.IO events are a core feature of the Socket.IO, which is used for real-
time, bidirectional communication between clients (typically browsers or

[36]

mobile apps) and servers. These events are used to handle and trigger
specific actions or messages during a connection.

4.4.1 Built-in Events

Socket. IO provides plenty of predefined events that are useful for handling
core functionality, including connection, disconnection and errors. Below are
some of the most important and commonly encountered events:

e connect: Fired when a client successfully connects to the server.

e disconnect: Triggered when a client disconnects from the server.

e error: Occurs when there is an issue with the connection.

e reconnect: Triggered when the client successfully reconnects after a

disconnection.

4.4.2 Custom Events

In addition to built-in events, custom events can be defined to address
specific use cases. For instance, if a messaging service is needed for
communication between two endpoints, the following two custom events can
be implemented. This enables the creation of customized communication
protocols to suit application's specific needs:

e Server-side: socket.emit('customEvent', data);

e Client-side: socket.on('customEvent', function(data) {});

Socket. IO works by emitting events and listening for them. For example,
when the server or client emits an event, the other side can listen for it
and perform a specific action. This follows a publisher/subscriber pattern:
e Emitting an event: socket.emit(eventName, data)
e Listening for an event: socket.on(eventName, callback)

4.5 Namespace Support

Socket.IO supports namespaces, allowing to define separate communication
channels within the same application. Each namespace can have its own
events.

4.6 Rooms

A room is a channel where sockets can connect and disconnect. It can be
used to broadcast events to a subset of clients. To join a room, the method
socket.join(room) is used, with the room name passed as an argument. This
functionality is available only on the server side, but clients can also actively
participate.

The process of joining a room is initiated by the client and the server can
notify clients of any changes, such as when someone enters or leaves a room
through an emitter.

[37]

Server

client A4
r—- - - - - -—"-—~—-—_ - === a
| socket 4 7 |
|]
|]

client B = | cocket B :
| |
L e Y . - - = — -4

[socket C
client ¢

Figure 28 - Socket.io Rooms

[38]

5 Google Cloud Platform

5.1 GCP Introduction

Google Cloud Platform (GCP) is a suite of cloud computing services offered
by Google that provides scalable and flexible solutions for businesses and
independent developers. It includes a wide range of tools for computing,
storage, data analytics, machine learning and networking. GCP enables
developers to build and run applications on Google’s global infrastructure,
leveraging services like Google Kubernetes Engine, BigQuery and Cloud Al
for enhanced performance. It also supports multi-cloud and hybrid cloud
strategies, offering powerful solutions for businesses of all sizes.

After a user accesses Google Cloud Platform (GCP) through their browser,
the first step is to create a project, which will serve as the container for
all the services they require. Once the project is created, the user can
explore the available services and easily navigate through them based on
their needs:

= Google Cloud ‘ & reactnative-app ~ ‘ Search (/) for resources, docs, products, and more ‘ Q_ search | + n ® : m

e A .

2y Welcome

You're working in react-native-app

Project number: 793370988987 [0 ProjectID: igneous-fort-398615 10
Try our most advanced

Dashboard ~ Recommen dations model: Gemini 1.5 Pro
Try Gemini >
[Createa VM 3 Run a query in BigQuery [Create a GKE cluster Create a storage bucket
Quick access
APT APIs & Services © 1AM & Admin B Billing {5} Compute Engine
= Cloud Storage @ BigQuery 1 vPC network @ Kubernetes Engine

28 VIEW ALL PRODUCTS

Figure 29 - GCP

5.2 Google Maps API

Google Maps API provides developers with powerful tools to integrate
location-based services into their applications. These APIs enable features
like interactive maps, geolocation, route planning, place search and street
view. Developers can customize maps with markers, layers and overlays, or
retrieve geographic information like addresses and coordinates. Popular APIs
include the Maps JavaScript API for embedding maps on websites, the
Geocoding API for converting addresses into coordinates and the Directions
API for navigation. These tools make it easier to build apps that rely on
geographic data, enhancing user experience with real-time mapping
capabilities.

[39]

From the Home screen, if the user navigates to “APIs & Services”, they can
view detailed information about the APIs offered by Google, including their
features and availability:

= GoogleCloud | % reactnawveapp = Search (/) for resources, docs, products, and more Q Search + 30 :Q
API APIs & Services L) APIs & Services =+ ENABLE APIS AND SERVICES

4 Enabled APIs & services Thour Ghours 12hours o lday 2days 4days 7days 14days 30days
W ubnay

©r Credentials Traffic = Erors = Median latency = 4

Ohuth consent screen

So Pageusage agreements

B Nodata is available for the selected time frame. & Mo data is available for the selected time frame & o data is available for the selected time frame.
= Filter F L-]
Name + Requests Ertors (%) Latency, median (ms) Latency, 95% (ms)
Figure 30 - APIs & Services
Finally, the user needs to navigate to the “Credentials” page to generate a
new API key. This key can be used by the developer in the application to
grant access to the available resources and services:
API APIs & Services L Credentials + CREATE CREDENTIALS T DELETE x~ RESTORE DELETED CREDENTIALS
<% Enabled APIs & services Create credentials to access your enabled APIs. Leamn more (2
M Library
A Remember to configure the OAuth consent screen with information about your application. (CONFIGURE CONSENT SCREEN
ov Credentials
W OAuth consent screen API KeyS
So Pageusage agreements O Name Creation date Restrictions Actions
O A MapsAPIKey Sep 10,2023 None SHOWKEY §
OAuth 2.0 Client IDs

O Name Creation date Type

No OAuth clients o display

Manage service accounts

Service Accounts
Actions

/7w

O email Name 1

[m] thot@igneous fort 308615.i2m.gserviceaccount.com chatbot

Figure 31 - API Credentials

Then, by clicking “Create Credentials”, a new window will appear, displaying
details about the newly generated API key:

[40]

= Google Cloud

API key created

Use this key in your application by passing it withthe key=API_KEY parameter.

Your AP key
{AIzaSyCXSKFﬁa1Duvw3vauX?QHmddch‘IMnuhM [a]

A This key is unrestricted. To prevent unauthorized use, we recommend restricting
where and for which APIs it can be used. Edit AP| key to add restrictions. Learn more [

CLOSE

Figure 32 - API Key

Additionally, the user can navigate to the “Library” section, where detailed
information about the available APIs is provided:

& APl Library

»

= Filter Type 1o filte

Visibility
Publ

Private

Category

2 reactnative-app ¥

——

Maps

4

Maps SDK for Android

Q 4+ 6B o @

Welcome to the API Library @ *

The AP Library has doct links, and a smart h ience.

Q Bearch for APIs & Service - Y

VIEW AL (24)

(s B . 7 &
Maps SDK for 105 Maps JavaScript API Places AP Directions API
e I Googh o)

Figure 33 - APIs Library

From there, the user should enable the APIs they want to be supported by
the generated API key:

Google Cloud

o* react-native-app +

< Product details

Directions API
GDGQ\E Enterprise API

Directions between multiple locations.

w & APl Enabled

OVERVIEW DOCUMENTATION SUPPORT RELATED PRODUCTS
Overview
Access driving, eycling, walking and public transportation routing with the Additional details
Directions AP using an HTTP request. Waypoints offer the ability to alter a
route through a specific location. Specify origins, destinations and waypoints Type: Saas & APIs
either as text strings (e.g. "Chicago, IL" or "Darwin, NT, Australia") or as Last product update: 9/28/22
|atitude/longitude coordinates. Category: Gaogle Enterprise APIs, Maps

Service name: directions-backend.googleapis.com

Tutorials and documentation

Documentation &2 Pricing &

Figure 34 - Enable API

[41]

0

5.3 Dialogflow

Dialogflow [18] is a natural language processing (NLP) platform developed
by Google. It enables users to create engaging and interactive conversational
experiences by understanding and analyzing natural language data.

APP/DEVICE DIALOGFLOW FULFILLMENT
o B & 2823 , &
[@ EXTERNAL
USER INPUT QUERY APIs

®
@

®
ol = 1 °| om
OUTPUT DATA 08

Figure 35 - Dialogflow

Dialogflow is available through Google Cloud Platform (GCP) and the
following steps must be followed to use it:

1. Create a service account for the selected project.

2. Generate a private key (APl key), which will be wused for
communication between the server and the platform.

3. Export the key as a JSON file.

5.3.1 Create Service Account

To begin working with Dialogflow, a service account is required. This can
be quickly and easily created from Google Cloud Platform (GCP) by
selecting the “Service Accounts” option from the navigation menu.

= Google Cloud % react-native-app «
i1 Cloud overview >
== Products & solutions >
PINMNED
© 1AM & Admin >
1AM
& Billing Identity & Organization
. Policy Troubleshoater
API APIs & Services >
Policy Analyzer
’
.\# Marketplace Organization Policies
{2} Compute Engine > Service Accounts
Workload Identity Federation
= Cloud Storage >

‘Workforce Identity Federation
Figure 36 - Service Accounts

[42]

From there, the user can manage existing service accounts or add a new
one by simply clicking the “CREATE SERVICE ACCOUNT” button:

Service accounts + CREATE SERVICE ACCOUNT W DELETE +& MANAGE ACCESS C REFRESH 1 LEARN

Service accounts for project "react-native-app”

Asery nt represents a Google Cloud ser dentity, suchas

ode running on Compute Engine VMs, App Engine apps, or systems running outside Google. Learn more about service accounts. (4

Organization policies can be Used to SecUre Service 3CCoUNts and biock risky service account features, such as automatic 1AM Grants, key creation/upload, or the creation of service accounts entirely. Learn more about service account organization

policies [2
= Filter Enter ty name or value Q m
D Email Status. Name Description Key ID Key creation date OAuth 2 Client ID @ Actions
O o3 chatbot@igneous-fort- & Enabled chatbot chatbot 83d263c232bcbbe7834a2c8ba3fe55882557183 Nov 21,2023 118167849977363723107

398615.iam.gserviceaccount.com

Figure 37 - Service Accounts List
When creatig a new serivce account, a name shall be given as a first step:
< Create service account

© service account details
~ Service account name -
| chatbot ‘

Display name for this service account

- Service account ID * .
| chatbot-o x C ‘

Email address: chatbot- fort-398615.iam. com @

account description |

& wihat this service account will do

CREATE AND CONTINUE

Grant this service account access to project
(optional)
|
© Grant users access to this service account (optional)

[or [

Figure 38 - Create Service Account Ist step

Next, the appropriate roles should be assigned. To access all the features
of Dialogflow, two roles are required:

e Dialogflow API Client

e Dialogflow API Reader

< Create service account

& Service account details

Py Grant this service account access to project
(optional)

Grant this service account access to react-native-app so that it has permission ta
complete specific actions on the resources in your project. Learn more (2

- Role 1 1AM coni (] =
| Distogflow APt Cient 4 ooumcoomon W
Can call all meth a
col tion: ell a
therr descendant
- Role 1 1AM conditi] =
Dialogflow API Reader |4 AbD 1AM CONDITION L

Can read agent and session properties;
cannat query for intent

+ ADD ANOTHER ROLE

CONTINUE

© Grant users access to this service account (optional)

[I

Figure 39 - Create Service Account 2nd step

[43]

The third and final step is optional and no input is required

5.3.2 Generate Private Key

A private key can be generated from the “Actions” column of the targeted
service account, by clicking the “three dots” and selecting the “Manage Keys”
option

Service accounts for project "react-native-app”

ts. 2

s entirely. Leam more about service account organization

T Filter Enter property name or value (7] n

0O emai Status Name Description Key ID Keycreationdate OAuth2 ClientID @ Actions

a @Enabled chatbot Mo keys | :
e
]

tails

permissions

Manage
keys
View
metrics

View logs
Disable

Delete

Figure 40 - Generate Private Key

From there, select the “KEYS” tab and click the “Create new key” option
from the “ADD KEY” dropdown menu:

< chatbot
DETAILS PERMISSIONS KEYS METRICS LOGS
Keys

Service account keys could pose a security risk if compromised. We recor
Cloud here (4.

Add a new key pair or upload a public key certificate from an existing key pair

Block service account key creation using organization policies .
Learn more about setting organization policies for service accounts [4

ADD KEY ~

Create new ke
i Key creation date Key expiration date

Upload existing key

Figure 41 - Create New Key

Then the JSON format should be selected as the key type:

Create private key for "chatbot"

Downloads a file that contains the private key. Store the file securely because this key
can't be recovered if lost.

Key type

@® Json

Recommended

O P12z
For backward c

CANCEL CREATE

Figure 42 - Key Type

[44]

5.3.3 Export Private Key

This key can be exported and used in the application to authenticate the
user and grant access to the resources associated with that key:

e
"project_id":

"universe domain”

Figure 43 - Export Key

5.4 Dialogflow Architecture

Through GCP, two versions of Dialogflow are offered:

1. Dialogflow CX: This is an out-of-the-box solution that uses flowcharts
and is ideal for simple scenarios where users can choose from a
predefined list of options. It is not well-suited for managing free-form
text.

2. Dialogflow ES (Essentials): This is a more advanced option, designed
for handling free-form text with greater capabilities than CX.

Dialogflow ES is the most commonly used option, offering more features
and better performance. Therefore, will focus on its architecture:

1. End-user
expression

EE— Agent
2. Intent
| match
A v
- Intent
!l Intent
Training phrases
!l Intent n 9P
- E Action and parameters
=] Intent
Response
3. Response
Figure 44 - Dialogflow ES

5.4.1 Agent

Agent is the first entity of this model. It is a natural language understanding
unit designed and developed to manage conversations with end-users. It
functions as a virtual assistant or chatbot, interacting with users and
processing their requests. A custom agent can be created from scratch, use
an existing prebuilt agent, or combine elements of both approaches. Typically
prebuilt agents are designed to interact with specific entities, such as external
systems or third-party APIs, making them suitable for more experienced
users of the platform.

[45]

5.4.2 Intents

An intent represents what the user wants to achieve or communicate. Each
new agent comes with two default intents (Welcome and Fallback) and also
provides the option to create additional custom intents.

What's the forecast?

Extracted:
What is the weather like ? > » Forecast >
intent

Slocation

What's the temperature going to be in Seattle? / Agent

Figure 45 - Intents

Each intent offers the following options:

e Context: Maintains the state of a conversation, allowing intents to
be connected in a meaningful way. This helps the chatbot better
understand the conversation's content, improving intent matching
accuracy.

e Events: A method for recognizing user input using predefined events
from the platform, eliminating the need for text analysis and
matching.

e Training Phrases: Specific phrases or sentences that users might say
to trigger an intent. This functionality helps the chatbot identify and
understand various ways of expressing the same intent.

e Actions and Parameters: Parameters are used to specify details within
an intent. For example, in the phrase “What is the weather in
Tripoli?” the word “Tripoli” can be labeled as a parameter named
“city”, which can take various values without altering the rest of the
sentence. Similarly, an action represents the task or function that
should be executed when an intent is triggered.

e Responses: The messages or actions that the chatbot should return
to the user once the intent is matched. These can include simple
text, audio messages, or other actions.

e Fulfillment: Code available in an external system responsible for
handling the intent and providing data to the user through a network
service.

H.4.3 Entities

An entity represents a concept or object related to user input. Entities are
used to extract specific pieces of information from the user’s text, aiding in
a more precise understanding of their intent. They are categorized into two
types:
e System Entities: Predefined entities useful for common and well-known
tasks, such as extracting a date or color from the input text. Examples
of system entities include @sys.date and @sys.number.

[46]

e Custom Entities: Entities created by the user to meet the specific
needs of their implementation.

5.4.4 Integrations

Integrations are a fundamental component of chatbot architecture, allowing
them to be embedded into existing systems such as Facebook, Messenger
and Slack:

Dislogflow ___
v Essentials o Integrations

B ¥ v [®

kik 8 % @

Figure 46 In tegrations

5.4.5 Training

In the Training tab, the agent can be trained either by uploading a file or
by analyzing previous conversations. The file-based method involves
automatic training, where the chatbot learns from a text file containing
expected questions and answers. Although this method can be time-
consuming, it often yields effective results. Alternatively, manual training is
required when the chatbot fails to respond to certain user inputs. In such
cases, intervention from the administrator is needed to either map the text
to an existing intent or create a new intent to handle the situation:

Dialogflow . . . ‘
' Essentials Training m v

......

lllll

lllll

|||||
lllll

Dialoghiow CX

Figure 47 - Training

[47]

6 React Native

6.1 Introduction

React Native [19] is an open-source JavaScript framework designed for
building hybrid (cross-platform) applications. It was developed and is
maintained by Facebook, with significant contributions from the
programming community through open-source packages that can be easily
integrated into the codebase. One of the main advantages of React Native
is that it allows developers to write a single codebase for both Android and
iOS devices, significantly reducing the time and effort required compared to
writing separate code for each operating system.

This cross-platform capability offers a more efficient development process,
allowing for faster deployment of apps across multiple platforms without
sacrificing performance or user experience. React Native combines the best
parts of native development with the flexibility of React, a popular
JavaScript library for building user interfaces, making it easier to create
dynamic and high-performing mobile applications. Additionally, the
framework leverages native components instead of web-based ones, providing
a more fluid and responsive app experience. React Native's wide ecosystem
offers various pre-built components, plugins and libraries, making it a
powerful tool for mobile app development.

Several key features distinguish React Native from other frameworks,
enhancing its appeal for mobile app development:

e Native Performance: React Native provides near-native performance
by avoiding the use of web views for rendering components. Instead,
it leverages native modules and components, ensuring a smooth and
optimized user experience.

e Reusable Code: Developers can write code once and apply it to both
Android and iOS platforms. Through conditional logic, specific
functionalities can be tailored to each operating system, reducing
redundancy and speeding up development.

e Hot Reloading: This feature allows developers to see real-time updates
in the app as they modify the code, without the need for rebuilding
the app from scratch, making the development process faster and
more efficient.

e Expo: An open-source framework that simplifies the React Native
development process. Expo provides a set of tools, including Expo
Go, which allows developers to test their app directly on physical
devices without needing to install additional software.

These features make React Native a highly efficient and versatile tool
for building cross-platform mobile applications.

6.2 Local Development

There are two main ways to develop a React Native application:
e Expo Go: This is the easiest way to get started with React Native,
requiring only a recent version of Node (16+) and a physical device
for testing.

[48]

e React Native CLI: This method requires Xcode for iOS devices and
Android Studio for Android devices.

If the local machine runs macOS, both Xcode and Android Studio can be
used, making the second option (React Native CLI) preferable. However, if
the user is on Windows, Xcode is not available, meaning development can
only be done for Android. In this case, the first option (Expo Go) is
recommended, as it allows real-time testing of the app on a physical device.
Since the local machine in this scenario is running Windows, iOS testing
wouldn’t be possible, making Expo Go the most suitable solution for app
testing and development.
An even faster method, recommended for quickly testing specific features,
is Snack. This is a web-based platform that allows users to write code and
test their React Native app either through an embedded simulator on the
website or directly on the user's physical device. It’s a convenient option
for rapid testing without needing a full development setup.

Figure 48 - Snack

6.3 Expo Go

A new Expo project can be created by running the command: “npx create-
expo-app <app name>".

This initializes a new React Native project using Expo with the specified
app name, simplifying the setup process:

B Windows PowerShell * + -~

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscore6

PS C:\Users\manos\Desktop\react_native> npx create-expo-app myFirstApp

Figure 49 - Create Expo App

[49]

Afterward, additional information about the next steps will be displayed
to guide the user through the setup and development process:

¥ Your project is ready!

To run your project, navigate to the directory and run one of the following npm commands.

- cd myFirstApp
- npm run android

- npm run ios # you need to use macOS to build the i0S project - use the Expo app if you need to do i0S development with
out a Mac
- npm run web

A new version of ‘create-expo-app' is available
You can update by running:

Figure 50 - Expo App Details

By opening the newly created folder in some editor like VSCode, the user
will find a default file called App.js. This file serves as the starting point
for your React Native app:

J5 Appjs M X
{ statusBar }

{ StyleSheet,

.gitignore

backgroundColor:
alignItems:
justifyCont

Figure 51 - Root File

To run the app and test it on a physical device, the user needs to first
install the Expo Go app from the Play Store for Android devices or from
the App Store for iOS devices, depending on the platform:

[50]

Installed on all devices

3] Redmi Note 8 Pro

41% Mo

Similar apps

Figure 52 - Install Expo App

After running the command “npm start” in the local machine, the app
will launch and several options will be available:

QR Code: The user can scan this code and the app will open on
their device, provided that both the device and the local machine are
on the same network.

Press 'a": If Android Studio is installed, the selected Android emulator
will launch.

Press 'j' A window will open, allowing the user to debug the app
through an inspector, like browser developer tools.

Press 'r': This will refresh the app.

Press 'm': A menu will appear on the mobile device with options
such as debug, refresh, performance monitor and more.

Press 'o": This opens the app in the default text editor.

PS C:\Users\manos\Desktop\react_native\myFirstApp> npm start

> myfirstapp@l.0.e start
> expo start

Starting Metro Bundler

Metro waiting on exp:
Scan the QR code above with Expo Go (Android) or the Camera app (i0S)

Using
Press s switch to development build

Press a | open Android
Press j open debugger
Press r | reload app
Press m | toggle menu

Press o open project code in your editor

Press ? | show all commands

Logs for your project will appear below

Figure 53 - Start App

[51]

Upon opening the application, the user will see the following result:

% ExpoGo

B Development servers HELP.

Press here to sign in 1o your Expo account
and see the projects you have recently been
working on.

> Enter URL manually

Recently opened

myFirstApp

Figure 54 - Available Apps

By pressing “myFirstApp”, the project will build and the output of the code
previously reviewed in the App.js file will be displayed:

Open up App.is to start working on your app!

Figure 55 - Build App

[52]

6.4 React Fundamentals

React

Native runs on React, a popular open-source library for building user

interfaces with JavaScript. React consists of several fundamental concepts
[20], outlined below:

6.4.1

Components
JSX

Props

State

Components

In React, components serve as the building blocks of an application's UL
Complex interfaces can be broken down into smaller, reusable pieces that
can be managed independently. In React Native, components are similar to
those in React on the web, but they render native UI elements like View,
Text, or Image instead of HTML elements like div or span. A number of
built-in Core Components are provided by React Native, ready to be used
in an app. Some of the most important and commonly used are mentioned

below:

View: The View component is one of the most fundamental building
blocks in React Native, serving as a flexible container for layout using
flexbox, styling, touch handling and accessibility features. It maps
directly to the native view on the platform, such as UIView on iOS
or android.view on Android. Designed to nest inside other views, a
View can contain zero or more child components. For instance, a
View can wrap two colored boxes and a text component in a row,
with padding for spacing.

Text: The Text component in React Native is used for displaying
text and supports features like nesting, styling and touch handling.
The code snippet below demonstrates an example of how the View
and Text components can be combined to showcase the use of core
components in React Native. The code snippet begins by importing
the View and Text components from the react-native library. It then
defines a functional component named ViewBoxWithText. Within this
component, the return statement renders a View component that acts
as a container for the Text component. The Text component displays
the string “Hello World!” inside the View. Finally, the component is
exported as the default export, making it available for use in other
parts of the application:

[53]

1 | import { View, Text } from "react-native";
2

3 | const ViewBoxWithText = () => {
4 return (

5 <View>

6 <Text>Hello World!</Text>
7 </View>

8)

9 1}

10

11 | export default ViewBoxWithText;

e TextInput: The TextInput component is a fundamental element for
entering text into an app via the keyboard. It offers various
configurable features through props, including auto-correction, auto-
capitalization, placeholder text and different keyboard types like a
numeric keypad. The most basic use case involves placing a TextInput
on the screen and subscribing to the onChangeText event to capture
user input. Additionally, other events such as onSubmitEditing and
onFocus can also be utilized to handle specific interactions.

e ScrollView: A component that wraps the platform’s native scroll view
and integrates with the touch locking “responder” system. It is crucial
for ScrollView to have a bounded height to function properly, as it
handles unbounded-height children within a constrained container
through scrolling.

Additionally to the core components, the user can create their own custom
components that are similar to a javascript function and can contain any
core component or a custom one, like it was demonstrated in the previous
code snapshot, where the ViewBoxWithText is a custom component.

6.4.2 JSX

JSX (JavaScript XML) is a syntax extension for JavaScript that resembles
HTML. It is used to define the structure of the UI by combining JavaScript
logic with declarative syntax, simplifying the development process. In React
Native, JSX is employed to outline the layout of a mobile app’s interface.

6.4.3 Props

Props (short for properties) are a way of passing data from parent
components to child components. They make components dynamic and allow
for reusability. As shown in the following example, the welcome function
receives the name 'Manos' as a prop and displays it within the paragraph
tags.

[54]

function Welcome(props) {
return <p>Hello, {props.name}</p>;

1

2

3 |}

4

5 | function App() {
6 return (

7 <div>

8 <Welcome name="Manos" />
9 </div>

10)

11|}

6.4.4 State

While props are passed down from parent components, state is managed
internally within the component. State holds data that can change over
time and directly influences how the component behaves or renders. In
React Native, updating the state triggers a re-render of the component,
ensuring that the UI reflects the latest state changes. This distinction
between props and state allows components to remain both interactive and
responsive to user input or other dynamic events.

To manage state within a component, React provides a hook called useState.
A hook is a special function that allows developers to “hook into” React's
core features. For instance, useState enables adding state to functional
components. Since useState is a part of the React library, it needs to be
imported separately, as it is not a built-in feature of React Native like the
core components imported from the react-native library. The syntax for
using useState looks like this:

const [<variableName>, <setFunctionName>] = useState(<initialValue>);

The set function can be invoked at any point in the code to update the
value of a variable. Similarly, the variable can be accessed and used directly
in the code wherever needed.

6.5 React Hooks

React Hooks are a powerful feature of the React library, first introduced in
version 16.8. Hooks provide a more flexible and streamlined way to manage
state and handle various effects within components. Some of the most
commonly used hooks include:

o State Hooks: State, as mentioned earlier, allows a component to retain
information over time. This capability is crucial in scenarios like
handling user input, where the component must dynamically track
and respond to changes. By locally storing data within the component,
state ensures that interactions, such as form entries or button clicks,
are remembered and processed correctly, resulting in a smoother and
more engaging user experience. The built-in state hooks include:

o useState: Declares a state variable that can be dynamically
updated.

[55]

o useReduce: Declares a strate variable with the update logic
inside a reducer function.

e Context Hooks: Context allows a component to access information
from distant parent components, without passing it each time as
props. This is especially helpful for managing global data that needs
to be shared across multiple layers of the component tree. The built-
in context hooks include:

o useContext: Reads and subscribes to a context.

e Ref Hooks: Refs allow a component to store information that doesn't
affect rendering, such as a DOM node or a timeout ID. Unlike state,
updating a ref does not trigger a re-render of the components. Refs
act as an “escape hatch” from the React paradigm, offering a way to
handle certain tasks outside React’s typical data flow. They are
especially useful when working with non-React systems, like
interacting with built-in browser APIs, where you need direct access
to elements or other external resources without impacting the
component’s render behavior. The built-in ref hooks include:

o useRef: Declares a ref capable of holding any value, though it
is most commonly used to store references to DOM nodes.

o Effect Hooks: These hooks allow a component to interact with external
systems. This includes handling tasks such as network requests,
manipulating the browser DOM, managing animations, integrating
widgets from other UI libraries and interacting with other non-React
code. The built-in effect hooks include:

o useEffect: connects a component to an external system.

e Performance Hooks: A common approach to optimizing re-rendering
performance is to avoid unnecessary work. For instance, the user can
instruct React to reuse a cached calculation or skip a re-render
entirely if the data remains unchanged from the previous render. The
built-in perfomance hooks include:

o useMemo: Caches the result of an expensive calculation to
prevent unnecessary recalculations.

o useCallback: Caches a function definition, allowing it to be
passed down to optimized components without triggering re-
renders.

6.6 State Management

State management in React Native refers to how the app handles and shares
data across components, ensuring consistent behavior and UI updates. In
smaller applications, local component state, managed with hooks like
useState, is often sufficient. However, as the app grows, managing shared
or global state becomes more complex. To address this, React Native
developers often use external libraries like Redux or React's Context API
to centralize state, making it easier to manage data flow, synchronize
updates and reduce prop drilling.

6.6.1 Context API

The Context API [21] is a powerful feature in React that enables components
to access shared data without the need to pass props through every level

[56]

of the component tree. This API simplifies the management of global or
shared state by providing a way to create and consume context, making it
ideal for scenarios like theming, user authentication or language settings:

prop drilling context AP|
Figure 56 - Context API

Some of the key features of Context API include:

Centralized State Management: State is available in a central
container, accessible by all components in the application. This
centralization simplifies the management of shared data.

Provider Component: A provider component is defined to wrap the
parts of the application where the state should be available. This
ensures that any components within this provider have access to the
shared state.

Consumer Components: Consumer components are those that can
access the state and invoke functions to modify it. These components
interact with the state by reading from and updating it as needed.Test
Reducers: Using reducers with the Context API is common for state
management, as they provide a predictable and organized way to
modify data. Reducers are functions that specify how the state
changes in response to various actions.

Dispatch Actions: Consumer components dispatch actions that
describe changes to the state. These actions are then handled by
reducers to update the state accordingly.

6.7 Navigation

Navigation is a fundamental aspect of any mobile app, providing users with
the ability to move between different screens and views seamlessly. In React
Native, managing navigation involves using libraries and tools designed to
handle different navigation patterns and transitions. The most popular
library for navigation in React Native is react-navigation.

[57]

6.7.1 Install Dependencies

The first step is to install the basic dependencies for react navigation:
e (@react-navigation/native: The core library for navigation.
e (@react-navigation/stack: For stack-based navigation.
e (@react-navigation/bottom-tabs: For tab-based navigation.
e (@react-navigation/drawer: For drawer-based navigation.

6.7.2 Stack Navigator

The following code snippet demonstrates the setup of a stack-based
navigation system. First NavigationContainer is imported from @react-
navigation/native and createStackNavigator is imported from @react-
navigation/stack. An instance of the stack navigator is then created using
createStackNavigator(). This Stack object will be used to configure the
screens and manage navigation behavior, allowing users to push and pop
screens in a stack, which is ideal for hierarchical navigation.

The App function defines a functional React component named App, which
serves as the main component of the application. Within this component,
NavigationContainer wraps the entire navigation setup, providing the
necessary context for navigation throughout the app.

Inside NavigationContainer, the Stack.Navigator component is used to define
the stack navigator. It manages the navigation between screens. Users can
add screens to the stack navigator by specifying a name for each screen
and providing a component prop that indicates which React component
should be rendered for that screen.

I | import * as React from "react";

2 | import { NavigationContainer } from "@react-navigation/native";
3 | import { createStackNavigator } from "@react-navigation/stack";
4

5 | const Stack = createStackNavigator();

6

7 | function App() {

3 return (

9 <NavigationContainer>

10 <Stack.Navigator>

11 <Stack.Screen name="Home" component={HomeScreen} />

12 <Stack.Screen name="Details" component={DetailsScreen} />
13 </Stack.Navigator>

14 </NavigationContainer>

15)s

16 | }

17

18 | export default App;

6.7.3 Tab Navigator

The Tab Navigator offers a tab-based navigation interface, allowing users
to switch between different screens by tapping on tabs. It is particularly
useful for applications with multiple distinct sections that users need to

[58]

navigate quickly. The implementation of a Tab Navigator follows a similar
pattern to that of a stack navigator and the process is straightforward. The
example below demonstrates how to set up a Tab Navigator:

1 | import { createBottomTabNavigator } from '@react-navigation/bottom-
2 | tabs';

3

4 | const Tab = createBottomTabNavigator();

5

6 | function TabNavigator() {

7 return (

8 <Tab.Navigator>

9 <Tab.Screen name="Home" component={HomeScreen} />

10 <Tab.Screen name="Settings" component={SettingsScreen} />
11 </Tab.Navigator>

12);

13 | }

After adding some test icons to the bottom tabs, the result of the above
example will be:

Figure 57 - Stack Navigator

6.7.4 Drawer Navigator

Drawer Navigator is a versatile navigation pattern in React Native that
provides a side menu, often referred to as a drawer, allowing users to
navigate between different sections or screens of an app. This type of

[59]

navigation is especially useful for apps with multiple top-level screens. The
example below demonstrates how to set up a Drawer Navigator:

1 | import { createDrawerNavigator } from "@react-navigation/drawer";
2

3 | const Drawer = createDrawerNavigator();

4

5 | function DrawerNavigator() {

6 return (

7 <Drawer.Navigator>

8 <Drawer.Screen name="Home" component={HomeScreen} />

9 <Drawer.Screen name="Settings" component={SettingsScreen} />
10 </Drawer.Navigator>

11)s

12 | }

After adding some test icons to the bottom tabs, the result of the following
example will be:

10:44

Home

Settings

Figure 58 - Drawer Navigator Inactive Figure 59 - Drawer Navigator Active

6.8 Styles

Styling in React Native is a key aspect of building user-friendly mobile
applications. Unlike web development with CSS, React Native uses a styling
system similar to CSS but with some differences tailored for mobile
development. React Native provides the StyleSheet API to define styles in

[60]

a way that optimizes performance and readability. Styles are defined as
objects and then these style objects are applied to components using the
style prop as it is demonstrated in the example below:

I | import { StyleSheet, Text, View } from 'react-native';
2

3 | const App = () => {

4 return (

5 <View style={styles.container}>

6 <Text style={styles.title}>Hello World!</Text>
7 <Text style={styles.subtitle}>Welcome</Text>
8 </View>

.);

10735

11

12 | const styles = StyleSheet.create({

13 container: {

14 flex: 1,

15 justifyContent: 'center',

16 alignItems: 'center',

17 backgroundColor: '#fefefe’,

18 }J

19 title: {

20 fontSize: 24,

21 fontWeight: 'bold',

22 color: '#333',

23 },

24 subtitle: {

25 fontSize: 18,

26 color: '#666"',

27| 3,

2811);

29

30 | export default App;

The following result demonstrates the application of basic styles to text
elements using the provided code snippet:

[61]

Hello World!

Welcome

Figure 60 - Styles

6.9 API Integration

API integration involves connecting a React Native app to external services
or backend servers to fetch or send data. This allows the app to display
dynamic content, interact with databases and perform various operations
that depend on external data.

React Native does not include built-in HTTP request functionality, therefore
libraries like fetch (native) or third-party libraries like axios are required
for making network requests [22].

6.9.1 Fetch

The Fetch API is a built-in JavaScript function for making network requests.
It is straightforward and user-friendly for handling basic tasks. The code
snippet below demonstrates how to use it to make a simple request to a
specific endpoint to retrieve information about a map marker based on an
ID. In this example, the useEffect hook initiates the HTTP request using
the fetch method when the component mounts. The loading variable displays
a loading indicator while the request is in progress. Upon receiving a
successful response, the data is displayed on the screen using the data
variable. If an error occurs, it is handled and displayed using the information
available in the catch block.

[62]

1 | import React, { useState, useEffect } from 'react';
2 | import { View, Text, ActivityIndicator, StyleSheet } from 'react-na-
3 | tive';

4

5 | const App = () => {

6 const [data, setData] = useState(null);

7 const [loading, setlLoading] = useState(true);

8 const [error, setError] = useState(null);

9

10 useEffect(() => {

11 fetch('https://villa-agapi-344fd44fcd28.hero-
12 | kuapp.com/data/api/marker/112")

13 .then((response) => response.json())

14 .then((json) => {

15 setData(json);

16 setLoading(false);

17 1

18 .catch((err) => {

19 setError(err);

20 setLoading(false);

21 1

21} [Ds;

23

24 if (loading) return <ActivityIndicator />;

25 if (error) return <Text>Error: {error.message}</Text>;
26

27 return (

28 <View style={styles.container}>

29 <Text style={styles.response}>Data:

30 | {ISON.stringify(data)}</Text>

31 </View>

32)s

3|}

34

35 | export default App;

6.9.2 Axios

Axios is a popular JavaScript library used for making HTTP requests. It
simplifies the process of interacting with APIs by providing a clean API for
handling requests and responses. Axios supports promises and async/await
syntax, making it easy to work with asynchronous data.

The previous example can be easily implemented using the Axios library
this time as shown in the code snippet below:

[63]

© 0 J O Ut = W N~

W W W W W W N NDNDNDDNDNDNDIDNDNDNDN — H =l
U W N R O ©O 1O Ok WNFHO OGBSO Utk Wi = O

import React, { useState, useEffect } from 'react’;
import { View, Text, ActivityIndicator, StyleSheet } from ‘'react-na-

tive';
import axios from 'axios';

const App = () => {

const [data, setData] = useState(null);
= useState(true);
const [error, setError] = useState(null);

const [loading, setlLoading]

useEffect(() => {

axios.get('https://villa-agapi-344fd44fcd28.hero-
")

kuapp.com/data/api/marker/112
.then((response) => {

setData(response.data);

setlLoading(false);

})

.catch((err) => {
setError(err);
setLoading(false);

1)

o[

if (loading) return <ActivityIndicator />;
if (error) return <Text>Error: {error.message}</Text>;

return (

<View style={styles.container}>
<Text style={styles.response}>Data:

{JSON. stringify(data)}</Text>
</View>
)
¥

export default App;

[64]

In both examples, the outcome is identical, as illustrated in the image
below.

Data: {"marker":
[{"id":112"latitude":35.33910423022736,"longitu

de":25.13322316110134,"title":"Lions
Square""type":"monuments",“icon":"map","keyW
ords":["lions""square","all"T}1}

Figure 61 - API Integration

[65]

7 Villa Agapi Mobile App
7.1 Data Model

The application’s data model is structured around three distinct types of
users, each with specific roles and access levels:

1) Visitor: A potential user who can interact with a limited set of features
within the application. Visitors typically use the app to learn more about
the property. Their access is restricted and they can:
e View information about the property, including basic details about
the house and surrounding area.
e Explore local area and find recommended places via dynamic maps.
e Submit a booking request to express their interest in staying at the
property.
e Manage their preferences (language, theme mode).
e Login to the app.
2) Guest: A user who has successfully made a booking and has arrived at
the property. Upon arrival, the host (admin) provides the Guest with login
credentials, that unlock advanced features within the app. These features
are designed to improve the Guest’s stay by providing more detailed and
interactive options, including:
e Access to detailed property information through 2D or 3D map of
the house.
e A report/question form for submitting feedback, asking questions or
reporting issues.
e A virtual assistant to answer frequently asked questions about the
property and the local area.
e Contact information for communicating directly with the host.
e 24/7 live chat support with the host for real-time assistance during
their stay.
A guest is considered an active user only during their stay. Starting one
day after the departure date, the user is automatically set to inactive and
can no longer log in.
3) Admin: The Admin role is assigned to the host, who has complete control
over the property and its users. Admins log in using the same interface as
Guests but are directed to an exclusive admin dashboard, where they can
manage various aspects of the property and its users. Key features available
to the Admin include:
e User management, allowing the host to search, create or edit users.
e DBooking management, where they can view and handle incoming
booking requests.
o Editing property availability to control when the property is bookable.
e Dynamic map management, where the Admin can add or delete
markers on interactive maps.
e Statistics dashboard, providing insights into the property’s
performance, including bookings, user devices and guests' country of
origin.

[66]

Additionally, Admins can use the live chat feature to communicate with
Guests in real-time, offering support and ensuring a better user experience
throughout the stay.

This data model ensures a clear distinction between the different user roles,
with each group having access to the tools and information they need. In
conclusion, Visitors are prospective clients, Guests are active users during
their stay and Admins oversee and manage the entire system.

/ visitor \

Z0

A\
]
Al
/ admin \ EEE / guest \
z A?_ '-!.‘_/ ‘
Erq“ml L =0
A ’ ~,
: iy
Ev X SUPPORT

1 |
1|

Figure 62 - Data Model

7.2 Tech Stack

The mobile application should be available on both Android and iOS
platforms. For this purpose there are several implementation approaches,
which can be broadly classified into two main categories:

Native apps: Designed exclusively for a single platform (10S or
Android), these apps are built using platform-specific languages (Swift
for iOS and Kotlin/Java for Android). This approach ensures optimal
performance and seamless access to native device features. While such
apps provide better performance and an improved user interface, they
come with higher development costs. This is due to the additional
time, effort and expertise required to develop and maintain two
separate versions of the same app, each using different technologies,
making the process more complex.

Hybrid apps: Built using web technologies like HTML, CSS and
JavaScript, hybrid apps are wrapped in a native container, enabling
them to run across multiple platforms. While they may exhibit slightly
reduced performance compared to native apps, the key advantage is
the use of a single codebase for both iOS and Android, simplifying
development and maintenance.

[67]

7.2.1 React Native

For this specific application, the hybrid approach was
chosen due to its alignment with the project’s priorities.
While native performance is not a critical factor that
would impact the user experience, the ability to
. accelerate development and simplify maintenance is
React Native i portant, P P
Several frameworks can be used to build hybrid apps, including Flutter,
React Native and Ionic. In this case, React Native was chosen due to its
popularity and the fact that it is more accessible for developers with a web
development background, making it a smoother transition and easier to
implement.

7.2.2 Node.js

For the backend of the application, Node.js along with

n \' d W the Express library was selected, due to their efficiency
and flexibility. Node.js allows for fast, scalable server-

@ side applications by using non-blocking, event-driven
architecture, which is ideal for handling multiple requests

simultaneously. Express, built on top of Node.js, simplifies the development
process with its lightweight framework, offering powerful tools for routing,
middleware and handling HTTP requests. This combination enabled easier

development, easy maintenance and seamless integration with the front-end,
especially given the full-stack JavaScript environment.

7.2.3 PostgreSQL

PostgreSQL was chosen for the database due to its status
as an open-source relational database known for advanced
features like ACID compliance, support for JSON data
and extensibility, making it ideal for handling both
structured and unstructured data. It also offers strong
concurrency control, ensuring reliable performance even
under heavy loads, which makes it a perfect fit for the
application where data consistency, flexibility and
scalability are critical. Additionally, PostgreSQL integrates seamlessly with
a Node.js server, leveraging Node.js's capability to handle multiple
connections efficiently, providing a solid foundation for high-performance,
scalable applications.

7.2.4 Socket.io

Socket. IO was chosen for its ability to facilitate real-

time, bidirectional communication between clients and

servers. This makes it especially well-suited for the live

chat feature of the application, ensuring instant

SOCKET.IO messaging and seamless interactions between users. With

its ability to maintain persistent connections and fall

back on other transport methods, Socket.IO ensures reliable performance
even in varying network conditions.

[68]

7.2.5 Heroku

Heroku was chosen to host the Node.js server and

PostgreSQL database because of its easy-to-use platform

y 4 and smooth deployment process. It scales well, allowing

the application to handle different levels of traffic without

’ downtime. Heroku also has built-in support for
PostgreSQL, making database management simpler. Its

wide range of add-ons and tools helps speed up

HEROKU development and deployment, which is important for
staying flexible. Overall, Heroku offers the reliability and

adaptability needed for the application's growth and performance. Two
applications were created on Heroku: one for the Node.js server, which hosts
the REST APIs for the mobile application and uses the PostgreSQL database
and another server dedicated to the Socket.IO connection. This approach
was chosen to better manage the application's features, as the two servers
operate independently. This means that changes made to one application
won’t affect the other, allowing for more flexibility and easier maintenance.

7.2.6 GitHub

GitHub was utilized as the code repository for the two

applications hosted on Heroku, the Node.js server and the

Socket.IO app. Both repositories are private and linked

to Heroku, enabling continuous integration and

o development. This setup allows for automatic building of

GltHub the apps with each push to a selected branch, ensuring

that new changes are applied seamlessly. More advanced

options include creating separate branches for

development, user acceptance testing (UAT) and production, which can be

linked to pipelines in Heroku. This setup enhances workflow management

and allows for streamlined deployment processes across different stages of
development.

7.2.7 Git

Git is a distributed version control system that enables
developers to track changes in their code and manage
projects efficiently. By creating snapshots of a project’s
files, Git gives the opportunity to review, revert, or merge
changes, making it easy to experiment without losing
previous work. In this project, Git was used to manage
both the mobile application and server codebases. For the
mobile application, the main branch served as the default
branch, with new feature branches created for each update. These feature
branches were then merged into main upon completion. For the server
applications, a three-branch strategy was implemented:

1. Main: Used for local development. A separate branch was created for

each new feature, which was then merged into main.

[69]

2. Uat: This branch acted as a staging environment. After changes were
merged into main, they were pushed to the UAT branch for further
testing before deployment.

3. Prod: The production branch hosted the final version of the
application. Once changes passed testing in the UAT branch, they
were pushed to prod for live use.

7.2.8 Google Cloud Platform

The application was further enhanced by integrating

q Google Cloud Platform (GCP) to leverage several of its

advanced services. A dedicated API key was generated to

Google CloudPlatform gecurely access Google Maps Services, which power the
dynamic, interactive maps within the app.

In addition to the mapping functionality, Google Dialogflow was selected to

implement an intelligent virtual assistant. This conversational Al is designed

to respond to frequently asked questions, making the app more user-friendly

and interactive. The virtual assistant uses natural language processing (NLP)

capabilities to understand user queries and deliver accurate, real-time

responses, improving user engagement and reducing the need for manual

customer support.

7.2.9 Expo Go

Expo played an important role in the development and

deployment of the mobile application, making both
A EXpO processes more efficient. During the development phase, it

provided tools that enabled real-time testing directly on
physical devices, which was extremely helpful in catching and fixing issues
quickly. It was also very helpfull in the build phase, where it generated
platform-specific executable files like APKs (for Android), AABs (Android
App Bundles) and IPAs (for iOS). These files were necessary to ensure the
app would run smoothly on different devices. After the builds were
completed, Expo streamlined the deployment process, making it easier to
publish the app to the App Store for iOS users and the Google Play Store
for Android users.

7.2.10 Playwright

Playwright is an open-source framework for end-to-end
testing, enabling automated tests across browsers like
Chrome, Firefox and Safari. Created by Microsoft, it offers
features like automated interactions, visual comparisons
and network request interception, making it versatile for
complex web app testing. In this project, Playwright was
used on the backend to test the server’s REST APIs.
These tests can be run easily from the command line as needed, though
they are primarily executed within Heroku Pipelines before merging changes
to a higher environment. If any test fails, the process stops, preventing
unapproved changes from being merged.

[70]

B

HEROKU

de

2
o

S

\

nede

SOCl

=
@

©

KET.

Y

Figure 63 - Tech Stack

[71]

D

Goodgle Cloud Platform

@ Dialogflow

Google Maps APIs

4 N
/\ Expo

LS

4

8 Application back-end
8.1 Database

For this project, PostgreSQL was chosen as the database system. Version
15 was used, which was installed locally by following the official website's
instructions and downloading the installer

Quick Links Windows installers

Interactive installer by EDB

D he installer certified by EDB for all supported PostgreSQL versions.
Note! nstaller is hosted by EDB and not on the PostgreSQL community servers. If you have issues with the website it's hosted on, please contact we

This installer includes the PostgreSQL server, pgAdmin; a graphical tool for managing and developing your databases, and StackBuilder; a package manager that can be used to download and install additional
PostgreSQL tools and drivers. Stackbuilder includes management, integration, migration, replication, geospatial, connectors and other tools.

This installer can run in graphical or silent install modes.
The installer is designed to be a straightforward, fast way to get up and running with PostgreSQL on Windows.

Advanced users can also download a zip archive of the binaries, without the installer. This download is intended for users who wish to include PostgreSQL as part of another application installer.

The installers are tested by EDB on the following platforms. They can generally be expected to run on other comparable versions, for example, desktop releases of Windows:
PostgreSQL Version 64 Bit Windows Platforms 32 Bit Windows Platforms
2022,2019
2019, 2016
2019, 2016
2019, 2016
2019, 2016, 2012 R2
2019, 2016, 2012 R2

2016,2012R2&R1,7,8,10 2008 R1,7,8,10

Figure 64 - Install PostgreSQL

By opening a terminal and running the command “postgres --version”, the
installed version can be verified:

PS C:\Users\manos> postgres
postgres (PostgreSQL) 15.2

Figure 65 - Postgres Version

A prerequisite for accessing the database is starting the server. This can be
done by opening a terminal and running the command: pg_ctl start -D
“C:\Program Files\PostgreSQL\15\data”.

PS C:\Users\manos> pg_ctl start
QVapovI] yia TNV EKKLVNON TOu S1AKOM1OTH....2023-10-14 14:35:20.901 EEST [5196] LOG: redirecting log output to logging c
ollector process

2023-16-14 14:35:20.901 EEST [5196] HINT: Future log output will appear in directory "log".
olokAnpucn
0 SlaKOMLOTAC Eekivnos

Figure 66 - Start DB
8.1.1 Pgadmin4

PgAdmin4 is the graphical interface that simplifies the creation, maintenance
and the overall management of database objects [23]. It is installed alongside

[72]

% pgiAdmin4
File Object Tools Help

Browser

v & servers (1)

~ (@ PostgresaL 15

> = Databases (2)

> &b Login/Group Roles

>

Tablespaces

PostgreSQL and access to it is only possible after the server has been

started:

s\E e Q>

Dashboard Properties

Server sessions

Tuples in
100
5
50
25
o

Server activity

SQL Statistics D Dependents Py
W Total [l Active [l 1dle

[l inserts [l Updates [l Deletes Tuples out

1,000

Sessions Locks Prepared Transactions Cenfiguration

PID
y 4528
y 4700
y 5192
» 5200

» 5208

» 18256

0000900

Database User Application Client

postgr...

postgres postgr.. pgAdmin 4-DB:pestg.. 1

Figure 67 - PgAdmind

Transactions per second

M Fetched

Backend start
2023-10-13 21:04:45
2023-10-13 21:04:45
2023-10-13 21:04:45 ...
2023-10-13 21:04:45 ...
2023-10-13 21:04:45

2023-10-14 14:32:46

Returned Block I/0

150
100

50

ALY 0

Transaction start

2023-10-1414:3412 .

State

acti...

M Transactions [l commits [ll Rollbacks

W Reads

Wait event Blocking PIDs
Activity: Checkpointer...
Activity: BgWriterHibe..
Activity: WalwriterMain
Activity: AutoVacuum...

Activity: LogicalLaunc..

On the left side, the available servers and databases for each installed
version of PostgreSQL are displayed. By default, only the Postgres database

is available:

v B

Servers (1)

v G} PostgresaL 15

~ = Databases (2)

» = postgres

= testDB

L

>
>
>

<

>

55 casts
% Catalogs

[T} Event Triggers
%) Extensions

= Foreign Data Wrappers

Languages

€' Publications
% schemas (2)

> & app
> <& public

Subscriptions

> &b, Login/Group Roles

>

Tablespaces

Figure 68 - Available Servers

[73]

Hits

L2

8.1.2 Create Database

A new database can be created as shown:
Databases — Create — Database.

Browser S E® Q >
v B servers(1)
v &} PostgresqL 15

e ‘E’ Datghnene 0

> = tes Refresh

» &b, Login/Group Roles

» = Tablespaces

Figure 09 - Create Database 1st step

A new window will appear, prompting the user to choose the database name
and select the user (with postgres being the default):

= Create - Database S Ox

General Definition Security Parameters Advanced SQL

Database NewDB
Owner & postgres
Comment

o e X Close | | £) Reset

Figure 70 - Create Database 2nd step

By switching tabs, additional options become available, such as:
e Encoding
e Template
o Tablespace

[74]

= Create - Database X

General Definition Security Parameters Advanced SQOL

Encoding UTF8

Template = postgres
Tablespace 3 pg_default
Collation Select an item...
Character type Select an item...
Connection limit B

Template?) »

Note: When the preferences setting 'show template databases’ is set to false,
then template databases won't be displayed in the browser tree.

o e X Close £ Reset

Figure 71 - Create Database Definition

In the “Security” tab, permissions can be set for database users as well as
assign security labels.

= Create - Database 4

General Definition Security Parameters Advanced SOL

Privileges +
Grantee Privileges Grantor
B 2 postgres & postgres
ALL WITH GRANT OPTIO!
CREATE WITH GRANT OPTIO!
TEMPORARY WITH GRANT OPTICH
CONNECT WITH GRANT OPTIO!
Security labels +
Provider Security label
(D) At least one privilege should be selected. X]
o e X Close | | £) Reset | B BllE

Figure 72 - Create Database Security

[75]

Finally, in the SQL tab, the command that will be executed upon pressing
the Save button is displayed. This command will create the database,
reflecting the user's selections from the previous tabs:

= Create - Database Y

General Definition Security Parameters Advanced SQL

1 CREATE DATABASE "NewDB"

2 WITH

3 OWNER = postgres

4 TEMPLATE = postgres

5 ENCODING = 'UTF&'

[TABLESPACE = pg_default
7 CONNECTION LIMIT = -1

8 IS_TEMPLATE = False;

o 0 X Close | | £) Reset

Figure 73 - Create Database SQL

8.1.3 Schemas

In PostgreSQL, a schema is a logical container used to organize and manage
database objects such as tables, views, indexes and functions. Schemas help
structure the database by grouping related objects together, allowing for
better organization and access control.
In the newly created database named NewDB, the schemas option displays
the public schema, which is created automatically:

Browser 81\ w Q>

v E servers(1)
v &} PostgresaL 15
v = Databases (3)
~ = NewDB I
> [casts
> 9 catalogs
> [T Event Triggers
> T Extensions
> = Foreign Data Wrappers
3 Languages
> 5" Publications
v % schemas (1)
» & public
b Subscriptions
> = postgres
> = testDB
> &b, Login/Group Roles
b Tablespaces

Figure 74 - Database Schema

[76]

Expanding the public schema reveals various components that make it up,
including:
e Functions
e Sequences
e Tables
o Triggers
Browser S \E % Q-

~ E servers (1)
v (7 PostgresqL 15
~ = Databases (3)
v = NewDB
> | casts
> % catalogs
> [Event Triggers
>) Extensions
> E Foreign Data Wrappers
> Languages
> €' Publications
~ 4 schemas (1)
v <% public
Aggregates
&l Collations

v

i Domains
[FTS Configurations
[FTS Dictionaries
Aa FTS Parsers

FTS Templates
[Foreign Tables

R N

() Functions
Materialized Views

42}, Operators

{("} Procedures

w

v

v

1.3 Sequences
[Tables
{z} Trigger Functions

Types

R

Views

Figure 75 - Public Schema

For the app a new schema, named “app” was created. By right-clicking on
the Schemas option, a new schema can be created:

[77]

Browser S /| ' Q>

=

w = Servers (1)
v ¥ PostgresaL 15
v = Databases (3)
v = NewDB
» B casts
> % catalogs
» [T Event Triggers
> ‘% Extensions
» 5 Foreign Data Wrappers
» Languages
& Publications

% schemas (1 |

b

<

> “*) Subscriptio Refresh
> = postgres Search Objects...
> £ testDB PSQL Tool

» &b Login/G Rol
& Login/Group Rol Query Tool

» 4 Tablespaces

Figure 76 - Create new Schema Ist step

Similarly, to creating a new database, a window appears prompting the user
to choose a name for the new schema:

&> Create - Schema Pl

General Security Default privileges SQL

Name app
Owner £ postgres
comment

o 0 X Close | | £) Reset

Figure 77 - Create new Schema 2nd step

[78]

8.1.4 Tables

The application's database consists of the following tables:

e Users: This table stores information about the users. More specifically
16 columns were created for that purpose and they can split into 3
categories:

o Front-end editable fields: These columns are visible and
modifiable by guests, containing profile information such as
first name, last name, email, country and phone number.

o Front-end read-only fields: These columns are visible to guests
but cannot be modified by them, only from an admin user.
They include details related to their stay, such as login
credentials (username and password), arrival and departure
dates and the cleaning program.

o Back-end fields: These columns are not visible to guests but
play a crucial role in data management and business logic.
They include the user ID (ensuring uniqueness), an incremental
ID, the created date (defaulting to the current timestamp),
user role (admin or visitor) for feature access control, device
information for statistical purposes and an active status to
restrict access to advanced features for users no longer staying
at the property.

e Markers: This table holds details about the markers available in the
application's dynamic interface. It includes an incremental ID,
geographical coordinates (longitude and latitude), title, type, icon and
an array of keywords for search purposes.

e Availability: This table tracks the availability of the house and
includes only an incremental ID along with a date indicating when
the house is not bookable.

e DBooking_Request: This table records booking requests, including:

o Information provided by the user in the form, such as the
number of visitors, email address, comments and start & end
dates.

o Information generated by the server during request processing,
including the requested date and an info_message, which is an
ID created when sending the email with booking details to the
host. This ID allows hosts to search for booking requests easily.

e Attack: This table records information about unusual traffic patterns.
It typically tracks details of suspicious login activities, such as
attempts to use nonexistent usernames, as well as actions that are
not permitted within the app, indicating that someone is trying to
access the server's resources. In such cases, the user's IP address, the
timestamp of the attempted attack and comments related to the
specific activity are saved in this table.

In the following diagram, all the tables and their corresponding columns,
along with their data types, are displayed.

[79]

booking_request markers attack availability

id (integer) id (integer) id (integer) id (integer) id (integer)

name (text) visitors (integer) latitude (double) ipv4 (text) date (date)

longitude

email (text) name (text) (double) date (text)

password (text) email (text) title (text) comments (text)

created_date

(timestamp) comments (text) type (text)

(tin?erz!::rlnp) start_date (text) icon (text)

(t?;zzg::;) end_date (text) keywords (text[])

request_date

role (text) (text)

info_message

firstname (text) (text)

lastname (text)

cleaningprogram
(text[])

lastconnected
(timestamp)

phone (text)

country (text)

device (text)

is_active
(boolean)

Figure 78 - DataBase Tables

[80]

The creation of a new table is possible from the pgadmind from the option
Schemas > app > Create - Table

~ E servers(1)
v (i} PostgresaL 15
~ = Databases (3)
~v = NewDB

» [F casts
> % Catalogs
> [T Event Triggers
> 9 Extensions
> E.' Foreign Data Wrappers
> Languages
> (' Publications

~ % schemas (2)

> & app
> @ publi Schema...
>) Subscri Delete/Drop Collation...
> = postgres Refresh... Domain...
> S testDB Restore... Foreign Table...
: (?‘ :E::;i;:z Backup. FTS Configuration...
Drop Cascade FTS Dictionary...
CREATE Script FTS Parser...
Grant Wizard... FTS Template...
Search Objects.. Function...
PSQL Tool Procedure...
Query Tool Trigger function
Properties... Sequence...
Type...
View...

Materialized View...

Figure 79 - Create Table 1st step

From there, only a name is required, as the Owner, Schema and Tablespace
are predefined. However, these settings can be modified if needed.

[*1Create - Table X

General Columns Advanced Constraints Partitions Parameters Security SQL

Name users

Owner £ postgres
Schema @ app
Tablespace 7 pg_default
Partitioned table? »
Comment

o 0 X Close |4 Reset

Figure 80 - Create Table 2nd step

[81]

By expanding the Tables option of the current schema, the table that was
just created will be displayed.

~ & schemas (2)
v & app
> Aggregates
> &l collations
> % Domains
ﬂa FTS Configurations
{4 FTs Dictionaries
Aa FTS Parsers
FTS Templates
[E Foreign Tables

LA

{2} Functions
Materialized Views

&, Operators
("} Procedures

WO W W v

1.3 Sequences
v [Tables (1)
~ [users
> [columns
> M4 Constraints
> & Indexes
> (& RLS Policies
> Rules
> 3-' Triggers

» {2 Trigger Functions

> Types
> Views
> < public

Figure 81 - Users Table

8.1.5 Columns

Columns can be easily added to a specific table by navigating to:
Columns = Create = Column:

v [[Tables (1)
~ [users

Refresh
i Inc

>
> (& rL Search Objects...
> Ru PSQL Tool
> 3 Tri Query Tool

s 22 Trinner Fuswemms

Figure 82 - Add Columns

8.1.6 Query Tool

The Query Tool is a useful feature in pgAdmin that allows for quick and
easy execution of queries. If the user wishes to execute an SQL command,

[82]

they can open the Query Tool after selecting one of the available databases.
This can be done either by clicking the icon in the “Browser” tab or by

using the shortcut “ALT + SHIFT + Q.

Browser s | e Q>
v & servers (1) Query Tool
(An)(snift)(q)

~ [} PostgresaL 15
v = Databases (3)
> = NewDB |
> = postagres
> = testDB

» &b, Login/Group Roles

» Tablespaces

Figure 83 - Query Tool

A new window will appear on the right, where the user can write the
desired command, such as an INSERT statement for the users table. Finally,
they can click “Execute”. A message indicating either success or an error

will be displayed accordingly:

Dependents Processes & NewDB/postgres@PostgresQL 15%

Dashboard Properties SQL Statistics Dependencies

Browser S| B Q>
v B servers (1) & | NewDB/postgres@PostgresaL 15 v &
~ G} Postgresal 15 . == =
o m v A Y|V Nolmt -~ @ v@ @~ % % = 0
v = Databases (3)
> = NewDB | Query Query History
> = postgres 1 INSERT INTO app.users(
> = testDB 2 username, passwo
3 VALUES ('userl','password');

> &b, Login/Group Roles

> [Tablespaces
Data Output Messages Notifications

Successfully run. Total query runtime: 45 msec.

1 rows affected.

Figure 84 - Query Tool Example

An alternative method is to navigate through the table itself from the left

menu: Tables — users — Scripts:

[83]

[-

> [EventTrig count Rows

> Extension
% Create >

» E: Foreign D

N Language Delete/Drop

> &' Publicatic Refresh...

% schemas

v & app
> [Aga
> Al coll;
» 1§ Dorr
> 5 FTs
> [0 FTs
> Aa FTS

Restore...

<

Backup...

Drop Cascade
Import/Export Data...
Reset Statistics

ERD For Table

Maintenance...

> [Fore
» () Fune
> Mati
> '3"1}: Ope

>) Proc

Truncate >
View/Edit Data >
Search Objects...
PSQL Tool

> 1.3 Seqi Query Tool

v [@ Tabl properties...
> [users

> U5 Trigger Functions

CREATE Script
SELECT Script
INSERT Script
UPDATE Script
DELETE Script

Figure 85 - Query Tool Alternative Method

By selecting SELECT, a new window will appear on the right, similar to
the previous one. This time, it will feature a SELECT query for the users
table, which can be executed as before, returning the values that were

previously entered:

Dashboard Properties SQL Statistics Dependencies Dependents Processes S NewDB/postgr. £ NewDB/postgres@PostgreSqL 15+
& NewDB/postgres@PostgreSQL 15 v |8
m B /A Y Nolimt ~ @~ BB~ %% =~ @

Query History Va

Query

1 SELECT 4d, username, password
2 FROM app.users;

Data Output Messages Notifications

S ev0D 8 &) 8

id username
[PK] integer text

A

password
text

1 userl password

Figure 86 - Query Tool Select

8.1.7 Backup

Creating backups is crucial for any database system. Backups protect data
against system failures, natural disasters, or human errors. Without regular
backups, users risk losing valuable information, which can severely impact

their business or application.

[84]

Moreover, in cases of attacks like ransomware, having a backup can be
invaluable for data recovery. A good backup strategy should also include
testing backups for completeness and maintaining multiple versions for added
security.

If a user wants to create a backup of their database by exporting the
commands needed for recreation elsewhere, they first need to add the binary
path of the installed PSQL on their machine. This can be done via: File
— Preferences — Paths — Binary Paths:

Preferences 7 X
Display LJ &4

Refresh rates EDB Advanced Server 15 (]

v Debugger

Keyboard shortcuts . .) e
B Enter the directory in which the psgl, pg_dump, pg_dumpall, and pg_restore utilities can be

v ERDtool found for the corresponding database server version. The default path will be used for server
Keyboard shortcuts versions that do not have a path specified
Options
v Graphs PostgreSQL Binary Path
Display Set as default Database Server Binary Path
~ Miscellaneous
Themes PostgreSQL 10)
User language Post .
gresQL 11 9]
v Paths D -
Binary paths PostgreSQL 12)
Help
PostgreSQL 13 5
~ Query Tool gresQ O
Auto completion Post B
greSQL 14 ")
CS8V/TXT Output D -
Display @) PostgresQL 15 C:\Program Files\PostgresqL\15\bin [

Frlitar

Figure 87 - Pgadmind Backup

Next, locate desired Database to back up: NewDB — Backup:

[85]

Browser S = w Q-
~ B servers (1)
~ [} PostgresaL 15
v == Databases (3)
v = NewDB |

» [cast Create >
> %" cata Delete/Drop
> 5 Ever Refresh...

%’f € Restore...

= Fore
Land

¢ Publ CREATE Script

49 gche Disconnect from database

R N

Subs ERD For Database

> = posigre maintenance...
i = 1es1DB G rant Wizard...
> =& Login/Gra
Search Objects...
> I Tablespac

PSQL Tool

(o

Query Tool

Properties...

Figure 88 - Select Database to Backup

After following the following configuration, the backup button can be
selected:

e First some general information is required, like the file name, that
should be .sql with a plain format

Backup (Database: NewDB) S OX

General Data/Objects Options
Filename Backup1.sql O

Format Plain
Compression ratio
Encoding Select an item

Number of jobs

Role name 2 postgres

® 0 X Close | | £ Reset | W% JEEIAT

Figure 89 - Backup General Settings

e After that from the Data/objects tab some additional configuration
is required:

[86]

Backup (Database: NewDB) S 4
General Data/Objects Options

Sections

Pre-data

Data

Post-data
Type of objects

Only data .
Only schema

Blobs

Do not save

Owner
Privilege
Tablespace

Unlogged table data

Comments

o 0 X Close |4 Reset

Figure 90 - Backup Data Configuration

¢ Finally the Options tab should be configured according to the settings
shown below:

Backup (Database: NewDB) X

General Data/Objects Options

Queries
Use Column Inserts »
Use Insert
Commands .
Include CREATE
DATABASE .
statement
Include DROP
DATABASE
statement
Load Via Partition »
Root
Disable
Trigger »
$ quoting »
Miscellaneous
With 0ID(s)
Verbose messages o
Force double quote »
on identifiers
Use SET SESSION »

AUTHORIZATION

o o X Close | | £) Reset

Figure 91 - Backup Options

After clicking Backup, a new .sql file will be generated, containing all the
SQL commands necessary to recreate the database:

[87]

Backupl.sgl X

statement_timeout =

xmloption = ¢
client_min_
rity

"NewDB" TEMPLATE = template@ = 'U OCALE_PROVIDER = libc LOCALE =

3) OVERRIDING

Figure 92 - Backup File

[88]

8.2 Node.js server

The first step was to create a new private GitHub repository to host the
server, which will later be linked to Heroku.

Create a new repository

Required fields are marked with an asterisk (*).

Repository template

No template ~

Owner * Repository name *

w | MKarapiperakis ~ / node-app

Great repository names are short and memorable. Need inspiration? How about

Description (o

l:| Public .

Private

Initialize this repository with:

»| Add a README file

Add .gitignore

Choose a license

Li GNU General Public License v3.0 ~

Figure 93 - Server Repository

After cloning the project locally, the command “npm init” should be given
to initialize the application, where the node version that was used is 21.2.0:

[89]

PS C:\Users\manos\Desktop\node\node-app> npm init
This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sensible defaults.

See ‘npm help init* for definitive documentation on these fields
and exactly what they do.

Use ‘npm install <pkg=>' afterwards to install a package and
save it as a dependency in the package.json file.

Press *“C at any time to quit.
package name: (app) node-app
version: (1.0.8)
description:
entry point: (index.js)
test command:
git repository:
keywords:
author:
license: (ISC)
About to write to C:\Users\manos\Desktop\node\node-app\package.json:
i
"name": "node-app",
"version": "1.8.8",
"descriptio
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
}i
Ilauthorll: " II‘
"license": "ISC"

Figure 94 - Initialize the Server

After setting up the repository, the next step is to install two important
libraries that will serve as the foundation for the server:
e Express: It provides all the tools needed for handling HTTP requests
e Nodemon: A development tool that automatically restarts the server
whenever code changes are detected

B Windows PowerShell +

PS C:\Users\manos\Desktop\node\node-app> npm install express
added 58 packages, and audited 59 packages in 7s

9 packages are looking for funding
run ‘npm fund' for details

found vulnerabilities
PS C:\Users\manos\Desktop\node\node-app> npm install nodemon

added 33 packages, and audited 92 packages in 11s

12 packages are looking for funding
run ‘npm fund* for details

found vulnerabilities

Figure 95 - Install Basic Dependencies

Finally, the package.json should be modified by adding the script to start
the server:

[90]

EXPLORER {} packagejson X

s NODE-APP GEOLE {}ps
> node_modules
C
J5 appJjs
{} package-lock.json
{} packagejson

)
"devDependenci
"nodemon™: "

1

J
Figure 96 - Modify Scripts

Now the server is ready to accept incoming requests after running the
command “npm start”

8.2.1 Application Dependencies

Besides Express and Nodemon, some additional packages are required to
implement the business logic, protect the resources and improve the overall
performance of the server:
e cors: Enables Cross-Origin Resource Sharing for secure API access.
e swagger-ui-express: Serves API documentation using Swagger in
Express.
e vyamljs: Parses YAML files into JavaScript objects for configuration.
e express-openapi-validator: Validates API requests and responses based
on OpenAPI definitions.
e morgan: HTTP request logger for easier debugging and monitoring.
e dotenv: Loads environment variables from a .env file into process.env.
e express-status-monitor: Provides real-time monitoring of Express
server metrics.
e chalk: Adds colored terminal output for better readability in logs.
o dialogflow: Integrates Google's Dialogflow for building conversational
AT interfaces
e jsonwebtoken: Handles token-based authentication with JSON Web
Tokens (JWT).
e nodemailer: Sends emails from Node.js applications via SMTP or other
transport methods.
e pdfkit: Generates PDFs programmatically in Node.js.
e pg: PostgreSQL client for interacting with a PostgreSQL database.
e socket.io: Enables real-time, bidirectional communication between
server and clients.
o @socket.io/admin/ui: Provides a user interface to monitor and manage
Socket.io events.

[91]

8.2.2 Environment Variables

To protect the application’s codebase, sensitive information such as API
keys is stored securely within .env files. Specifically, the following values are
included:
e DATABASE_URL: The database URL used to establish a connection
between the server and the PostgreSQL database.
e BASIC AUTH: A base64-encoded token for basic authentication.
e BASIC_USERNAME: The username used in the app's basic
authentication schema to secure resources.
e BASIC_PASSWORD: The password used alongside the username in
the app's basic authentication schema to protect resources.
e EMAIL_RECEIVER: The designated recipient for emails, relevant to
a specific business process.
e EMAIL_SENDER: The sender’s email address, part of a business
process implementation.
e PASSWORD_SENDER: A unique password for the email sender,
enabling email-sending functionality.
e JWT_PRIVATE_KEY: The private key used for JSON Web Token
(JWT) bearer authentication.
e NODE_ENV: The environment setting (production or development),
which can be used to adjust configurations for testing or deployment.
o« PORT: The port the server operates on (8082).

8.2.3 Connecting the Database to the Node.js Server

To link the previously created PostgreSQL database with the Node.js
application, the pg library was used for connecting and querying the
database. In this example, the Pool class from the pg package is utilized to
manage multiple connections efficiently. The connection is established using
environment variables, specifically DATABASE_URL, which stores the
PostgreSQL connection string:

const { Pool } = require("pg");
require("dotenv").config();

let pool = new Pool({
connectionString: process.env.DATABASE URL,

s

0 J O O = W N =

module.exports = pool;

8.2.4 Custom FErrors

Some custom errors have been implemented to handle errors from the HTTP
requests, as shown below:

[92]

© 0 J O Ut = W N~

NN N N NDNNNDNDN — H o e e
© 00 O U R WN RO ©OoWw-=IOo Uik W ~ O

class RestError extends Error {

constructor(status, message, statusDetail) {
super(message)
this.status = status
this.statusDetail = statusDetail
this.name = this.constructor.name
Error.captureStackTrace(this, this.constructor)

class BadRequestError extends RestError {
constructor(message, statusDetail = 'Bad Request') { super (400,

message, statusDetail) }

}

class AuthError extends RestError {
constructor(message, statusDetail = 'Unauthorized') { super (401,

message, statusDetail) }

}

class ForbiddenError extends RestError {
constructor(message, statusDetail = 'Forbidden') { super (403,

message, statusDetail) }

}

class NotFoundError extends RestError {
constructor(message, statusDetail = 'Not Found') { super (404,

message, statusDetail) }

}

8.2.5 Authentication Middlewares

The application contains three authentication middlewares:

Bearer Authentication for APIs: The bearer token grants access to
resources on behalf of the user who holds it. When a client requests
access to a protected resource, it sends the bearer token in the
authorization header of the HTTP request. The server validates the
token to confirm the legitimacy of the request. Upon successful user
login, after verifying their credentials, a JWT (JSON Web Token) is
generated by the server using the JWT_PRIVATE_KEY environment
variable to digitally sign the token. Certain requests in the application
may require specific user permissions and the bearer token is used in
these cases by including it in the request header as “Bearer <token>".
This middleware is responsible for verifying the token's integrity using
the same environment variable that signed it. Since bearer tokens are
stateless and can be used by anyone who possesses them, it is
important to handle them securely, considering the risk of potential
data breaches:

[93]

© 0 J O Ut = W N~

DO N DD = = = = e e e e e e
N = O © 0 O O i W N —= O

const jwt = require("jsonwebtoken");
const { AuthError } = require("../lib/errors");

const bearerAuthenticator = (req, scopes, schema) => {
try {
const token = req.header("Authorization").replace("Bearer ",
")
req.jwtPayload = jwt.verify(token, process.env.JWT PRIVATE KEY);
if (req.openapi.schema["x-acl"]) {
const jwtScopes = new Set(req.jwtPayload.scopes);
const reqScopes = new Set(req.openapi.schema["x-acl"]);
const intersection = new Set(
[...regScopes].filter((x) => jwtScopes.has(x))
)
if (intersection.size > @) return true;
else throw new AuthError("Invalid Scopes");
¥
return true;
} catch (e) {
throw new AuthError("Invalid Token");
¥
}s5

Basic Authentication for APIs: The bearer authentication that was
introduced before, is typically used after a user logs in to grant access
to various features of the application for authenticated users (guests).
However, some of the application's resources are available to non-
registered users (visitors) as well, requiring an additional layer of
protection. To secure these resources, a basic authentication scheme
is implemented. In this setup, an environment variable called
BASIC_AUTH is used on the server, containing a base64-encoded
value. For every incoming request that employs basic authentication
middleware, the client must include a token in the request header in
the format "Basic <token>". The server then verifies the token to
ensure proper access control for the requested resource:

[94]

© 0 J O Ut = W N~

DO N RN NN DN o e e e e e e
DT R W NN HEH O © OO Ui WD~ O

const jwt = require("jsonwebtoken");
const { AuthError } = require("../lib/errors");

const basicAuthenticator = (req, scopes, schema) => {

try {
const header_basic_auth = (req.headers.authorization ||

"ry.split(”] 1] 7

const [headerUsername, headerPassword] =

Buffer.from(header_basic_auth, "base64")

.toString()
split(":");

const server_basic_auth = process.env.BASIC_AUTH;
const [serverUsername, serverPassword] =

Buffer.from(server_basic_auth, "base64")

.toString()
split(":");
if (headerUsername && headerPassword && headerUsername === serv-
erUsername && headerPassword === serverPassword) {

}s

return true;
} else throw new AuthError("Invalid Token");
} catch (e) {
throw new AuthError("Invalid Token");

}

Basic Authentication to get access to the API documentation [24]: A
basic authentication scheme is also used to protect a specific endpoint
where the API documentation is hosted. Since this endpoint contains
sensitive information that should not be publicly accessible, additional
security measures are required. To achieve this, two environment
variables, BASIC_USERNAME and BASIC_PASSWORD, are used.
When a user attempts to access the protected endpoint, a login
prompt will appear (dialog box), requesting credentials:

Iuvdean

https:/fvilla-agapi-344fd44fcd 28. herokuapp.com
Owopa xpromn

Kwéwkog npoofoong

Figure 97 - Basic Authentication Dialog

[95]

© 00 J O Ut = W N~

O W W N DN DNDNNDNDNIDNDDNDIDNIDN R = 2 == s
N = O © 00~ O O W HFHOO©OWw==O Otk W+~ O

The middleware will then compare the provided username and
password with the values stored in the environment variables. If they
match, the user is granted access to the endpoint:

const authheader = req.headers.authorization;

if (lauthheader) {
let err = new Error("You are not authenticated!");
res.setHeader ("WWW-Authenticate", "Basic");
err.status = 401;
return next(err);

}

res.setHeader("Cache-Control", "no-cache, no-store, must-revali-

date");

res.setHeader("Pragma", "no-cache");
res.setHeader("Expires", "0");

const auth = new Buffer.from(authheader.split(" ")[1], "base64")
.toString()
split(":");

const username = auth[0];

const pass = auth[1];

if (
username == process.env.BASIC_USERNAME &&
pass == process.env.BASIC_PASSWORD
) {
next();
} else {
let err = new Error("You are not authenticated!");
res.setHeader ("WWW-Authenticate", "Basic");
err.status = 401;
return next(err);

}

The following image provides a visual representation of the process:

[96]

villa-agapi-344fd44fcd28.herokuapp.com

node
w@dc

Tuvdean

https:/fvilla-agapi-344fd44icd28 herokuapp.com

TRUE

Credentials
match

AxUpLan

1‘ FALSE

Figure 98 - Basic Authentication Middleware

8.2.6 API Documentation

The API documentation was introduced in the previous section, where a
basic authentication scheme was implemented to restrict access to authorized
users only. API documentation is crucial for defining the structure of
available APIs, providing use cases, usage instructions, sample request bodies
and expected response bodies. A swagger.yaml file is used to organize and
present this information, covering various aspects of the API requests. The
file consists of the following sections:

OpenAPI version: Specifies the current OpenAPI version being used
(3.0.1).

Info: Contains metadata about the documentation, such as the title,
description and version.

Servers: Lists the available servers, including both development and
production environments, along with their respective URLs.

Paths: Includes the API endpoints with the available requests and
methods.

Tags: Helps categorize and organize requests into sections based on
their purpose.

Components: Defines reusable components, including security schemas.

[97]

@ swaggeryaml
1 openapi: 3.8.1
2 info:
title: villa Agapi App API documentation

4 description: API documentation for Villa Agapi App
5 version: 1.8.8@
6 servers:
7 - url: http://localhost:8882
8 description: development server
9 - url: https://villa-agapi-344fddafcd2g. herokuapp.com/
1e description: production server
11 tags:
12 - name: authentication
13 description: Authentication of the user after login. After a successful response, a token can be retrieved and used as bearer auth for other requests
14 - name: users
15 description: API reguests for users
6 - name: booking
17 description: booking request
18 - name; markers
19 description: get markers
28 - name: dialogFlow
21 description: send user's text to dialogFlow
22 - name: problem
23 description: send user’'s problem
24 paths:
25 » | /fdatafapifuser/{id}: -
137 » | /data/api/users; -
56 i) /data/api/login: -
92 » | /data/api/booking: -
» | /datafapi/booking/{id}: -
» | /datafapi/markers: -
» | /datafapi/marker/{id}: .-
» | /datafapifavailability: -
» | /datafapi/dialogFlow: -
» | /data/api/problem: -
components:
securitySchemes:
BearerAuth:
type: http

scheme: bearer

bearerFormat: IWT
BasicAuth:

type: http

scheme: basic
LoginAuth:

type: http

scheme: basic

[- .
st It Rt

o
i)

PN T NSV N P

o

Figure 99 - Swagger.yaml

8.2.7 Routes

Routes specify the paths through which the server handles client requests,
with each route linked to a particular HTTP method. In this application,
routes are categorized into two types:

e Read routes: These paths are responsible for fetching data from the
database or executing custom server logic without modifying any
database tables. They typically correspond to safe methods, such as
GET.

e Write routes: These paths handle writing data to the database and
are generally associated with unsafe methods like PUT and POST, as
they alter or create records in the database.

These routes are organized into two files: data-read.js and data-write.js,
both located within the routes folder. The following diagram illustrates how
the routes are structured within the application:

[98]

Routes

T
r 1
l data-read Data-write
T T T T 1 r T T T = T

GET /login

GET GET GET POST GET POST FUT POST DELETE POST DELETE
Imarkers fmarkers/id fevailability fdialogfiow fbooking fusers Fuserfid fbooking Jbookingfid Imarkers fmarkentid

FOST
fevailability

Figure 100 - Application Routes

8.2.7.1 Read Routes

The application offers the following read routes:

GET /users: Retrieves a list of all users in the application. Requires
Bearer authentication.

GET /user/{id}: Retrieves user details by ID. Requires Bearer
authentication.

POST /login: Authenticates and logs in a user. Requires Basic
authentication.

GET /markers: Fetches a list of markers.

GET /marker/{id}: Retrieves a marker by ID.

GET /availability: Fetches property availability details.

POST /dialogflow: Facilitates message exchanges with the Google
Dialogflow virtual assistant. Requires Basic authentication.

GET /booking: Retrieves booking requests. Requires Bearer
authentication.

8.2.7.2 Write Routes

The application offers the following write routes:

POST /users: Creates a new user. Requires Bearer authentication.
PUT /user/{id}: Updates user details. Requires Bearer authentication.
POST /booking: Submits a booking request. Requires Bearer
authentication.

DELETE /booking/{id}: Deletes a booking by ID. Requires Bearer
authentication.

POST /markers: Creates a new marker. Requires Bearer
authentication.

DELETE /marker/{id}: Deletes a marker by ID. Requires Bearer
authentication.

POST /problem: Reports a problem. Requires Bearer authentication.
POST /availability: Updates property availability. Requires Bearer
authentication.

8.2.8 Controllers

For each router, there is a controller responsible for executing the respective

logic. The controllers are all organized in the same folder named “controllers’

)

in different JavaScript files related to their functionality. The application
offers the following controllers:

login: The request body of this controller is
o username: The username, the user filled in the login form

[99]

o password: The password, the user filled in the login form
These values are stored in two constant variables since they remain
unchanged and are used in a query aiming the table app.users, to
check if the username exists in the database. The query is executed
using the previously implemented pg library from another file. If the
query returns results, the provided password is compared with the
stored hashed password using the bcrypt package. If the credentials
match, the user's status is verified by checking the “is_active” column
from the query results.

If the user is active, a new JW'T token is generated using the jwt
package, which includes the following information:

o username

o userld

o role
This token is signed using the JWT_PRIVATE_KEY from the
environment variables and is set to expire in 30 days. The token is
then returned to the user with a status code of 200. If the user is
inactive, a response with a status code of 500 and the message
"Inactive user" is returned.

If the username is correct but the password is incorrect, the client
receives a response with a status code of 500 and the message
"Incorrect password".

If the database query returns no results, it indicates that the username
does not exist. This could suggest a potential attack, though it might
simply be a typo. To handle this case, the user's IPv4 address is
extracted from the request headers and a record of the attempted
attack is logged in the app.attack database table, along with relevant
comments and the current timestamp. The client receives a response
with a status code of 500 and the message "User does not exist",
without being informed of the attack logging, as this is a security
measure handled in the background.

The entire asynchronous request is wrapped in a try-catch block. If
any errors occur during processing, a server error response with a
status code of 500 and the message "An error occurred while fetching
users" is returned.

[100]

app.users

POST /data/api/login

51 bytes applicatienjson

TRUE

Is user
active

Passwords
match

Username
exist

500 Internal Server Error 500 Internal Server Error 500 Internal Server Error

200 0K

Save attack details

—

app.attack

Figure 101 - Login Controller

e getUsers: This controller is responsible for returning all available users.
Since it provides sensitive information, access should be restricted to
users with the "admin" role. The user's role is embedded in the JSON
Web Token (JWT) found in the request headers. If the JWT is
missing, a response with status code 401 and the error message
"Authorization Header Required" is returned. If the token is present,
the role validation process checks whether the user has the "admin"
role. If the role is not "admin", this is considered a potential bearer
authentication attack, where someone may be attempting to access
sensitive data with an invalid token. In such cases, details of the
attack, including the user's IPv4 address, relevant comments and the
current timestamp, are logged in the app.attack database table. If
the user holds the "admin" role, a query is executed to retrieve all
users' information from the app.users database table. The data is
then returned to the client with a status code of 200 and the user
information in the response body:

[101]

GET /data/api/users

Bearer
token
exists

TRUE

Is user
admin

401 Unauthorized

401 Unauthorized

app.users

200 OK |

Save attack details

app.attack

Figure 102 - Get Users Controller

e getUser: This controller retrieves information about a specific user
based on the user ID provided in the request parameters. Since this
is private information, only the authenticated user should have access
to their own data. Therefore, a bearer authentication token is
required, along with an additional ID check. The user ID in the JWT
payload must match the one in the request parameters. This ensures
that users can only access their own information, preventing access
to others' data. If a user attempts to access information belonging to
another user using their token, it is treated as an attack. In such
cases, details including the user's IPv4 address, relevant comments
and the current timestamp are logged in the app.attack database
table. If the request passes the authentication and ID check, a query
is executed against the app.users table to retrieve the specified user's
information. The data is returned in the response body with a status
code of 200:

[102]

POST /datalapiflogin

Is IWTID GET /data/api/user/277

same as

Summary {eaders
request D ummany 3

GET /data/apifuser/259

401 Unauthorized

“message™: “Tnvalid Token™

Save attack details

app.attack

Figure 103 - Get User controller

TRUE

200 OK

app.users

createUser: This controller is used to create a new user and the

following information should be included in the request body:

o

O O O O 0O 0O O O O O

This

username
password

email

arrival
departure

role

firstname
lastname
cleaningprogram
phone

country

functionality is restricted to administrators,

[103]

so a bearer
authentication token is required and the user's role must be "admin"
If the role is not "admin", the request is considered a potential attack.
In such cases, details like the user's IPv4 address, relevant comments
and the current timestamp are logged in the app.attack database
table. If the token is valid and the user has admin privileges, the
next step is to check if the provided username already exists in the
app.users table, as usernames must be unique. If the username is
already taken, the process stops, a response with status code 409

Conflict and the message "User already exists" is returned to the
client. If the username is unique and meets the requirements, the
details from the request body are saved to the app.users table and
the response is 201 Created. Most fields are saved as-is, but some
require preprocessing before being stored:

o password: The password cannot be stored in plain text. Instead,
it is hashed using the bcrypt package.

o created_date: The creation date is included in the final INSERT
statement and is generated using the built-in Date object.

o cleanningprogram: The cleaning program is stored as an array
in the PostgreSQL database, so it must be converted to an
array format, as demonstrated in the code snippet below:

1| const cleaningprogramArray = ~ARRAY[${cleaningprogram.map(
(timestamp) => "~ '${timestamp}’"
3)31

The previously described process is illustrated in the following diagram
with additional details:

POST /data/apilusers

Does FALSE
username

exist

Bearer
token
exists

TRUE

401 Unauthorized 401 Unauthorized 409 Conflict
— . . — ‘ ‘ . : app.users
118 bytes applcationfjson. charset=uth-8 2 bytes applicationfson; Charset=uth8 0 bytes apphcabonison. charset=utl-8

201 Created

Save attack details l

app.attack

Figure 104 - Create User Controller

e updateUser: This controller handles the updating of user information.
Within the application, there are two ways this can be executed:
Either by users (guests) updating one or more front-end visible fields

[104]

© 00 O U= W N =

I N I N T N R e S T = T S SOy
W N = O © 00 J O U b W N = O

© 00 J O Ut = W N~

[S e S S
DD TR W NN = O

(user information) or by an admin updating both read-only and front-
end visible fields (stay information and wuser information). To
accommodate both scenarios, the UPDATE statement should be
dynamic, allowing updates to any combination of fields, whether none,
one, or all:

let userId = req.params.id;
const updateFields = [
"email",
"arrival",
"departure",
"cleaningprogram",
"role",
"firstname",
"lastname",

"phone",
"country",
"device",
15
const setClause = updateFields
.filter((field) => req.body[field] !== undefined)
.map((field) => {
if (field === "cleaningprogram") {
return ~${field} = '{"${req.body[field].join("","")}"}"' " ;
} else {
return ~${field} = '${req.body[field]}"' ;
}
1)

Additionally, the user's status (active or inactive) should be updated
correctly whenever the departure date is modified:

const today = new Date();
today.setHours(@, 0, @, 9); // Set time to midnight for comparison
if (req.body.departure) {
const departureDate = new Date(req.body.departure);
if (departureDate > today) {
setClause.push("is_active = true");
} else {
setClause.push("is_active = false");
¥
}

const query = °
UPDATE app.users
SET ${setClause.join(", ")}
WHERE id = ${userId}

.
J

[105]

Although a bearer authentication token is required, no additional role-
based checks are needed, as this functionality is accessible to both

guests and admins. Upon a successful update, the client receives a
response with status code 200 and the message "User update was
successful":

PUT /data/apifuser/277

Bearer TRUE
b san token
exists
f e 1
401 Unauthorized
app.users
118 byles apphialioniion. charsst-ull-§
ized™
n header required
200 OK

“message™1 “User update was succesfull®

Figure 105 - Update User Controller

e Booking: This controller handles the creation of a new booking
request. Since this functionality is available to non-registered users, a
bearer token is not required. However, to protect the server, a basic
token is necessary for this request. If no basic token is provided, or
if the token is invalid, the server responds with a 401 status code
and the error message "Authorization Header Required". When the
token is valid, the following three steps are executed:

o A dynamic pdf file is generated, including information given
by the client. For this purpose, the pdfkit, fs and path packages
are used as it shown in the following code snippet:

[106]

© 0 J O Ut = W N~

=R W W W W W W W W W WD N NN DD NN NN DN e e e e e e e
= O © 0~ O Ok W RO O©OW=O Ok WNEHEOO©OOW-O Utk W N~ O

const PDFDocument = require("pdfkit");
const fs = require("fs");
const path = require("path");

const { startDate, endDate, fullName, email, comments, visitors } =
req.body;

let currentDate = new Date().toDateString();

const currentTimestamp = new Date().getTime();

const pdfFileName = “booking ${startDate} ${endDate} ${cur-
rentTimestamp}.pdf ;

const pdfPath = path.join(__dirname, "pdf to send", pdfFileName);
const pdfStream = fs.createWriteStream(pdfPath);

// Create a new PDF document
const doc = new PDFDocument ({
margin: 50,

1
// Add content to the PDF document with styling
doc

.font("Helvetica-Bold")

.fontSize(20)

.text("Booking Details", { align: "center" });
doc.moveDown();

doc.font("Helvetica").fontSize(14);

doc.text(Request date: ${currentDate});
doc.text(From ${startDate} to ${endDate});
doc.text(Full Name: ${fullName});
doc.text(Email: ${email});

doc.moveDown(2);
doc.font("Helvetica-Bold").text("Comments", { underline: true });

doc.moveDown () ;

if (comments) doc.font("Helvetica-Oblique").fontSize(12).text(com-
ments);

else doc.font("Helvetica-Oblique").fontSize(12).text("No comments");

// Finalize the PDF document and end the response stream
doc.end();

As a result of the above code snippet, a new pdf will be generated
and saved inside a folder named pdf_to_send:

[107]

booking_Sep 11 2024 Sep 18 2024 _1725796312... Ichioo 1 omo]

1]
[
x

Booking Details

Request date: Sun Sep 08 2024
From Sep 11 2024 to Sep 16 2024
Full Name: Manos Karapiperakis
Email: m karapiperakis@yahoo.gr

Comments

No comments

o

Figure 106 - Generated PDF

An email notification should be sent to the host, informing
them about the new booking request. This email must include
details of the booking along with the previously generated PDF
as an attachment. To achieve this, the nodemailer package was
used. The email can have one sender and one or more
recipients, managed via two environment variables:
EMAIL_SENDER and EMAIL_RECEIVER. A Gmail address
was chosen as the sender, while the recipients can use any
email provider. For security purposes, credentials are required
for the sender's email, ensuring that unauthorized users cannot
send emails on someone else’s behalf. An application-specific
password was created in Google account settings, which is only
visible when first generated. This password is stored in the
.env file under the variable PASSWORD_SENDER.

[108]

© 00 J O Ut = W N~

< Kwdiwkol tpoopaong edappoyns

Me toug KwdLIKoUG ehaPOYWY LTTOPELTE VO CUVBEEDTE OTOV AOYAPLACHO
oag Google og mahaldtepeg eQAPUOYES KAL UTINPETLEC TIOU eV UTtoaTN-
piZouv Ta ouyypova TTpoTUTa achaielac.

Ot kwdikol edappoywy eival AlyoTepo acdahelc amo tn XpRon EVUERW -
HEVLWIV EDAPUOYV KAl UTINPEGLWY TIOU ¥PNoLUoTIoWlY Ta alyypova Tpo-
Tunta aogdarelac. Npotol dnpoupynoete évav Kwdlko edappoyne, Ba
TIRETEL va eAEYEETE AV amalteltal amo v epapuoyn oag yia tn duva-
ToTNTa oUvdeonc.

MaBete meplocdTeEpa

Ot kwdikol mpooPaone epappoync oag

AnpoupynBnke otig 5 Zem, 1eAsutaia |

nodemailer .
: ¥pron ot 10 Okt

To create a new app specific password, type a name for it below...

App name

Figure 107 - Gmail App Password

The next step is to create a new transport instance using the provided
method named “createTransport” from the nodemailer library as
shown in the code snippet below:

let transporter = nodemailer.createTransport({
host: "smtp.gmail.com", // SMTP server address
port: 465, // Port for SMTP (usually 465)
secure: true, // Usually true if connecting to port 465
auth: {
user: process.env.EMAIL_SENDER,
pass: process.env.PASSWORD_SENDER,
¥
}s

After that, the email is sent using Nodemailer's “sendMail” method,
which includes the following options:
1. from: Sender
to: Receiver
subject: Email Subject
html: Dynamic content
attachments: The PDF file to be attached to the email

Sl o

[109]

© 0 J O Ut = W N~

O W W W NN DN DNDNDNDDNDDNDNIDNRFE P P = 2
W= O OO T WNhHEHEOWWOWNO Ok W = O

let info = await transporter.sendMail({

from: Villa Agapi Automation Service" <${pro-

cess.env.EMAIL SENDER}>",

to: process.env.EMAIL_RECEIVER,

subject: “Reservation request from ${startDate} to ${endDate} ,

html: °

<h1>New reservation request from: <i>${fullName}</i></h1>

<h2>Reservation Details</h2>

Request date: ${currentDate}</1
Visitors: ${visitors}</1li>
From: ${startDate}</1i>
To: ${endDate}</1i>

<h2>Contact Information:</h2>

Email: ${email}</1i>

<h2>Additional Comments:</h2>

<p>${!!comments ? comments : "No comments"}</p>

<hr style = "width: 200px">

<div style="text-align: center;">
<i>Villa Agapi Automation Service</i>

</div>

)
attachments: [

{
filename: pdfFileName,
path: pdfPath,
}s
1,

i>

})s

The final outcome of the email process is displayed in the image
below:

[110]

Reservation request from Sep 01 2024 to Sep 05 2024 W

il
5
3
3
:
&
E
b

4 Tq Villa Agapi Automation Service

) mkarapiperakis21@gmail.com) Booking Details

m.karapiperskis@yahao.gr

Request date: Tue Aug 06 2024

New reservation request from: Manos Karapiperakis From Sep 01 2024 to Sep 05 2024
Full Name- Manos Karapiperakis

Reservation Details Email: m karapiperakis@yahoo.gr

* Request date: Tue Aug 06 2024

+ Visitors: 5 Comments
« From: Sep 012024
+ To: Sep 052024 Mo comments

Contact Information:

« Email: m karapiperakis@yahoo gr

Additional Comments:
No comments

Villa Agapi Automation Service

A

booking Se... .pdf

Figure 108 - Booking Request Email

o The final step of the booking controller, is to save the booking
details in the respective database table named app.booking
The whole process is displayed in the below diagram:

i :
.8 PDFKit ku Nodemailer

POST /data/api/booking j

Basic TRUE 1 I TS

LR E PDF Transporter
exists

Attach the PDF —
J FALSE

401 Unauthorized

Booking Detats

app.booking i s

Figure 109 - Create Booking Controller

o getBookings: This controller is responsible for returning all the
bookings requests from the table app.booking. Since this functionality
is available only through the admin dashboard, a bearer token is
required. If the JWT is missing from the request headers, a response
with status code 401 and the error message "Authorization Header
Required" is returned. Since this is a safe method that does not
modify the database content, no additional security measures are
required. The process is illustrated in the following diagram:

[111]

Bearer
token
exists

GET /data/api/booking TRUE

app.booking

401 Unauthorized

200 OK

Figure 110 - Get Bookings Controller

e deleteBooking: This controller is responsible for deleting a specific
record from the app.booking table based on the provided ID in the
URL parameters. Since this functionality is available only through the
admin dashboard, a bearer token is required. If the JWT is missing
from the request headers, a response with status code 401 and the
error message "Authorization Header Required" is returned. The
process is illustrated in the following diagram:

DELETE /data/api/booking/24 Bearer
token
exists

TRUE

FALSE

401 Unauthorized

app.booking

200 OK

Figure 111 - Delete Booking Controller

[112]

POST /data/api/availability

ate”: "2023-89-26",
ate™: ~1013-89- 30"

addAvailability: This controller is responsible for updating the
availability by adding dates during which the house is not available,
by modifying the app.availability table. The request body includes
the arrival date and departure date of a booking, covering all the
dates in between. Since this functionality is available only through
the admin dashboard, a bearer token is required. If the JWT is
missing from the request headers, a response with status code 401
and the error message "Authorization Header Required" is returned.
The process is illustrated in the following diagram:

Bearer
token
exists

TRUE

401 Unauthorized

200 OK

Figure 112 - Add Availability Controller

getAvailability: This controller is responsible for retrieving house
availability from the app.availability table. This request is safe
because it does not modify any resources and is accessible to
unregistered users. Additionally, since it can be used to promote the
property elsewhere, no security measures are implemented. The
process is illustrated in the following diagram:

[113]

app.availability

GET /data/api/availability

Summary Headers Raw

app.availability

200 OK

Summary Header

“2023-09-25721:00:00.0002"

“2023-09-26T21:00:00.0007"

Figure 113 - Get Availability Controller

getMarkers: This controller fetches all available markers from the
app.markers database table, to be displayed on the dynamic maps
within the mobile application. The request is safe, as it doesn't alter
any resources and is accessible to unregistered users. Moreover, since
the markers can be shared externally, no security measures have been

implemented. The process is outlined in the diagram below:

GET /data/api/markers

Summary Headers Raw Binary

app.markers

200 OK

Summary Headers Raw Binary

1420 bytes spplcation]son; charsateulf-3

Figure 114 - Get Markers Controller

[114]

getMarkerByld: This controller retrieves a specific marker by its ID,
passed through the URL parameters, from the app.markers database
table to display on the dynamic maps within the mobile application.
The request is safe, as it does not modify any resources and is
accessible to unregistered users. Moreover, since the markers can be
shared externally, no security measures have been implemented. The
process is outlined in the diagram below:

GET /data/api/marker/1

Summary Headers Raw

app.markers

200 OK

Summary

190 byles applcation}son; charseteut!-3

“marker":

Figure 115 - Get Marker By Id Controller

createMarker: This controller creates a new marker by saving
information sent by the client to the app.markers database table. The
information is available in the request body and includes:

o latitude

o longitude
o title

o type

o icon

o keywords
Since this functionality is available only through the admin dashboard,
a bearer token is required. If the JWT is missing from the request
headers, a response with status code 401 and the error message

[115]

"Authorization Header Required" is returned. The process is outlined
in the diagram below:

POST /data/api/markers

Surnmary Headers Raw Binary

199 byles applicationfjson

Bearer
token
exists

TRUE

app.markers

401 Unauthorized

201 Created

Summary Headers Raw Binary

40 bryles applicationfjson; charset=utlg

“message”: “Marker crested succesfully®

Figure 116 - Create Marker Controller

e deleteMarker: This controller deletes a specific marker by its ID,
passed through the URL parameters, from the app.markers database
table. Since this functionality is available only through the admin
dashboard, a bearer token is required. If the JWT is missing from
the request headers, a response with status code 401 and the error
message "Authorization Header Required" is returned. The process is
outlined in the diagram below:

DELETE /data/api/marker/1 Bearer TRUE
c < token
exists
app.markers
401 Unauthorized
200 OK
nauthorized”, Summary Headers Raw Binary

16 bytes appicationjson, charset=utf.3

“message”: "OK"

Figure 117 - Delete Marker Controller

[116]

N O O = W N

© 0 N O U = W N

DN RN KN NN F = s = e e e
DU b W NN P O © 00 3O O i Wi~ O

o getBotResponse: This controller facilitates communication with the
Google Dialogflow Agent. The request body contains the message the
client wants to send to Dialogflow and the response body returns the
generated text (response) from Dialogflow. The first step is to import
the dialogflow library and then create a new instance of a
SessionClient using a .json file that has been exctracted from GCP
as mentioned in the section 5.3.3 Export Private Key:

const { SessionsClient } = require("dialogflow");
const path = require("path");

const sessionClient = new SessionsClient({
keyFilename: path.join(__dirname, "auth.json"),

});

Next, a new session path should be created using the previously
initialized session client. After that, a request object can be
constructed, containing the text to be transmitted. By invoking the
detectIntent method on the session client, the response will be
returned to the server. The process described is illustrated in the
following code snippet:

const sessionPath = sessionClient.sessionPath("auth", "1");

const request = {
session: sessionPath,
queryInput: {
text: {
text: req.body.text,
languageCode: "en-US",
},
¥
¥

try {
const response = await sessionClient.detectIntent(request);

res.status(200).json({
response: response[@].queryResult.fulfillmentText,
1)
} catch (error) {
console.error("Error while processing Dialogflow request:", er-
ror);
res.status(500).json({
error: "Internal Server Error",
}s
}

[117]

Since this functionality is available for registered users (guests) but
can also be expanded outside of the application, a Basic token is
required. If the Basic token is missing from the request headers, a
response with status code 401 and the error message "Authorization
Header Required" is returned. The process is outlined in the diagram
below:

/

"Hello, how are you?" ‘ >
Basic

foen Session Client Google Cloud Platform

exists
v Dialogflow

POST /data/api/dialogFlow

"Greetings! How can I assist?"

e

\

_J

401 Unauthorized

200 OK

43 byles appicationscn. charsetsutf-3

sponse: “Greetings! How can I assist?”

Figure 118 - DialogFlow Controller

e problem: The final controller provided by the server, is responsible
for sending an email to the host regarding a complaint form submitted
by the user within the mobile application. The request body includes
information required for the email, such as:

o full name: name of the user
o subject: subject of the email
o problem: detailed description of the problem

Electricity problem

I\ 7(\' Villa Agapi Automation Service
M mkarapiperakis2 1@gmail.com
m.karapiperzkis@yahao.gr

A problem from: John Doe has been reported

Details:

Date: Sat Oct 05 2024

We face a problem with the electricity

Villa Agapi Automation Service

«O @« B

Figure 119 - Problem Email

[118]

Since this functionality is applicable for registered users (guests) a
Bearer token is required. If the Bearer token is missing from the
request headers, a response with status code 401 and the error
message "Authorization Header Required" is returned. The process is
outlined in the diagram below:

hhd

w

TRUE -l Create
_'| Transporter

POST /data/api/problem

Bearer
token
exists

Send email

401 Unauthorized

Figure 120 - Problem Controller

8.2.9 Create Root File

All the information covered in the previous sections, such as application
dependencies, custom errors, authentication middleware, API documentation,
routes and controllers, should be consolidated into a single root file. This
root file is named app.js and will be executed each time the command npm
start is run, serving as the main entry point for the application. First of
all, some important libraries are imported: dotenv allows the wuse of
environment variables from a .env file, enabling easy configuration without
hardcoding sensitive information. The chalk library is used to style and
improve the readability of the command line output by adding colors and
formatting. The http module is utilized to create the server instance later
in the code. Next, the PORT is set, either from the environment variable
process.env.PORT or defaulting to 3010 if not provided. This allows
flexibility in specifying the port for the application during different
environments (e.g. development, production). For example, Heroku, which
will be used later to deploy the application, assigns a dynamic port that is
unknown to the user at runtime. The serverInit function is required from
another file and will return the application instance when invoked.

[119]

Error handling for the application is also set up here. The mainErrorHandler
function logs any errors that occur in the application. The code listens for
two specific types of errors:

e uncaughtException: errors that are not caught by any try-catch block

e unhandledRejection: errors from promises that are not handled

properly.

Both types of errors are directed to mainErrorHandler to ensure they are
logged and can be addressed. Once the server initialization (serverlnit()) is
successful, the code uses the http module to create an HTTP server using
the app instance. The server is then set to listen on the specified PORT.
Finally, three log messages are printed to the console using chalk:

e The base URL where the server is running

e The URL for accessing the Swagger Ul

e The URL for accessing application metrics

1 | require("dotenv").config();

2 | const chalk = require("chalk");

3 | const PORT = process.env.PORT || 3010;

4 | const serverInit = require("./server");

)

6 | const mainErrorHandler = (err) => console.error(err);
7 | process.on("uncaughtException", mainErrorHandler);

8 | process.on("unhandledRejection", mainErrorHandler);

9

10 | serverInit().then((app) => {

11 const server = require("http").createServer(app);

12

13 server.listen(PORT, () => {

14 console.log(

15 "Up & running on http://localhost:" + chalk.blue.under-
16 | 1ine.bold(PORT)

17)

18 console.log(

19 "Swagger UI is available on http://localhost:" +
20 chalk.blue.underline.bold (" ${PORT}/data/api/doc")
21);

22 console.log(

23 "Metrics are available on http://localhost:" +
24 chalk.blue.underline.bold (" ${PORT}/status")

25);

26 })s;

27| 1)

The serverlnit function, located in a separate file, is responsible for creating
the Express app, as shown below:

[120]

const express = require("express");

const cors = require("cors");

const swaggerUi = require("swagger-ui-express");

const yaml = require("yamljs");

const drRouter = require("./routes/data-read");

const dwRouter = require("./routes/data-write");

const swaggerDocument = yaml.load("./swagger.yaml");

const { OpenApiValidator } = require("express-openapi-validator");

© 0 N O T = W N

const {
10 RestError,
11 AuthError,
12 BadRequestError,
13 NotFoundError,
14|} = require("./lib/errors");
15 | const {
16 bearerAuthenticator,
17 basicAuthenticator,
18 | } = require("./middlewares/authenticator");
19 | const login = require("./middlewares/login-screen");
20 | const morgan = require('morgan')
21 | require("dotenv").config();

After importing all the necessary libraries, along with custom functions and
classes, the next step is to create a new Express app, as shown in the
following code snippet:

const app = express()

.use(require("express-status-monitor")())

.use(cors())

.use(express.json({ limit: "2eMB" }))

.use(morgan('combined"))

.use("/data/api/doc",login, swaggerUi.serve, swaggerUi.setup(swag-
gerDocument)

.use("/data/api", [drRouter, dwRouter]));

0 J O O = W N

Some libraries, such as express-status-monitor and cors, are utilized in the
app to enhance its functionality and security. The express-status-monitor
library provides real-time monitoring of the server’s performance. The cors
library is used to enable Cross-Origin Resource Sharing, which allows the
server to accept requests from different origins, thereby facilitating secure
communication between the client and server. The .use(express.json({ limit:
"20MB" })) middleware parses incoming JSON requests and makes the data
available in req.body, with a maximum allowed size of 20 megabytes to
prevent excessively large requests from straining server resources. The
.use(morgan('combined')) middleware sets up logging of HTTP requests in
the "combined" format, providing detailed information about each request,
including the method, URL, response time and status code, which aids in
monitoring and debugging the application.

[121]

After that, the line .use("/data/api/doc", login, swaggerUi.serve,
swaggerUi.setup(swaggerDocument)); sets up Swagger Ul for API
documentation, protecting the route "/data/api/doc" with a login middleware
to ensure that only authenticated users can access the documentation. The
swaggerUi.serve function serves the Swagger Ul static files, while
swaggerUi.setup(swaggerDocument) initializes the Ul with the provided API
documentation. Finally the data-read and data-write routes are used in the
application, both prefixed with the fixed path “/data/api”.

Additionaly the OpenApiValidator is configured using a specification file
located at ./swagger.yaml, which outlines the API's endpoints, request
parameters, responses and security definitions. By specifying validateSecurity,
the validator is set to check the security of incoming requests against the
defined authentication methods. In this case, two authentication handlers
are provided: BearerAuth, which utilizes a bearer token for authentication
and BasicAuth, which implements basic authentication. The install(app)
method integrates the validator into the Express app, ensuring that all
incoming requests are validated according to the specifications defined in
the swagger.yaml file as illustrated in the following code snippet:

await new OpenApiValidator({
apiSpec: "./swagger.yaml",
validateSecurity: {
handlers: {
BearerAuth: bearerAuthenticator,
BasicAuth: basicAuthenticator

¥

¥
}).install(app);

© 00 J O Ut = W N~

8.3 Socket.io Server

To implement the Live Chat feature in the application, a new Node.js server
was set up, as outlined in section "8.2 Create Node.js Server". This time,
the version 16.20.1 of Node.js was used. A new root file named index.js was
created and in the package.json file, the scripts object was updated with
the following command: "start": "node src/index.js". This ensures that
whenever the start command is executed, the server will be initiated
automatically.

8.3.1 Application Dependencies

The following dependencies were installed in this node application:
e cors: Enables Cross-Origin Resource Sharing for secure API access.
e dotenv: Loads environment variables from a .env file into process.env.
e @socket.io/admin-ui: A socket.io admin dashboard, allowing for
monitor the live chat.
e express: It provides all the tools needed for handling HT'TP requests.
e http: This package was used to create the socket.io server.

[122]

e nodemailer: Sends emails from Node.js applications via SMTP or other
transport methods
e socket.io: The socket.io server side library

8.3.2 Environment Variables

To protect the application’s codebase, sensitive information such as API
keys is stored securely within .env files. Specifically, the following values are
included:
e EMAIL_RECEIVER: The designated recipient for emails, relevant to
a specific business process.
e EMAIL_SENDER: The sender’s email address, part of a business
process implementation.
e PASSWORD_SENDER: A unique password for the email sender,
enabling email-sending functionality.
e INSTRUMENT_USERNAME: Part of credentials needed to access the
socket.io admin dashboard.
e INSTRUMENT PASSWORD: Part of credentials needed to access the
socket.io admin dashboard.
e NOTIFY_ADMIN: A Boolean flag was introduced to control whether
the admin user receives a notification when someone enters a chat
room.

8.3.3 Middlewares

A new folder named middlewares was created, containing a JavaScript file
called notify-admin.js. This file is responsible for notifying the administrator
when a user joins the chatroom. To achieve this, the nodemailer package
was utilized, sending an email notification to the designated
EMAIL_RECEIVER.

Figure 121 - Email Notification

[123]

8.3.4 Initiate Server

To initiate the server, a new instance of the Server was created using the
method provided by the socket.io package, as demonstrated in the code
snippet below:

const { Server } = require("socket.io");

const io = new Server(server, {
cors: {
cors,
origin: [
"https://admin.socket.io",
"https://sockets-48f4f0779b20.herokuapp.com",
1,

credentials: true,

© 00 J O Ut = W N

— =
—= O

s
1)

—_
[\V)

The CORS configuration in the above code, allows the WebSocket server
to handle requests from specific origins. It includes an origin option that
permits connections from two URLs:

e https://admin.socket.io: the socket.io admin panel.

e https://sockets-48f4f0779b20.herokuapp.com: The server hosted on

Heroku.

The credentials setting enables the server to accept cookies and
authentication headers with WebSocket requests, ensuring secure cross-origin
communication.

8.3.5 Events

The server provides the following event listeners, enabling it to respond to
incoming events from connected clients:

e join-room: This event listener is responsible for detecting when a user
joins a chat room. It receives two arguments: the room name and
the username. First, it checks if the environment variable
NOTIFY_ADMIN is set to true. If so, an email notification is sent
to the administrator using the notify-admin middleware. Next, the
socket.join method is called to add the user to the specified room,
passing the room name as the argument. Finally, an event emitter is
triggered, to notify the client side that a user has joined the room
by definining the event name in the first argument and the username
in the second. The process is illustrated in the following code snippet:

const notifyAdmin = require("./middlewares/notify-admin");
socket.on("join-room", (room, username) => {
if (process.env.NOTIFY_ADMIN) notifyAdmin(username);

socket.join(room);
socket.to(room).emit("joined", username);

s

N O Ot = W N

[124]

https://admin.socket.io/
https://sockets-48f4f0779b20.herokuapp.com/

N O Ot = W N

—_

—_

—_

e message: This event listener handles messages sent from the client,

accepting two arguments:

o message: the message itself

o room: the room name
If no room is specified, the message is broadcast to all connected
clients using the built-in socket.broadcast emitter, which sends the
message to everyone except the sender. However, if a room is defined,
the message is sent exclusively to that room wusing the
socket.to(<room>) emitter, ensuring only users in the specified room
receive it. The process is illustrated in the following code snippet:

socket.on("message", (message, room) => {

if (room == "") {
socket.broadcast.emit("receive-message", message);
} else {

socket.to(room).emit("receive-message", message);

}
s

e leave-room: This event listener manages the scenario when a user
leaves a room they were previously connected to, ensuring that the
other users in the room are informed. When triggered, it captures
the room name and the username of the user who is leaving. The
listener then emits an event to notify all other clients in the specified
room:

socket.on("leave-room", (room, username) => {
socket.to(room).emit("disconnected", username);

1)

e isTyping: This event listener captures the scenario when a user is
actively typing a message in the chat interface. When a user begins
typing, this event is triggered and sends an indication to other users
in the same chat room, alerting them that someone is currently

typing:

socket.on("isTyping", (username, room) => {
socket.to(room).emit("isTyping", username);

1)

e isNotTyping: This event listener captures the scenario when a user
stops typing a message in the chat interface. When a user stops
typing, this event is triggered and sends an indication to other users
in the same chat room:

socket.on("isNotTyping"”, (username, room) => {
socket.to(room).emit("isNotTyping", username);

J)E

[125]

8.3.6 Admin Panel

The admin panel provides a convenient way to monitor socket connection
details. It can be seamlessly integrated into a Node.js application, as
demonstrated in the following code snippet:

1 | app.get("/", (req, res) => {

2 res.redirect("https://admin.socket.io/#/");
311

4

5 | instrument(io, {

6 auth: {

7 type: "basic",

3 username: process.env.INSTRUMENT_ _USERNAME,
9 password: process.env.INSTRUMENT PASSWORD,
10 1,

11 mode: "development",

121 }1);

The first step is to create a route that redirects to the official admin panel
URL. From this page, the user can log in using the credentials provided in
the instrument function. After successfully logging in, the user can access
detailed socket information, including both client and server data:

Server URL: http://localhost:8082

@ Socket.I0 Admin Ul 0.5 s
atus:

‘ UPDATE ‘

Dashboard
Sockets
Rooms Clients Servers Namespaces
Name #of sockets

’ 0

r
o
®
B

fadmin 1

Connection and disconnection events Bytes received and sent

Figure 122 - Socket.io Admin Panel

By navigating to the "Sockets" tab, the user can view details about the
active socket connections, including their status, transport method and
general information related to the initial HTTP request:

[126]

http: B 3|
L —

@ Socket.I0 Admin Ul 0.1

)

!

Details Initial HTTP request

Client Headers ©

™ RS PrloXJVQRSYWNAMGAAAT

Dashboard
Sockets
Rooms
Clients
Events

Status oy e
Servers

i me <

Transport
7c05-2202-587-8081-8C00-5550-3089-4479-
3d2d ngrok-free.app

1P address 2802:587:8081:8c00:8004:a918:844:20 host

Socket user-agent okhttp/4.9.2

Join a room
x-forwarded-for 2202:587:8081:8c00:80d4:2918:844:20
7c05-2302-587-8081-8c00-5550-3089-4479-

3d2d ngrok-free.app

Namespace ’
D PrloXJVQRsYWNAMGAAAT
Data o

x-forwarded-host

xforwarded-proto https
Status
Query parameters

Creation date 2024-01-14T19:20:16.669Z

Name
€0
t

transport

Tgure 123 - Socket De

Additionally, in the "Rooms" tab, the user can access information about the
rooms and the active sockets within each room. This provides an overview
of socket activity and room-specific details:

@ Socket.I0 Admin Ul o.51

Server URL: http://localhost :8082
UPDATE
Status:

Dashboard

Details

Namespace

] IP address Transport

D

PnloXJVQRSYWNAMgAAAT 2a02:587:8081:8c00:80d4:a9{8:84d:20

fr
©
®
8

2NWG2GJy_PGn84FgAAAd 2a02:587:8081:8c00:592a:c4b1:183b:7405

Figure 124 - Room Detal,

Useful information can also be found in the “Events”

information about the events:

tab, showing

Select namespace

/

Timestamp J

2024-10-06T19:02:47.8602

2024-10-06T19:02:47.7637

2024-10-06T19:02:46.415Z

2024-10-06T19:02:46.1837

2024-10-06T19:02:36.786Z

2024-10-06T19:02:36.697Z

2024-10-06T19:02:36.6967

2024-10-06T19:02:36.199Z

CiFI6{0p06RDANMZAAAR

CiFj6{0pDERbANMZAAAR

CiFj6{0p06RBANMZAAAR

CIFj6{0pOGRANMZAAAR

CiFj6{0p06RbANMZAAAR

CiFj6f0p06RbANMZAAAR

CiFj6{0p06REANMZ AAAR

CiFj6T0pDGRDANMZAAAR

Figure 125 -

[127]

Events

Event name:

Event name-

Event name:

Event name:

Event name:

Room: room

Event name:

message

ishiot Typing

isTyping

isTyping

isNotTyping

join-room

By expanding an event, additional information will be displayed:

2024-10-06T19:02:36.6967

Event arguments:

1

[

Figure 126 - FEvent Details

8.4 Playwright Tests

Playwright’s capabilities proved invaluable in developing the server
application, offering an efficient way to automate testing for the REST APIs
available on the server [25]. This allows each new addition or modification
to requests to be automatically checked, effectively preventing potential side
effects. Through the Swagger UI, manual tests could already be performed
to verify that server responses matched expected outcomes as defined in the
swagger.yaml file. To further automate this process, Playwright was used to
run tests automatically based on the contents of the swagger.yaml file,
where all API requests are defined.
Within the Node application, a Playwright project was initialized using the
command “npm init playwright@latest” to install the latest version. This
created a test folder, which was then customized to meet project needs by
adding several subfolders and files:
e data: Contains test-data.js, a file for generating test data like user
credentials and random IDs.
e helper: Holds helper functions organized as follows:

o compareResponseBody: Compares the actual response from the
test results with the expected response defined in the .yaml
file.

o getRequestBody: Retrieves the request body from the .yaml
file for use in test requests.

o screenshotError: Captures a screenshot for analysis when the
response is unexpected.

e page-objects: Includes objects representing each test entity, such as
HTTP requests and authentication methods:

o Basic-authentication: Contains a class and methods to set up
a basic authentication object.

o Bearer-authentication: Contains a class and methods to set up
a bearer authentication object.

o Delete-request, Get-request, Put-request, Post-request: Files for
handling respective HTTP request types.

e Swagger.spec: The main test file, responsible for opening the Swagger
Ul page and through DOM manipulation, testing REST APIs by
leveraging test data, helper functions and page objects.

[128]

9 Application front-end
9.1 Create React Native app

To begin, a new React Native application was created using Node.js version
16.20.1 by running the command: npx create-expo-app villa-agapi
Next, the following folder structure was created:
e api: Contains API requests to interact with the server.
e assets: Stores styles, images and fonts.
o translations: Stores translation labels for multi-language support.
o store: Manages the application's global state.
e constants: Stores various constants such as authorization keys, URLs
and styles
e models: Contains classes that assist with initializing data models.
e util: Contains reusable utility functions.
e app: Includes the root file responsible for starting the application and
managing the navigation system.
e components: Houses reusable components for the app.
e screens: Holds all the available screens in the application.

9.1.1 Api

There are 15 available server requests, excluding the login request and for
each of these, a separate JavaScript file was created in the "api" folder,
with each handling a specific endpoint. All the requests follow a consistent
structure: first, the host URL is imported from the constants file, along
with the authentication token if required. Then, an asynchronous function
is defined, taking any necessary URL parameters or payload as arguments.
A const variable is created to store the full URL (combining the host and
endpoint) and for requests requiring a body, another variable is defined to
hold the payload. Next, an object called requestOptions is created with
attributes for the HTTP method (POST, GET, PUT, DELETE), headers
(e.g., authentication, content-type, cache control) and the request body if
needed. Inside a try-catch block, the request is executed using the fetch
method, passing the URL and requestOptions. The response is then stored
in a variable named response and if no data is expected (e.g. for actions
needing only a success or failure message), the response status is returned,
otherwise, the relevant data from the request is returned. An example of
the request, that was created to retrieve all the users of the application is
displayed in the following code snippet.

[129]

1 | import { host } from "../constants/host";

2

3 | export async function GetUsersRequest(token) {
4 const url = “${host}/data/api/users’;

)

6 const requestOptions = {

7 method: "GET",

8 headers: {

9 Authorization: "Bearer " + token,

10 "Content-Type": "application/json",

1 "Cache-Control": "no-cache",

12 ¥,

13 };

14

151 try {

16 const response = await fetch(url, requestOptions);
17 const res = await response.json();

18

19 if (response.status === 200) return res;
20 else return res.status;

21 } catch (error) {

22 console.error("User request error: ", error);
23 return null;

24| }

25| }

9.1.2 Assets

The assets folder contains all the images and fonts used throughout the
components of the application. Within this folder, there is a subfolder named
fonts, where different fonts are stored, with "Poppins" serving as the primary
font family for the app. Additionally, an images subfolder was created,
organized into the following categories:
e aboutUs: Contains the image used in the About Us component.
e activities: Holds images used in the Activities component.
e categories: Includes images for the four navigation tiles on the home
screen.
e home: Contains images used for the 360-degree view of the home.
e inside: Stores images of the interior of the home.
e locations: Includes images for the Locations component.
e markers: Contains images used in the Markers component.
e outside: Stores images of the exterior of the home, further divided
into two subcategories:
o day: Used in the carousel to showcase the house during the
day.
o night: Used in the carousel to showcase the house at night.

[130]

1

1 | | | | 1 | |
m

9.1.3 Translations

Figure 127 - Assets

day

The application’s audience is consisted of people around the world, therefore
it offers multilanguage support for three languages (English, Greek and
German). Inside this folder there are four files, one for each language
including the label for translation as a key and next to it the translated
label. Finally, there is a file responsible to manage the translations, using
the i18n package [26], by initializing the locale as default language the
English with the ability to fallback to this language, if an invalid language
is given:

| .expo

i wscode
api

tapp
assets

components

constants
hooks

i models

node_modules

I screens

scripts

store

t translations
dejs

en,js

grjs
i18njs

translations > 18njs > ..
You, 8 months ago | 1 author (You)
1 import { I18n } from "il8n-js";
2 import en from "./en";
3 import gr from "./gr";
4 import de from "./de";
5
6 const translations = {
7 gr: gr,
a8 en: en,
9 de: de,
-
11 const i18n = new Il18n{translations);
12
13' il8n.locale = "en";
14 il8n.enableFallback = true;
15
16 export default i18n;
17

Figure 128 - I18n

To make a label translatable within a component, these seven steps should
be followed:

1.
2.
3.

Import the i18n instance that was exported from the i18n.js file.
Import the application's store.

Create a state management variable using the useContext hook to

handle the store's state.

Initialize a variable named locale with its setter function setLocale
using the useState hook and set its initial value to the current locale

from the store.

[131]

5. Use the useEffect hook with the current locale from the store as a
dependency. This allows the component to react to store changes and
update the locale variable by calling setLocale.

6. Assign the locale variable to il8n.locale.

7. Use i18n within a label like this: {i18n.t("<label key>.text")}.

1 | import { AuthContext } from "../store/auth-context";
2 | import i18n from "../translations/il8n";

3 | import React, { useState, useContext, useEffect } from "react";
4

5)

6 | function AboutUsScreen() {

7 const authCtx = useContext(AuthContext);

8 const [locale, setLocale] = useState(authCtx.currentLocale.tolLow-
9 | erCase());

10

11 useEffect(() => {

12 setLocale(authCtx.currentLocale.tolLowerCase());
13 }, [authCtx.currentLocale]);

14

15 i18n.locale = locale;

16

17 return (

18

19

20

21 {i18n.t("about us.text")}

22

23

24

25)

26

27

28

29 | }

9.1.4 Store

This folder contains a file named “auth-context.js”, which is responsible for
managing the application's global state. This includes key information such
as user details, the current theme (light or dark mode) and the selected
language (English, Greek or German). The application's global state is
managed using React's built-in Context API, ensuring that this information
is available throughout the app's lifecycle while it is open. However, since
the global state is cleared when the app is restarted, local storage is used
to store user data. This is achieved using the react-native-async-storage
package. The application's store is composed of five key parts:

1. Library Imports and Variable Initialization: First, the previously
mentioned libraries are imported. A new context is created using

[132]

© 00 N O O s W N~

NN NNDNDNDDNDDNNILNR R~ P = = = = = = =
© 00 N O O = W N HFH O © 0 O O i Wi+ O

React's createContext function. Inside the exported function, several
variables are initialized using the useState Hook, as shown in the
following code snippet:

import AsyncStorage from "@react-native-async-storage/async-stor-
age";
import { createContext, useEffect, useState } from "react";

export const AuthContext = createContext({
token: ""
currentLocale: "en",

userId: ,

userName: N

role: "",

currentMode: "",
isAuthenticated: false,
authenticate: (token) => {},
logout: () => {},
changeMode: (mode) => {},
changelLocale: (locale) => {}

1)

function AuthContextProvider({ children }) {
const [authToken, setAuthToken] = useState(null);
const [userId, setUserId] = useState(null);
const [userName, setUserName] = useState(null);
const [role, setRole] = useState(null);
const [currentMode, setCurrentMode] = useState("light");
const [currentLocale, setCurrentLocale] = useState("en");

2. Reducers: Functions that determine how the state changes in response
to specific actions. This file contains four different consumers:
1. changeMode: Changes the application's theme.
2. changeLocale: Changes the application's locale.
3. authenticate: Authenticates the user after login.
4. logout: Handles user logout

[133]

© 0 N O T = W N

RN RN NN DN /= = s = e e
U W NP O © 00 3O O i W N+ O

© 0 N O Tt = W N

o e S = Gy Sy ey
S TR W N = O

function changeMode(mode) {
setCurrentMode (mode) ;

}

function changelocale(locale) {
setCurrentLocale(locale === "GB" ? "EN" : locale);

}

function authenticate(token, userld, userName, role) {
setAuthToken(token);
setUserId(userld);
setUserName (userName) ;
setRole(role);

const userInfo = ~${token} ${userId} ${userName} ${role} ;
AsyncStorage.setItem("token", userInfo);

function logout() {
setAuthToken(null);
setUserId(null);
setUserName(null);
setRole(null);
AsyncStorage.removeItem("token");

3. Actions: An action is a function called by a consumer, as will be
described later and is handled by the reducer.

4. Dispatching Reducer Functions: The reduce function for the respective
action.

5. Provider: Provides this data to its child components, allowing them
to access that data without the need for explicitly passing it through
props at every level. It should be extracted from this file and imported
to the root file, as displayed in the following code snippet:

const value = {
token: authToken,
userlId: userld,
userName: userName,
role: role,
currentMode: currentMode,
currentlLocale: currentlLocale,
isAuthenticated: !lauthToken,
authenticate: authenticate,
logout: logout,
changeMode: changeMode,
changelocale: changelocale,

}s

return <AuthContext.Provider value={value}>{children}</AuthCon-
text.Provider>;

[134]

N O Ot = W N

© 00 3 O U = W N~

import AuthContextProvider from "../store/auth-context";

return (
<AuthContextProvider>
<rootComponent />
</AuthContextProvider>

);

6. Consumer: A consumer utilizes these methods and data to interact
with the store, allowing it to read and update the shared state:

import { AuthContext } from "../../store/auth-context";

const [mode, setMode] = useState("");
const authCtx = useContext(AuthContext);

const handleModeChange = (mode) => {
setMode(mode);
authCtx.changeMode (mode) ;

b

The processes described before are shown in the following diagram:

Provider

15 return <AuthContext.Provider value={value}>{children}</AuthCon-
16 | text.Providers;

import AuthContextProvider from "../store/auth-context";

1
2
3| return (

4 <AuthContextProvider>

5 <rootComponent />

3 <fAuthContextProviders
7

|H

Reducers

function changeMode(mode) {

setfurrentMode (node) ;

}

function changelocale(locale) {
setCurrentlocale(locale === "GB" 7 "EN" : locale);

1 const value = {

2 token: authToken,
3 userld: userld,

4 usertame: userhame,
5 role: role,
3

T

B

T
function suthenticate(token, userld, userName, role) {
10| setauthToken{token);
1 setUserTd{userId);

o

currentMode: currenthode,
currentlocale: currentloczle,

isauthenticated: !lauthToken

) authenticate: authenticate,
Acnonsjf+:;_: e }-CaUReducer

const userInfo = “${token} ${userld)} ${userMame} ${role} ;
AsyncStorage.setItem("token", userInfo)j changeModa,

e: changelocale,

0o

AsyncStorage . removelten("token™);

Consumer

import { AuthContext } from "../../storefauth-context®;

const [mode, setMode] = useState("");
const authCtx = useContext(AuthContext);

const handleModeChange = (mode) => {
setMode(mode);
authCtx.changeMode (mode) ;

b

Lo - N S Rt

Figure 129 - Global State Management

[135]

9.1.5 Constants

The Constants folder contains the following JavaScript files:
e auth.js: Stores the authentication token used for certain API requests.
e host.js: Defines the host URL used for making API calls.
e imageSources.js: Organizes arrays of image files from the assets folder,
making them easy to manage and import into components for use.

9.1.6 Models

This folder contains information about the various models used within the
application. Since each model typically contains similar, repeated
information, a class has been created for each model. These classes include
specific fields, which are initialized through a constructor. Whenever a new
model is needed within a component, a new instance of the corresponding
class is created and displayed within that component. The following models
are available:

e Benefit: A Benefit the property provides, including the following fields:

o 1Id
o Title

o Category: A category (the four tiles that are available in the Home

Page):

o 1Id
o Title

e Inside Image: Images of the house interior:
o Id
o Title

e Outside Image: Images of the house exterior:
o 1Id
o Title

9.1.7 Util

This folder contains reusable functions that can be wused across the
components for specific business processes. More specifically, the following
files are available:

e Auth.js: A function named “login” is exported, which provides an
HTTP request to log in a user. It accepts a username and password
as arguments and sends the request to the server using the fetch
method. If the response includes a token, it returns the full response
body, otherwise it returns null.

e Dates.js: This file contains numerous methods related to dates such
as:

o calculateDuration: Accepts the arrival and departure date and
returns the duration of the stay (on days).
getMonthFromDate: Extract the month from a date.
getYearFromDate: Extract the year from a date.
getDayFromDate: Extract the day from a date.
filterYearlyData: Takes in a dataset and a specific year, then
filters and returns only the data corresponding to that year.

O O O O

[136]

© 00 N O Ot = W N

o e S S G
N O U WD = O

o getCountriesByYear: Accepts a list of users and returns the
count of distinct countries per year, based on each user's arrival
year and country.

o getDevicesByYear: Accepts a list of users and returns the count
of devices used per year, based on each user's arrival year and
device type.

o getMinDate: Receives a list of dates and returns the earliest
date.

o getMaxDate: Receives a list of dates and returns the latest
date.

e Location.js: This file contains helper functions related to the dynamic
maps such as:

o getAddress: Receives the latitude and longitude of a location
as parameters and uses the Google Maps API to return the
corresponding physical address:

const GOOGLE API KEY = "<API KEY>";
export async function getAddress(lat, lng) {
const url = “https://maps.googleapis.com/maps/api/geo-
code/json?latlng=${1lat}, ${1ng}&key=${GOOGLE_API_KEY} ;
const response = await fetch(url);
if (!response.ok) {

throw new Error("Failed to fetch address!");

}

const data = await response.json();
const address = data.results[@].formatted address;

return address;

o calculateDistance: Takes the latitude and longitude of two
locations as parameters and calculates the distance between
them using the Google Maps API:

[137]

const GOOGLE_API_KEY = "<API KEY>";

export async function calculateDistance(latl, lonl, lat2, lon2) {
const url = “https://maps.googleapis.com/maps/api/direc-

tions/json?origin=${latl},${lonl}&destina-

tion=${1at2},${1lon2}&key=${GOOGLE_API KEY} ;

const response = await fetch(url);
if (response.ok) {

© 0 N O T = W N

10 const data = await response.json();

11 if (data.routes && data.routes.length > @) {

12 const distance = data.routes[0].legs[@].distance.text;
13 return distance;

14 } else {

15 throw new Error("No routes found.");

16 }

17 }

18| }

e Socket.js: This file is responsible for initializing the socket connection
using the socket.io-client package and connecting it to the Node.js
application where the server-side socket events are implemented.

9.1.8 App

This file contains the root component responsible for initializing the
application and managing its navigation system. Additionally, it wraps the
entire application with the global state management provider introduced
before, ensuring the store is accessible across all components. Outside of the
root component, a separate component named FlashMessage (imported from
the "react-native-flash-message" package) is included to display pop-up
notifications for users. The Platform API is used within the FlashMessage
component to adjust the position of these notifications, displaying them at
the top of the screen on iOS devices and at the bottom on Android devices:

<AuthContextProvider>
<Stack>
<Stack.Screen name="(tabs)" options={{headerShown:false}} />
</Stack>
<FlashMessage position={Platform.0S === "ios" ? "top"
"bottom"} />
</AuthContextProvider>

00 J O Ut = W N

)s

The navigation structure consists of a root stack navigator with the following
screens:
e Auth: Screens accessible to non-registered users, organized under a
tab navigator
e Authenticated: Screens available to registered users, also utilizing a
tab navigator
e Inside: Displays interior views of the house

[138]

Outside: Shows exterior views of the house
Activities: Provides information on various activities
Locations: Lists different locations

o Information: Details about a selected location
Map: A dynamic map displaying various markers

o Details: Specific details about a selected marker
Chat: Interaction with a chatbot

o Live Chat: The live chat interface
Add User: Screen for adding a new user
Add Marker: Screen for adding a new marker
Edit User: Allows editing of existing user profiles
Booking Request: Preview of a booking request
Availability: Interface for editing property availability

The Auth screen is defined within a function called AuthStack, which utilizes
the Tab.Navigator component to create a navigation structure specifically

for non-authenticated users.

This tab navigator includes the following

booking

screens:
e Login: The login screen.
e Home: The home screen, which also includes the following stack
screens previously described:
o Inside
o Outside
o Activities
o Locations
e (alendar: A screen that allows users to submit a direct
request via a calendar.
e About Us: General information about the property.
e Settings: User settings, such as locale and theme preferences.

38 function AuthStack() {

a1

92 return (

93 <Tab.Navigator

94 » screendptions={({ route }) => ({-

1683 By

184 »

1685 <Tab.Screen

186 > name="Login" -

188 options={{ tabBarShowlLabel: false }}
169 >

118 <Tab.Screen

111 > name="Home" -

113 options={{ tabBarShowlLabel: false }}
114 i

115 <Tab.Screen

116 > name="Booking Request” -

118 options={{ tabBarShowlLabel: false }}
119 >

128 <Tab.Screen

121 » name="About Us" -

123 options={{ tabBarShowlLabel: false }}
124 >

125 <Tab.Screen

126 name="Settings"

127 component={SettingsScreen}

128 options={{ tabBarShowlLabel: false }}
129 >

138 </Tab.Navigator>

131 i

Figure 130 - Auth Stack

[139]

The Authenticated screen is defined within a function called
AuthenticatedStack, which uses the Tab.Navigator component to create a
navigation structure specifically for authenticated users. Since there are two
user roles (admin and guest), conditional rendering is applied based on the
user’s role in some cases. This tab navigator includes the following screens:

e Profile: A shared screen for both admins and guests, with different
content based on the user type. Guests see information about their
stay and personal profile, while admins have access to an admin
dashboard. For admin users, the following stack screens are available
within this section:

o Add User

o Edit User

o Availability

o DBooking Request
o Add Marker

e My Home: This screen provides information about the house interior,
including 2D /3D property maps, a complaint/feedback form and host
communication details. It is accessible only to guest users.

e Stats: Statistics about guests and property details, including booking
information, user devices and countries of origin, presented on a
yearly or total basis. Access is restricted to admin users only.

e Live Chat: This screen is directly accessible to admins. Guests can
also access the live chat, but only through the Dialogflow screen.

e Settings: User settings, such as locale and theme preferences.

e Chat: The Dialogflow chatbot is accessible exclusively to guest users
and is available across all screens that a guest can navigate.

134 function AuthenticatedStack() {

217

218

219 return (

228 <Tab.Navigator

221 » screenOptions={({ route }) => ({-
230 0l

231 >

232 <Tab.Screen

233 > name="Profile"” .-

245 13

246 >

247 fauthCtx.role !== "admin" && (
248 <Tab.5creen

249 3 name="My Home" ---

261 I3

262 />

263)

264 {fauthCtx.role === "admin" && (
265 <Tab.Screen

266 > name="5Stats" ---

278 I

279 />

288)r

281 fauthCtx.role === "admin" && (
282 <Tab.5creen

283 > name="Live Chat" -

300 I3

31 />

302)

383 <Tab.Screen

384 > name="Settings"

306 options={{ tabBarShowLabel: false }}
387 />

308 </Tab.Navigator>

309 v

Fligure 131 - Authenticated Stack

[140]

The complete structure of the navigation system is illustrated in the
following diagram:

'l L
LI T T 1 1 LI L T 1 1
. - . My Home o S Liwve Chat Settings
m -
L L I
T T T 1 T T T T T 1
Add User Edit User Puilshility Heage Add Marker
Insida Outside Activities Locations P b Requast i Chat [guest) Chat [guest)
(mdmin) {admin) {admin) {admin) {=dmin)

=

Figure 132 - Navigation System

To determine which of the available functions should be called (auth or
authenticated), the application store relies on the value of
authCtx.isAuthenticated. This value is set to true after a successful login
and false after a user logs out. However, an additional scenario occurs when
the wuser closes the app. In this case, the authentication token is
automatically saved using the Async Storage package, which was set up in
section "9.1.4 Store".

Each time the application is reopened, it checks whether the user is still
authenticated, thereby implementing a "remember me" functionality. This
ensures that users do not need to log in again after simply closing and
reopening the app. Re-authentication is only required if the user manually
logs out or if the token expires (after 30 days). The login schema is
displayed in the following diagram:

- Remove Token
a 2) Set Token ‘

Async Storage

Logout
Login

1) Request Token 2) Get Token

Profile =)
1) Request Token \ /

-~

3) Check Token

=
Is Token TRUE
Valid @

FALSE

Figure 133 - Remember Me Functionality

[141]

9.1.9 Screens

The available screens and the users with access to each were outlined in
the previous section on the navigation system structure. The only screen
accessible to both authenticated and unauthenticated users is the settings
screen, making it the first one to be checked. This screen contains global
configuration settings that apply across all components of the application,
managed through the context API to handle the global state efficiently. The
application’s theme can be controlled through a toggle button, allowing the
user to see the changes immediately after pressing it. Similarly, a dropdown
menu is provided to switch between the available languages offered by the
application:

Settings

Dark Mode

S

EAAnvika

Figure 134 - Settings Screen

Next, the remaining screens for each user role will be described, providing
screenshots of the application for both Android (left) and iOS (right). To
highlight the differences between Light Mode and Dark Mode, the Android
screenshots will display the Light Mode, while the iOS screenshots will
showcase the Dark Mode.

[142]

9.2 Visitor

A visitor is an unauthenticated user of the application who has access to
its basic features, including the tab screens available in the “auth” stack
described in section "9.1.8 App". Visitors can also access the respective stack
screens associated with these tab screens, providing them with limited
functionality without requiring authentication.

9.2.1 Login Screen

The login form features a simple design. It consists of a white, semi-
transparent container with rounded corners. Inside the container, there are
two input fields: one for the username and one for the password. These
input elements are imported from the "react-native-elements" library, which
provides additional configuration options for each field:
Username Input Configuration:
e value: The current value of the input, managed with a useState hook.
e label: Displays the label "Username".
e labelStyle: Custom styles for the label, such as font, color, etc.
e autoCapitalize: Set to "none" to prevent automatic capitalization of
the input.
e autocomplete: Set to "off" to disable text autocomplete.
e onChangeText: A function that updates the username value, using
the same useState hook that controls the input value.
o enterKeyHint: Set to "next", enabling the user to move directly to
the password field when pressing the button "next" on the keyboard.
e onSubmitEditing: A callback function that triggers when the user
presses "next" automatically shifting the focus to the password field,
enhancing the overall user experience by eliminating the need to
manually tap into the next field.

Password Input Configuration

e value: The current value of the input, managed with a useState hook.

e label: Displays the label "Password".

e labelStyle: Custom styles for the label, such as font, color, etc.

o autoCapitalize: Set to "none" to prevent automatic capitalization of
the input.

e secureTextEntry: Set to true, so the text input obscures the text
entered

e onChangeText: A function that updates the username value, using
the same useState hook that controls the input value.

o enterKeyHint: Set to "done", enabling the user to submit the login
form.

e onSubmitEditing: A callback function that triggers when the user
presses "done", by calling the form submission handler, ensuring the
form is submitted without requiring the user to manually tap a
submit button.

[143]

When the user fills in their login credentials and submits the form, the
login function introduced in section "9.1.7" is triggered. If the provided
credentials are valid, the following information is extracted from the server

response:
e token
o userld
e username
e role

This data is then used to update the application's global state by calling
the authenticate function, which receives these values as arguments. If the
user provides invalid credentials or an error occurs (e.g., poor internet
connection or server error), a modal will appear to inform the user.

Username
Username

Password

Password

Figure 135 - Login Screen

9.2.2 Home Screen

The Home Screen is the second available screen for unauthorized users. At
the top of the screen, a carousel displays images of the house using the
"react-native-reanimated-carousel” package. The carousel automatically moves
to the next image every five seconds, but users can manually scroll through
the images, which resets the timer.

The images are imported from the constants folder using the following
functions:

[144]

o getDaylmageSources: retrieves the house’s exterior images during the
day.
o getNightlmageSources: retrieves the house’s exterior images at night.

Depending on the selected theme (light or dark mode) from the global state,
either the day images are shown for the light theme or the night images
for the dark mode.

Next, four tiles are displayed, each allowing for additional navigation when
clicked. A new model, named "Category", is created to represent these tiles.
For this purpose, the React Native FlatList component was used, enabling
the display of multiple elements organized side by side, allowing control
over the data to be displayed, the layout and the number of items shown
per column.

Figure 136 - Home Screen

[145]

9.2.3 Inside Screen

The Inside Screen is the first of the four tiles, providing information
about the interior of the house.

Inside

Figure 137 - Inside Screen

9.2.3.1 Image Viewer Component

When the user clicks on an image, a modal will pop up displaying the
image in an enlarged view, with a darkened background. The user can close
the modal either by clicking a "Close" button located in the top-left corner
or by clicking the image again.

[146]

Figure 138 - Image Modal

9.2.3.2 List of Benefits

By scrolling down, additional information about the house appears, such
as Amenities, Bedrooms and Cleaning. Each subcategory is displayed
using respective “Benefit” models and FlatList components.

[147]

&

Inside

Amenities

Workspace

v lron

v Wifi

Washing
machine

v Essentials

+ Smoke alarm

Clothing
storage

Two
Bathrooms

Bathtub

Hot water

Air
conditioning

v Safe

v TV

Dishwasher

 Bedlinens

v Oven

Fire
extinguisher

Fireplace

Hair dryer

Coffee
machine

9.2.4 Outside Screen

Similarly,

there

is

another

Figure 139 - Benefits

tile for

functionalities as the Inside Screen.

[148]

the

Outside,

Inside

Amenities

Workspace

Iron

Wifi

Washing machine
Essentials
Smoke alarm
Clothing storage
Two Bathrooms
Bathtub

Hot water

Baby highchair

DVD player

Air conditioning
Safe

™v

Dishwasher

Bed linens
Oven

Fire extinguisher
Fireplace

Hair dryer
Coffee machine
Baby Cot

Toaster

Bed Rooms (7 people)

Nol: Double Bed Bedroom

No2: Double Bed Bedroom

Single Bed Bedroom

Single Bed Open-Plan Bedroom

Baby Cot (2) on Request (Free)

offering the

same

4 Outside
¢ Outside NSNS

-

—’A‘

. B ol

Amenities

 Free parking Private pool

 Wifi (outside) ./ Barbecue .
Amenities

Free parking Private pool

wifi (outside) Barbecue

Figure 140 - Outside Screen

9.2.5 Activities Screen

The third tile available on the Home Screen is Activities. This screen utilizes
a modified ScrollView component to create a horizontal layout with paging
enabled, allowing users to feel as if they are turning pages by swiping to
the right. Each "page" consists of an image, the name of the activity and
additional details. Since the details text can be lengthy and users may wish
to read it in their preferred language, this information is available in multiple
languages.

[149]

Activities

< Activities

X % 8 , R Sy e A -
Stop by Amazonas Park Stop by Amazonas Park

It's fun for everyone at this hillside sanctuary It's fun for everyone at this hillside sanctuary for

protected animals in eastern Crete. This zoo, which

J : overlooks Alfeios Valley, focuses on South American
zoo, which overlooks Alfeios Valley, focuses) . .)
animals but also has some domesticated animals like

on South American animals but also has donkeys and goats.

some domesticated animals like donkeys and The highlight here is the scheduled animal feeding
goats. sessions—you can get a bow! of fruit and feed the zoo's
The highlight here is the scheduled animal favorite lemurs. Try to snap a selfie while you're at it!
feeding sessions—you can get a bow! of fruit To get there, you'll have to drive or get a cab from the
and feed the z00's favorite lemurs. Try to snap village of Hersonisso_s. Yog can.also drop by on .a guided
a selfie while you're at it! To get there, you'll u;ur 9f th?ka:ea' WhLCh T“'g’“ Include the seaside town
have to drive or get a cab from the village of bt

Hersonissos. You can also drop by on a guided

tour of the area, which might include the

for protected animals in eastern Crete. This

Figure 141 - Activities Screen

9.2.6 Locations Screen

The Locations screen is the final navigation option accessible from the home
page, allowing users to explore various recommended destinations. There are
four main regions available, one for each prefecture of the island (Heraklion,
Rethymno, Chania and Lasithi). For each prefecture, the four most popular
spots have been selected, giving users a total of 16 locations (4x4) to
explore. Users can scroll down to switch between prefectures and scroll
horizontally to browse the locations within each one. As they scroll, an
interactive map of the island updates in real-time to highlight the exact
location of the selected destination. When a user clicks on a location,
detailed information about that destination will be displayed. The text is
fully translatable into the supported languages.

Additionally, users can switch between two views: the default list view or
a dynamic map view for more detailed exploration. The map view is
accessible via the map icon located at the top right of the screen.

[150]

Locations

<& Locations E

cHANIA
.« 2

RETHYMNON,
e " HERAKLION

Ly

AG NIKOLACS ®

Heraklion

Heraklion

Arkadi Mo

Figure 142 - Locations Screen

If the user wishes to switch to the map view, location access is required.
A native modal will appear, requesting permission to access the user's
location. The appearance of this modal will differ between iOS and Android
devices (and may vary even between different Android devices), but the
function remains the same: the user is asked to grant location access.
Additionally, the message in the modal will be displayed in the device's
selected language, as it is a native system prompt.

To implement location-based functionality in React Native, the expo-location
package was used, specifically the “useForegroundPermissions” hook and the
“PermissionStatus” enumeration. A variable is introduced to store the current
permission status and a function to request permission if needed. When the
user attempts to access the map, the app checks the current permission
status: if it's undetermined, it prompts the user for permission and if
previously denied, a modal is displayed asking the wuser to reconsider,
followed by a new permission request. Once permission is granted, the user
is navigated to the map screen. The described process is shown in the
following code snippet:

[151]

© 0 N O T = W N

B W W W W W W Ww W W Wi NDNDDNDDNDNNDNNDDNRFE -~ 2 = =B = = = =
S © 0 O Tk W N RO © WO Gk WNEFEOOOOWO Utk W+~ O

import {
getCurrentPositionAsync,
useForegroundPermissions,
PermissionStatus,

} from "expo-location";

export default function LocationsScreen() {

const [locationPermissionInformation, requestPermission] =
useForegroundPermissions();

async function map() {
const hasPermission = await requestGeolocationPermission();

if (hasPermission) navigation.navigate("Map");

¥
async function requestGeolocationPermission() {
if (
locationPermissionInformation.status === PermissionSta-tus.UN-
DETERMINED
) o
const permissionResponse = await requestPermission();
return permissionResponse.granted;
¥
if (locationPermissionInformation.status === PermissionSta-
tus.DENIED) {
showModal();
const permissionResponse = await requestPermission();
return permissionResponse.granted;
¥
return true;
}
¥

[152]

1222 s M g 6 - Locations

Na emtpanei otnv epappoyn
«Villa-Agapi» n xprion Tng
TonoBeoiag oag;

Allow VillaAgapi to access
@ L your location

Allow Villa-Agapi to access X 7 Axpic: Nau
this device's location? :

Allow only while using the app

Deny

Na emutparnei pia popa
Katd tn xprion g epapuoyns
Oxt

Fortezza of.Rethimne Arkadi Mo

Chania

Figure 143 - Access Device's Location

9.2.7 Map Screen

Once the user grants access to their device's location, a map of the island
with various location markers is displayed. For Android devices, Google
Maps is used to render the map. However, due to a recent major update
in Expo 51, Google Maps is no longer supported on iOS devices. As a
result, Apple Maps is utilized for iOS, offering the same features and
functionality as on Android just with different styles.

As shown in the screenshots below, markers are not visible individually.
Instead, green circles with numbers inside are displayed, which represent
clusters. This occurs because marker clustering is used to group markers
that are located close to each other, replacing individual markers with a
cluster that shows the total number of markers in that area. This approach
was chosen to prevent overloading the map with too many markers, which
could overwhelm the user. The clustering dynamically adjusts based on the
map's zoom level: as the user zooms out, fewer clusters appear, with the
minimum zoom showing a single cluster representing all markers. Conversely,

[153]

zooming in gradually reveals more individual markers as clusters break
apart.

.Avia NeAayia

KAELO
° .routico
Mdka

=) o

HpakAero;

Malia
Makia

,Enuv@cc
KagTéAAL

o0 &3

. Apkahox@pt

Spathi Q
STaBi

. Avw Blavvog
Aot

NUBYoC .Kepatékaurmog
.Kaneraviava

Notio Kritiko Pelagos
Go< glesKpnriké Néayog

Figure 144 - Maps

9.2.7.1 Markers

As the user zooms in, individual markers start to appear in blue, each
representing different types of locations based on their icons. These markers
are categorized into the following main groups:

¢ Food
" i f
¢ Bank
e Drink
w
e Beach
o Market

[154]

e Health

o Fast-Food
2)
-

o Activities

O

e Monuments

Gast Station

=

These icons were imported by the expo/vector-icons package [27]

Figure 145 - Markers

[155]

9.2.7.2 Search filters

As expected, each type of marker is not strictly limited to the primary
service it represents. For example, a gas station might also offer services
like a café or quick snacks, allowing it to fall under multiple categories such
as food, drink, or shopping. To handle this case, each marker contains
additional information in the form of keywords that describe all the services
available at that location. Users can apply search filters to easily find specific
services or locations. These filters include a free-text search, where users
can input any keyword and a dropdown menu offering predefined categories
based on the marker types described earlier:

What are you looking for?

Or search directly

Or search directly

HpakAE€Lo; o
Malia
MaAia

Spathi
Tnabi Q

Figure 146 - Map Search Filters

The free-text search will start filtering results as soon as it matches a
keyword from the array associated with each marker. For example, if the
user begins typing "something to", all markers will appear because those
words are not present in any marker's keywords. However, once the user
types "eat", the system will immediately filter and display only the locations
where eating is available, as "eat" matches one of the relevant keywords

[156]

something to|

8 = €
marker1 marker2 marker3
[food, souvlaki, burger, eat] [fuel, gas, bakery, eat] [bank, atm, money, withdraw]

Something to eqq

& = €
marker1 marker2 marker3
[food, souvlaki, burger, eat] [fuel, gas, bakery, eat] [bank, atm, money, withdraw]

Figure 147 - Marker Search Example

< Map

something to eat

‘ something to eat
L / . Or search directly

Or search directly

. Avia NeAayia

ﬂm X AKAEL
HpdkAgLo. X Fow:o

Maxa

,Ennvmﬂ/:q
KagTéAAl

oo

B heroku pg:p... eating

g h
zIxlclvib|n|m}El

space return

¢

Figure 148 - Search Example

Similarly, the dropdown search filter displays all available types, allowing
the user to select one. When a type is chosen from the dropdown, the free-
text search input field is automatically populated with that option. This
integration makes it easy for users to apply filters without needing to type.
If the user wishes to remove the selected filter at any time, they can simply

[157]

press the "close" icon next to the field, which will clear the filter and reset

the search options.

¢ Map

‘ Markets

‘ Markets

Health
Markets

Monuments

A ntivitine.

Herakligy

HpdkA€Lo.

Spathi @

Markets

Markets

Health

Markets

Monuments

. Ayia NeAayia

HpakAetlo

Figure 149 - Dropdown Search Filter

9.2.7.3 Marker Details

When the user clicks on a marker, a small text label will appear above the
marker, displaying its name. Additionally, for Google Maps on Android
devices, two icons will appear in the bottom right corner of the screen. The
first icon allows users to open the Google Maps app directly, providing
turn-by-turn directions and the route from the user's current location to the
selected destination. The second icon shows the exact location of the marker
on the map, also launching the Google Maps app for a more detailed view:

[158]

Or search directly

aa.\w\

Mourelo

X

€Maps Legal

Figure 150 - Marker Name

When the user clicks on the label, they are taken to a new window that
provides additional information about the selected marker. The first section
of this window features an image related to the type of the marker. Below
the image, useful information is displayed using the Google Maps API
functions discussed in section “9.1.7.” This includes details such as the
physical address of the location and the distance from the home.

[159]

Details

Address: Ayiov Mnvd, ETTiokorTn Mourelo
Medladog 40, Episkopi 700 08,
Greece

Address: Ayiou Mnva, Emokor
MNediadog 40, Emokor 700 08, EAAGda

Distance from Home: 0.7 km Distance from Home: 0,7 XAp

Figure 151 - Marker Details

9.2.8 Booking request screen

The Booking Request screen enables users to send direct booking requests
to property owner, expressing their interest in reserving the house. Upon
opening the component, users will see a calendar displaying the property's
availability, along with a form for submitting their booking request. This
form allows users to specify the number of visitors and enter personal
information such as their email address, name and any additional comments.
This information helps the host to contact the user for further details
regarding their request.

[160]

Booking Request

Booking Request Previous September 2024

Previous September 2024 Mon Tue

Mon Wed Thu Fri

Number of Visitors
Number of Visitors

Personal Information

A e o

Figure 152 - Booking Request Screen

As a first step, the user needs to select the dates for their desired booking.
This can be done by interacting with the calendar, where they can choose
their check-in and check-out dates.

Booking Request
Booking Request Previous September 2024

Previous September 2024

Mon Wed Thu Fri

Number of Visitors
Number of Visitors

)

From: Sep 112024 To: Sep 18 2024

From: Sep 112024 To: Sepl182024

Figure 153 - Booking Request Select Dates

[161]

After selecting the dates, the user should fill out the card with their personal
information, including their name and email address. Once the required
fields are completed, the user can press the submit button to send their
booking request. In this form, while the comments field is optional, both
the name and email fields are mandatory. If either of these required fields
is missing or if the email address provided is invalid, the submission process
will trigger an error message displayed in a modal window:

Booking Request
Booking Request Number of Visitors

Number of Visitors

From: Sep 112024 To: Sep 18 2024

Personal Information

From: Sep112024 To. Sepl82024
Manos Karapiperakis

Personal Information

m.karapiperakis@yahoo.gr
Manos Karapiperakis

m.karapiperakis@yahoo.gr

You will not be charged yet

Submit

You will not b

Figure 154 - Personal Information Card

If the form input is valid and all required information is correctly filled
out, a success message will be displayed to the user, confirming that their
booking request has been submitted successfully.

[162]

Booking Request
Booking Request Previous September 2024

Previous September 2024 Wed Thu Fri

Mon Wed Thu Fri Sat

Your request has been submited,

you will have news soon in the Your request has been submited, you will

given email! have news soon in the given email!

Personal Information

Figure 155 - Confirmation Modal

9.2.9 About Us

This is the final screen available for unauthenticated users, providing general
information about the host and the property. The content on this screen is
designed to be translatable into all supported languages.

[163]

About Us
About Us

We're a family-owned tourism business,
thriving since 2001. Through dedication

Were a fomlly—owned tourism and personal touch, we've crafted a

business, thriving since 2001 unique, inviting, and exclusive vacation
Through dedication and personal destination. Here, our guests will
touch, we've crafted a unique, experience such comfort that they'll feel
inviting, and exclusive vacation right at home, basking in the warmth and

hospitality they cherish.

: It will be our great pleasure to be your
experience such comfort that
hosts, as you create your very own

they'll feel right at home, basking memories of Crete, which we promise
in the warmth and hospitality they you'll never forget! Scenically located
cherish. between sea and mountain the Villa-
It will be our great pleasure to be Agapi offers a relaxing and pleasurable
your hosts, as you create your very atmosphere.

own memories of Crete, which It is situated at Fhe §entre qf the |s|qnd, 17
km. from Heraklion, in the village Episkopi,

2 @] (i} Q a traditional Cretan village off the main
tourist route, which permits easy access to

destination. Here, our guests will

Figure 156 - About Us Screen

9.3 Guest

A guest is an authenticated user of the application who has made a booking.
Upon arrival, the guest receives login credentials, granting access to
additional advanced features of the application, including the tab screens
available in the “authenticated” stack described in section "9.1.8 App".

9.3.1 Guest Profile

The first screen displayed to a guest user after logging in is the profile
page, which includes details about their stay and some personal information
that can be edited. At the top of the screen, there is a calendar-agenda
showing all events scheduled during the user's stay, such as arrival, departure
and house cleaning. The second section features a card with personal details
that the user can modify. In the bottom right corner, a virtual assistant is
available, clicking it redirects the user to another screen, where they can
connect with an agent to address frequently asked questions.

[164]

Profile

Profile

7.00 - 7:30 AM
_8 Cleaning and maintenance of the
1 swimming pool and garden

Personal Information

First Name: Johanne .
Personal Information

Last Name: Ellis First Name: Johanne

Email Last Name: Ellis

Phone: Email

Country: United Kingdom Phone:

Country: United kingdom
Q > 2 Edit

o]

Figure 158 - Guest Profile

The user can expand the calendar to view only the days of their stay,
without the agenda details. By clicking on a specific day, the agenda will
reopen, displaying detailed information for that particular day.

Profile

Profile

Personal Information
First Name: Johanns .
Personal Information
Last Name: Ellis First Name: Johanne

Email: Last Name: Ellis

Ehone: Email:

Country. United Kingdom

Phone:

Country: United Kingdom

& Edit

&>

o

Figure 157 - Agenda

[165]

When the user presses the "Edit" button on the card, the calendar will be
hidden and the card will expand to take up the full length of the screen,
providing more space for the user to easily edit their personal information.

Profile

Profile

X Personal Information

Personal Information First Name
Johanne

First Name

RN Last Name

Ellis

Last Name |
Ellis Email

Enter email address

Email
Phone

Enter mo

Country

United Kingdom

Country

United Kingdom 2, Submit

Figure 159 - Personal Information

For the "Country" field, the user should click the globe icon to the right
of the field, which opens a new screen displaying a list of all available
countries. This screen includes a search filter, allowing the user to quickly
find and select a specific country. The "react-native-country-picker-modal"
package was used to implement this feature.

ana
Enter country name

B Afghanistan
il Afghanistan

Aland Islands gF Aland Islands

Albania Albania

Algeria

American Samoa
< American Samoa
Andorra

Angola @ Andorra

Anguilla A
9 #" Angola

Antarctica
=% Anguilla
Antigua and Barbuda

| Antarctica

= Argentina

Armenia %! Antigua and Barbuda

Aruba

8 Argentina

== Armenia

Figure 160 - Country Picker

[166]

The user can either close the card by clicking the "Close" button in the
top left corner or submit their changes by clicking the "Submit" button.
Upon submission, a notification will appear informing the user of the outcome
of their request, indicating whether it was successful or failed.

Profile

7:00 - 7:30 AM
Cleaning and maintenance of the

3
ST swimming pool and garden

Personal Information

First Name: Johanne

Personal Information

Last Name: Ellis First Name: Johanne

Email: X
Last Name: Ellis

Phone: .
Email:

Country: United Kingdom Phone:

Country: Unitedkingdom

& Edit

Figure 161 - Edit User

9.3.2 My Home

This is the second screen available to a guest, providing detailed information
about the house that is not accessible to unauthenticated users. It includes
a 2D /3D map of the house, allowing the user to switch between these two
views. Additionally, there are detailed descriptions of each room and its
contents. A report form is also available for the guest to report an issue or
ask a question. Furthermore, a card displays the host's contact information,
such as their email address and mobile phone number. As with the profile
page, a virtual assistant is accessible from this screen as well.

[167]

My Home
My Home

S First floor &
First floor %

" o
By | F
I
l:l |
LI)
1 (-

T BHSI ES

»@® 3

Bedroom 1

Bedroom 1
7 Air conditioning
7 Double wardrobe + Air conditioning
+7 Double bed w7 Double wardrobe
« Towels + Double bed
« Towels
« Sheets
« Baby cot (on request)

« Sheets

« Baby cot (on request)

Figure 162 - My Home

By default, the 2D map of the property is selected and the user can switch
to the 3D view by clicking the toggle button located beneath the map.

My Home
My Home

First floor &
First floor &

|
! A

N

20 @ 30

Kitchen Kitchen
« Coffee Machine

« Dishwasher « Coffee Machine

¢ Bishwasher
7 Refrigerator
7 Microwave

« Toaster
« Baby highchair (onrequest) « Oven

/| Refrigerator
«/ Microwave
« Toaster

« Oven

+ Baby highchair (on request)

Figure 163 - 3D Map

[168]

The 3D model of the house is not an actual embedded 3D model within
the app, but rather an illusion created using multiple screenshots of the
house model built on the online platform "Floorplanner” [28|. After the
model was created, several screenshots were taken and imported into the
project as assets. A custom component called “image-360-viewer” is used to
provide a 3D-like experience, allowing the user to scroll left or right to view
the house from different angles, simulating a 3D effect.

Following on this screen, the report form is consisted of two fields:
e Subject: A single line text input field
e Details: A multi-line text area

« Air conditioning
« First Aid kit

ey

@ Your report has been submited!
Second floor

7 TWO single beds
« Workspace
« Air conditioning
7 First Aid kit

Report a problem

Subject

EHIO’}‘,V describe your issue

Report a problem

et Subject
Description b

Describe your problem .
Description

Submit

Figure 164 - Report Form

Both fields are mandatory and the "Submit" button remains disabled until
both fields are filled out. If the form is valid and the user presses the
"Submit" button, a notification will appear, confirming the submission of
their report.

The final card of this screen is the Contact Information.

[169]

My Home

My Home
Subject
Report a problem

Description Subject

Description

Contact Information

Ba vila-agapi@otenst.gr
- Gapi@ g Contact Information

Y. (+30) 6944247486
villa-agapi@otenet.gr

B (+30) 6945773737
R, (+30) 6944247486
B (+30) 6945773737

a A

Figure 165 - Contact Information

The host's email address and mobile number are available in this section,

with the following functionalities implemented:
Copy to Clipboard: The user can click on either the mobile number

[
or the email address and it will be automatically copied to the
clipboard, allowing them to easily paste it elsewhere.

e Interactive Icons: The user can click each icon and the following

activity will take place:
o Email icon: Opens the user's default email application with the

host's email address pre-filled in the recipient field

[170]

4:18

4 vVilla-Agapi

AxUpuwaon
>
N€o unjvupa
From mkarapiperakis21@gmail.com

villa-agapi@otenet.gr

To ° villa-agapi@otenet.gr

Subject

ItaAenke and to iPhone pou

B o ® % @ 1 The To
CWERTY U I'0 P QWERT VY U I OFP
ASDFGHUJK.L A'SDF G HJK.L
4 Z X CVBNM & ZXCVENM @
723, @

space return

Y

Fligure 166 - Send FEmail

o Mobile Phone icon: For Android devices, this icon opens the
user's phone interface with the host’s number pre-filled. On
iOS, it triggers a pop-up window at the bottom of the screen
within the app:

1250 8 M 3 @ -

Create new contact
Add to a contact

Send SMS
Report a problem

Subject

Description

+30 694 424 7486

2

5
8
0

N

Contact Information

villa-agapi@otenet.gr

R, (+30) 6944247486

R, Khon +30 694 4247486

AkUpwon

Figure 167 - Phone Call

[171]

o SMS icon: On both Android and iOS devices, this icon opens
the default SMS service with the host's number as the recipient
and a pre-populated message:

4:18
< villa-Agapi

<@

1250 « ™M g @ -

+30 694 4247486

€& +30694 424 7486

Saturday, Mar 2 + 5:29 PM

Texting with +30 694 424 7486 (SMS/MMS)

Let me know how | can
help you

Let me know how | can help you o

Figure 168 - Send SMS

9.3.3 Chatbot

The chatbot screen is the final interface available to authenticated users,
accessible from the two previously described screens. Upon entering this
screen, the chatbot automatically sends a welcome message to greet the user
and provide an overview of the available services

[172]

Welcome! How may | assist

you today? I'm here to address

any inquiries you may have

about the house and the

surrounding area. If you wish

o commun_u:ate d"em‘ly i Welcome! How may | assist you today?

your host, simply type 'connect I'm here to address any inquiries you

me with host, and you'll be may have about the house and the

connected for a personalized surrounding area. If you wish to

chat experience communicate directly with your host,
simply type 'connect me with host,'
and you'll be connected for a
personalized chat experience

Figure 169 - Chatbot Welcome Message

The chatbot can respond to common phrases, but its primary function is

to guide users toward 'standard’ questions related to the property and the
surrounding area:

¢ Chat

surrounding area. If you wish
to communicate directly with
your host, simply type ‘connect
me with host, and you'll be
connected for a personalized

Welcome! How may | assist you today?
chat experience

I'm here to address any inquiries you
may have about the house and the
surrounding area. If you wish to
communicate directly with your host,
simply type 'connect me with host,'
and you'll be connected for a

@ personalized chat experience

Hello
12:51 PM
Hello! How can | help you?

Hello

a9 PM

| need some help
1.

Of course, how can | help you?

@ Greetings! How can | assist?

I need some help
a1apm

Here are some common
questions:

wifi

Contact host
Emergency

Information

Problem

Other

Of course, how can | help you?

Here are some common guestions:
Wifi

Contact host

Emergency

Information

Problem

Other

Figure 170 - Chatbot Messages

[173]

If the user sends a message that the chatbot cannot respond to, a default
message will be returned, prompting the user to try again. If they are not
satisfied, the message will also suggest connecting with a live agent through
the live chat feature:

< Chat

TR T T ATy TR
me with host, and you'll be -

ted f Y lized Welcome! How may | assist you today?
e CIIPE SO 28 I'm here to address any inquiries you

chat experience may have about the house and the
surrounding area. If you wish to

communicate directly with your host,
What's the weather like right now? simply type 'connect me with host,'
12:54 PM and you'll be connected for a
personalized chat experience
| didn't get that. Can you say it
again? Otherwise you can try
the follow commands:
help
contact 1 didn't get that. Can you say it again?
information Otherwise you can try the follow
problem commands:
question help
contact

What's the weather like right now?
4:21 PM

Alternatively, you can type information
"connect me with host" and you problem

will be connected with Manos question

Alternatively, you can type "connect

connect me with host please Elimtcht:gi\'msﬁaﬁiw'" &=
12:54 PM @

Of course, | am connecting you connect me with host please
with Manos. 2:21PM

Of course, | am connecting you with
@ Manos.

Figure 171 - Connect With Host

9.3.4 Live Chat Guest

If the user types 'Connect me with host' or a similar phrase recognized by
the chatbot, they will be redirected to the “Live Chat” screen to directly
contact the host. The user will receive a notification informing them that
the host has been notified and will join the chat shortly. Meanwhile, the
host will receive an email notification, as outlined in section “8.3.3
Middlewares”.

[174]

< Live Chat

Figure 172 - Join Room

The user can either send a message immediately or wait for the host to
join the chat room. A notification will be sent to the user when the host
connects to the room:

< Live Chat

Hello, can you help me?
12:42PM v

Hello, can you help me?
A:22PM v

Figure 173 - Live Chat Messages

[175]

When the host begins typing their message, the other user will be notified
by the appearance of the characteristic 'three dots' indicator:

Live Chat

< Live Chat

Hello, can you help me?
1242PM v

Hello, can you help me?
az2em v

Figure 174 - Live Chat Typing

When the host responds, the other user will see the host's avatar alongside
the message. Additionally, similar to the login notification, the user will
receive a notification if the host leaves the room for any reason:

< Live Chat

Hellg, can you help me?
12:42PM

Hello, of coursel
.
&b a220m o

Q Hello, of course!
8

Hello, can you help me?

Figure 175 - Leave Room

[176]

9.4 Admin

Admin is an authenticated user of the application. This role is assigned to
the property host, granting access to advanced features, including the admin-
specific screens within the “authenticated” stack, as outlined in section “9.1.8

App”.
9.4.1 Admin Dashboard

The Admin Dashboard is the first screen an admin sees after logging in.
This panel enables the host to monitor user activity, manage users and
booking requests, update property availability and control dynamic maps by
adding or removing markers. The Admin Dashboard includes four cards,
each for the following functionalities:

e User Management

e Booking Requests

e Availability

e Locations

9.4.1.1 User Management

The Users Table is the first card available in the Admin Dashboard and
consists of the following components:

e Users Table: Displays a list of available users. Each row is clickable,
navigating to a detailed screen for the selected user. The table
includes pagination, showing five users per page.

e Search Bar: Allows filtering of users based on role, name or country.

e Add User Button: Enables the admin to add a new user.

Profile
Profile

Users Table

Users Table

{ Q Search by name v
ey Arrival Username

hknowles ito
Arrival Username Country Role
i

3/9/2024 shknowles Nfa visitor rmilner

13/8/2024 srmilner NfA wisitor
6/8/2024 wdwright NfA visitor
18/6/2024 #srobins.. Unite.. wisitor

7/5{2024 scfraser Unite.. wisitor <2 Add User

‘& Add User Tof2

Booking Requests

Request Dato

Booking Requests

il -] o]

Figure 176 - Users Table

[177]

The user can click the down arrow at the end of the search input field to

display a dropdown menu, allowing them to select the column they want
to filter by.

Profile

Users Table

Name

Country

Arrival Username
Role

vited King
chraser United King... visitor

& Add User

Figure 177 - Users Table Filters

Once the user selects a column and starts typing, the results will appear in
real time, without the need to submit anything.

Profile

Users Table
Users Table

Amival Usemame Country Role

Arrival Username Country Role

rmilner NfA visitar

13/8/2024 srmilner N/A visitor 4 manos admin

1N/2024 smanos Greece admin
4l ' ! & Add User

& Add User 10f1

Booking Requests
Booking Requests

Request Date

Name Request Date

Mano. Tue Aug 0 o
John Doe Tue Aug 0.. o

a il] o

Figure 178 - Filter Results

[178]

When the admin clicks on a row, they will be taken to a new screen where
they can view details about the selected user and make modifications.

gbevan

gbevan

Personal Information

Personal Information)
First Name

. Gareth
First Name

Gareth
Last Name

Bevan
Last Name

Bevan
Email

Phone Number

Phone Number

Country

Country
United Kingdom Arrival

Departure

Figure 179 - Edit User

Some fields, such as the user's phone number and country, are read-only
since this information should be provided by the guest. When the admin
edits any other fields and presses the “Update” button, a notification message
will appear, informing them of the result of the update.

gbevan
Arrival

Tue May 21 2024
Arrival

Departure

Tue Jun 112024
Departure

Cleaning Program
Cleaning Program

May 2024

2 2 23 24 @
26 27 @ 29 30 3

Update User

Figure 180 - Update User

[179]

By clicking the option to add a new user, the admin will navigate to a
new screen where the user can be added through five steps:

1. Login Credentials: Enter the credentials required for the user to log
in.
Personal Information: Provide the first and last name.
Contact Information: Input the email address and phone number.
Arrival & Departure: Specify the arrival and departure dates.
Cleaning Program: Select the cleaning program for the guest's stay.

ANl

Add User
< Add User

0-0-6-0-0

Login Credentials

—-0-0-0-0

Login Credentials
Username*

test Username*

test

Password*
Password*

test

Figure 181 - Add User Ist step

The login credentials fields (Username and Password) are mandatory,
meaning the "Next" button to proceed to the next step is disabled if either
field is empty. For the Password field, an icon is located on the right side,
allowing the user to show or hide the typed password.

The next step is Personal Information, where the fields are optional, as this
information may not always be available to the host from the booking.
Therefore, the "Next" button will be enabled by default. The user can return
to the previous step by simply clicking the number “1” in the progress bar.

[180]

Add User
€ Add User

0-0-0-0-06

Personal Information

-0-0-0-0

Persanal Information
First Name
First Name

Last Name
Last Name

Figure 182 - Add User Znd step

The following step includes Contact Information, which consists of the Email
and Phone Number fields. These fields are optional and are only available
in special cases when the guest wishes to communicate with the host prior
to arrival.

Add User
< Add User

000090

Contact Information

12 @@

Contact Information
Email
Email

Phone Number
Phone Number

Figure 183 - Add User 3rd step

[181]

The fourth step includes Arrival and Departure Dates, which are required
fields. As a result, the "Next" button will remain disabled until both dates
are valid and filled in.

Add User
< Add User

0-0-0-0-0

Arrival & Departure

1 2 3 a .

Arrival & Departure

Arrival

Tue Aug 06 2024 Arrival

Departure
Wed Aug 14 2024

Departure

Figure 184 - Add User 4th step

The final step involves selecting the Cleaning Program for the house.
Typically, the host cleans the interior of the house twice a week and these
dates are available from the guest's agenda. The host will see a calendar
displaying the minimum and maximum dates based on the arrival and
departure dates set in the previous step. Between these dates, the host will
be able to select the cleaning dates for the house.

Add User

< Add User

0-0-0-0-0

Cleaning Program

| August 2024

6 709 10
11 W?@M

Figure 185 - Add User 5th step

[182]

If the addition of the new user is successful, the host will be redirected
back to the Admin Dashboard and a success notification will pop up. If an
error occurs, the host will remain on the final step and an error notification
will appear, informing them of the issue.

5:15

@ User has been created successfully

¢ Add User

Users Table

0-6-0-0-0

Cleaning Program

Arrival Username Country

cfraser United King.

2 gbevan United King. sitor

August 2024

29/4/2024 pkent United King.. visitor
6/9/2024 guest United King.. primeVisitor

11/2024 manos Greece admin

& Add User

Booking Requests
Name Request Date

. Manos Karapipe.. Tue Aug
© User already exist

Figure 186 - Add User Submission

9.4.1.2 Booking Requests

The next available card is the Booking Requests, where the host can
navigate through requests using a table similar to the Users Table. The
host can select a booking request to review its details or click the “bin”
icon to permanently delete it.

[183]

Profile
Profile

Booking Requests

1/1/2024 =manos Greece admin

+ Add User 20f2 <

Request Date
arapipe. Tue Au
BOOking RequeStS Mat Doe Tue Aug 06 2024
Name Request Date
Mano.. Tue Aug 0. John Doe
John Doe Tue Aug 0.

Mat Doe Tue Aug 0...
John Doe Sun Aug 1.

Availability
John Doe Sat Aug 2..

Tof2

Figure 187 - Booking Requests

The user can click on a row, which will navigate them to a new screen
where they can view all the details related to the booking request:

Booking Request
Booking Request

Full Name

K
Full Name

Manos Karapiperakis
Email

karapif
Email

m.karapiperakis@yahoo.gr
Comments

Comments

No comments

From
Sep 012024

To

Sep 05 2024 Request Date

Request Date

Tue Aug 06 2024

Figure 188 - Booking Request Details

[184]

9.4.1.3 Availability

The next card available in the Admin Dashboard is Availability, where the
user can modify the availability of the house that is presented during the

booking request process for visitors.

Profile

Profile

Availability

Availability

September 2024

£ Edit Availability

29 Locations

2 Edit Availability

Wl €] o]

Figure 189 - Availability

By clicking the “Edit Availability” button, the user will be directed to a
new screen where they can add a new booking by selecting the arrival and
departure dates. This will mark the intervening days as unavailable:

' Availability
Availability

September 2024

19 20
22 23 24 25 26 27 2

29

Arrival
Arrival
Sun Sep 08 2024

Departure

Departure

Sun Sep 08 2024

Submit

Figure 190 - Edit Availability

[185]

94.14 Locations

The "Locations" card is the final section where admins can view all available
markers on dynamic maps for visitors. A filter by marker type is provided,
allowing users to easily sort the markers. Additionally, users can add a new
marker by clicking the "Add Marker" button or delete an existing one by
selecting the "bin" icon next to the marker in the table.

Profile

Profile
Availability

Locations

All =
Hovoli fastFood

Water City activities

Must drink

Mini Market market

Mourelo food £ Edit Availability

Q. Add Marker JEREYRFS

€75 H%o
Gazi Malia eAui

- ||I| - o

Locations

Figure 191 - Locations

The addition of a new marker includes three steps:

1. Marker Information: In the first step, users provide details about the
marker, including its title (a free text field) and its type, which is
selected from a dropdown menu. The “Next” button allows users to
proceed to the following steps, but it remains disabled until both of
these mandatory fields are completed.

[186]

< Add Marker

0-0-0

Marker Infermation

Title*
mini-market

Type

Market

Add Marker

—-0-0

Marker Information

Title*

mini-market

Type

Market

Figure 192 - Add Marker Ist step

Key Words: Key words are simple services associated with the selected
marker. Users can type a keyword and click the “Add” button to
include it. Each keyword will appear in a list, with a maximum of
12 keywords allowed. Keywords can be removed at any time by
clicking the corresponding delete button.

Add Marker
< Add Marker

0-0-0

Key Words

12 —@

Key Words
Add Key Word

Add Key Word

® ® @

& & &
market groceries food

= market
® ®
shopping buy
shopping buy

Next
= Next

Figure 193 - Add Marker 2nd step

[187]

3. Location: In the final step, users select the precise location on the
map by dragging the marker to the desired spot. Once placed, the
physical address will be displayed and the user must confirm the
selection by clicking the “Submit” button.

Add Marker
Add Marker

0-0-0

Heraklion
@ e

Gazi
razu

Google

Address
Kastrofilakon 24, Iraklio

713 07,

Address

Greece

Submit

Figure 194 - Add Marker 3rd step

9.4.2 Charts

This is the second screen available to admin users, offering various statistics
related to the property and its guests. These include metrics such as the
number of booking days per month and the total bookings per month for
a selected year. Additionally, it provides insights into users' devices (iOS,

Android) and their geographic origins, either for a specific year or across
all time.

Figure 195 - Charts

Screen

[188]

All the data displayed in these charts is retrieved from the user object. To
visualize the information, two components (LineChart and PieChart) from
the “react-native-chart-kit” package were used.

Devices (2024)

e e
(NEVEVIS Sy

S Countries (all years

| @

Figure 196 - Pie Charts

9.4.3 Live Chat

The final screen available to admin users is the live chat. Most functionalities
are identical to those in the guest user's chat screen. However, the key
difference is that the live chat is accessed via the bottom tab navigation,
as the chatbot is not available for admin users. Additionally, the host can
see the name of the user they are chatting with.

Live Chat
Live Chat

hello, how can | help you?
Z24PM S

Sep 8, 2024

hello, how can | help you?
s20PM v

Figure 197 - Live Chat Admin

[189]

10 Heroku
10.1 Heroku Introduction

Heroku was chosen as the hosting platform for the application's two servers,
each serving a distinct purpose. The first server hosts the back-end of the
application, which includes RESTful APIs that expose the database system's
resources to the mobile app. The second server is dedicated to managing
the Socket.io connection, enabling real-time communication for the app's live
chat feature.

10.2 Create Application

The first step is to log in to Heroku and create a new application [29],
selecting the application's name and the hosting region. The available hosting
regions are provided in a dropdown menu, primarily offering options between
USA and Europe. Choosing the region impacts latency, with FEuropean
servers providing lower latency for users in Europe compared to a U.S.
based server.

» m
HEROKU imp to Favorites, Apps. Pipelines, Spaces

@ vila-agapi Node s, Node s - heroku-22 - Europe ¥

Figure 198 - Heroku Create Application

Additionally, since this is a Node.js application, the Node version should be
explicitly defined in the codebase. Otherwise, a default version, typically the
latest stable release, will be used. To specify the desired version, a new
attribute called "engines" should be added to the package.json file, which
describes the target Node version, as shown below:

1 "engines": {
"node": "21.2.0"
¥

Furthermore, the scripts should be defined in the same file and can be
executed using npm:

e start: Starts the server.

o start:dev: Starts the server in development mode using nodemon. By
default, Heroku applications run in production mode, so nodemon
cannot be used in the live app, as it is installed only in local
dependencies.

e test: Runs the Playwright tests.

[190]

"scripts": {
"start": "node src/app.js",
"start:dev": "nodemon src/app.js",
"tests": "npx playwright test --project=chromium"

T = W N~

10.3 Dynos

After creating the application, the next step is to select the dyno that will
be associated with it. The application’s code runs on the Heroku platform
within structures known as dynos [30]. These dynos are runtime containers
that operate on a Linux operating system in the background, executing the
processes necessary to run the application’s custom code. Heroku offers three
types of dynos:

e Eco

e Basic

e Professional
For this project, Eco dynos were chosen during the development phase.
However, one disadvantage of Eco dynos is that they enter sleep mode after
30 minutes of inactivity. When a new request is made while the application
is in sleep mode, the server can take up to 10 seconds to "wake up", which
creates an inconvenience for end users. Therefore, after completing the basic
development and making the application accessible to users, Basic dynos
were implemented to improve performance and user experience.

Dyno Types X
Eco Basic Standard 1X/2X Performance
Ideal for experimenting. Get Perfect for small-scale personal Enhanced performance & Superior performance for your
1000 dyno hours shared across projects and apps that don't visibility for powering very large-scale, high traffic
all your Eco dynos. need scaling. professional apps. apps.
~$0.005/hour ~$0.010/hour ~$0.035/hour-~52.08/hour
Flat fee of $5.00/month Max of $7.00/month Max of $25-51500/month

[® Dev Center: Usage & Billing —

Figure 199 - Dyno Types

10.4 Slugs & Buildpacks

Slugs are compressed and pre-packaged copies of applications optimized for
distribution on the dyno manager [31]. When code is pushed to Heroku, it
is processed by the slug compiler, which converts it into a slug. At the core
of the slug compiler is a collection of scripts known as buildpacks, which
are responsible for managing different programming languages. All
applications written in Ruby, Python, Java, Clojure, Node.js, Scala, Go and
PHP are built and compiled using buildpacks.

[191]

The desired buildpack can be selected from the "Settings" tab by clicking
the "Add buildpack” button:

Add Buildpack X

Enter Bu

dpack URL

l Le.g. heroku/nodejs or https://github.com/heroku/heroku-buildpack-ruby

Or select from our officially supported buildpacks

© ® @ = T
nodejs python php ruby java
| - = @
go gradle scala clojure

Add Buildpack
Figure 200 - Buildpacks

In addition to the standard buildpacks provided by Heroku, custom
buildpacks can also be added. For the server application, the Playwright
buildpack has been imported. To accomplish this, a new file named app.json
has been created in the root directory of the project, containing a URL that
points to the GitHub page hosting the Playwright buildpack. Finally, the
same "test" command should be defined within the scripts, as it will be
used later in the testing process

Lo

2 "environments": {

3 "test": {

4 "buildpacks": [

5 {

6 "url™: "https://github.com/mxschmitt/heroku-playwright-
7 | buildpack.git"

8 }s

9 {

10 "url": "https://github.com/heroku/heroku-buildpack-
11 | nodejs"

12 }

13 1,

14 "scripts": {

15 "test": "npx playwright test --project=chromium"

16 }

17 }

18 }

19 }

[192]

10.5 Heroku CLI

The Heroku Command Line Interface (Heroku CLI) is a vital component of
the Heroku platform. It allows users to create and manage applications
directly from the terminal, providing a powerful toolset for developers. With
the Heroku CLI, users can deploy code, scale applications and configure
environment variables with ease. Additionally, it offers features for logging
and viewing application logs, as well as connecting to databases. To use the
Heroku CLI, the Heroku npm package should be installed globally, executing
the command “npm install -g Heroku”.

10.6 Add-ons

Add-ons are an essential part of the Heroku platform. They enable users to
integrate complex features into their applications without needing to build
and manage them from scratch. Examples of commonly used add-ons include:

e Data Stores: MySQL, Heroku Postgres, MariaDB, Apache Kafka.

e Logging: Papertrail, Coralogix.

e Email/SMS Services: Mailgun, Trustifi.

e Messaging and Queueing: RabbitMQ.

e Dynos and Scheduling: Heroku Scheduler.
In this application the following Add-ons were used:

e Heroku Postgres

e Heroku Scheduler

e Papertrail

Installed add-ons @Il LI Configure Add-ons (#
Heroku Postgres (4 Essential 0 m Papertrail [Choklad
postgresqgl-rigid-27473 papertrail-aerodynamic-92146

0 Heroku Scheduler (' Standard
scheduler-flat-32269

Figure 201 - Add ons

10.6.1 Heroku Postgres

Heroku Postgres is the first add-on that was added, allowing to include a
Postgres database in the application. The first step 1is selecting the
appropriate plan, as add-ons are not always free to use. Prices range from
5€ up to 34,000€ per month. Since the application's database has relatively
low requirements and a modest level of complexity, the affordable plan
("Mini") was chosen:

[193]

Plans & Pricing

— ~$0.007/hour 5 c
(Max of $5/month) ostgres Extensions v
RAM 0 Bytes
Basi
Standard Direct SQL access v
e Row Limit 10.000
Standard 2 . -
Storage Capacity 1GB
Premium O
A17/hour Dataclips v
Private 0 .
Continuous Protection v
Premium 2 Connection Limit 20
Shie
Standard 3 Rollback 0 Seconds
Private 2
PostGIS v
Standard 4 Max of _: i: PGBackups v

Figure 202 - Heroku Postgres Add on

Opening the newly added add-on displays a screen with four navigation
options:
e Overview: Provides database details such as region, version, size and
number of tables:

Overview Durability Settings Dataclips

HEALTH

@ Available

PRIMARY Yes VERSIOM 15.7 CREATED amonthago MAINTENANCE Unsupported (' ROLLBACK Unsupported (@

UTILIZATION

0oro0 8.0 mEof1cE 5 of 4,000

CONMNECTIONS @ IN COMPLIANC DATA SIZE @ IN COMPLIANCE TABLES @ IN COMPLIANCE

m

Figure 203 - Heroku Postgres Overview

e Durability: Offers backup functionality (manual only, due to the
selected budget-friendly plan):
e Settings: Shows general database information, including name, host,

URI and password.

[194]

ADMINISTRATION

Datat:

Credentials

Getc s for manual connections to this database.

Please note that these credentials are not permanent.

Heroku rotates credentials periodically and updates applications where this database is attached.
Host
Database
User
Port
Password
URI

Heroku CLT

Database

the database to its originally-provisioned state, deleting all data inside it

e and all of the data inside it.

Figure 204 - Heroku Postgres Settings

e Data Clips: Allows for SQL queries, though insert, update and delete
commands are not permitted. This feature is intended for viewing
and exporting data.

use
users postgresq|-rigid-27473 @ vila-agapi nin Save & Run Schema Ex
-
2 Ex
' 4 cs\ 4 JSON Chart
2rowsin902ms December 9, 2023 17:52 — -
Id Name Email Password Created_date Arrival 1 Departure Role Firstname
$225125G0ORIOMBGPXEWS... 2023-12-08 23:14:43 2023-11-08 67:49:2 2023-11-08 07:40:2
n spTd

Figure 205 - Heroku Postgres Dataclips

Data Clips only allow select queries that do not modify the database
content. If a user needs to interact with the database, there are two available
options:

1. Using Database Credentials: Database credentials from the Settings
tab can be used to connect through a database client like pgAdmin.
2. Using the Heroku CLI: The Heroku CLI can be used to connect to
the database directly from the terminal. This requires the following

two commands:
o heroku login: Opens a new browser tab for user authentication.

[195]

=3

Reset Database.

Destroy Database.

o heroku pg:psql -a <app name>: Initiates a connection to the
database server.

PS C:\Users\manos> heroku login
Warning: heroku update available from to e
heroku: Press any key to open up the browser to login or q to exit:
Opening browser to https://cli-auth.heroku.com/auth/cli/browser/9eal617b-111d-4b75-a35a-72a09blieeb27?requestor=4
8qLfaR2_Q
Logging in... done
Logged in as
PS C:\Users\manos> heroku pg:psql villa-agapi
Warning: heroku update avail to
--> Connecting to 3
psql (15.2, &6iakopioThig 15.5
NPOEIAONOIHIH: O mnyaiog kuwdikag tng kovoohag (737) Sradeper amd tov mnyaio wudika twv Windows(1253)
Xapaktipeg 8-bit GUvatar va punv Asitoupyouv opBd. Asite Tnv avapopd otn ceAiba
psql pe titho ?Enueliicslrg yia yproteg Windows? yia mAnpodopieg.
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA38U, compression: kAeloTd)
rpayte 7help? yia Bondsia.

villa-agapi: :DATABASE=> select * from app.users

villa-agapi: :DATABASE-> ;

id | name | email I password created_d3
eaningprogram lastconnected

1 | Johnboe | JohnDoe@gmail.com | $2a$12$q@ORIoMBGPXEW8SNTvpofew3mqPnwrTRp/khvuLKl.upchDo/BP.q | 2023-12-88 2

Figure 206 - Connect to Heroku Postgres

10.6.2 Papertrail

Papertrail is the second add-on used for the application, providing a
convenient way to view and monitor application logs in real-time.

Oldest event reached

Cycling
changed from starting
with SIGTERM
tus 143

and “npm start

tats not found, ignoring event loop metrics...

[DEP@®40] DeprecationWarm The “punycode’ module is deprecated. Please use a userland alternative instead.

how where the warning was created)

272 in environment: 'production’

with command *
m starting to

with status @

Figure 207 - Papertrail

10.6.3 Heroku Scheduler

Heroku Scheduler [32] is the final add-on used, enabling scheduled tasks to
run at specific intervals, every 10 minutes, every hour or once daily. This
tool is wusefull for automating repeative jobs, such as data backups,
maintenance tasks or API calls. In this application, two scheduled jobs have
been created:

1. Status: This job runs daily to update user statuses by comparing
each user’s departure date with the current date. If the current date
is later than the departure date, the user’s status is set to inactive
(false). This process ensures that only active users have access to the
application, fulfilling a business requirement.

[196]

1 | #1/app/.heroku/node/bin/node

2

3 | async function checkStatus() {

4 try {

5 const users = await getUsers();

6 const expectedDate = new Date();

7 expectedDate.setDate(expectedDate.getDate() - 1);
8

9 for (const user of users) {

10 const departureDate = new Date(user.departure);
11 if (expectedDate > departureDate && user.is active !== false)
12 | {

13 await updateUserStatus(user.id, false);

14 counter++;

15 }

16 }

17 console.log(${counter} users out of ${users.length} have been
18 | updated’);

19 } catch (error) {

20 console.error("Error fetching users:", error);

21 } finally {

22 process.exit();

23 }

24 | }

For Heroku scheduled jobs, the script file needs to be placed in a specific
location within the project structure. Heroku expects the file to be inside a
folder named bin at the root level of the project and the file name should
exactly match the name of the job created in Heroku Scheduler. Moreover
the first line inside this file should be the “shebang” also know as hashbang
[33]. The shebang line specifies the interpreter that should be used to
execute the script. The first two characters (#!) tell the system that this
file should be executed by the interpreter specified in the path that follows.
The remainder of the line indicates the exact location of the interpreter.
To find this specific path to be used, the command “heroku run "which
node" -a <app name>" should be executed:

PS C:\Users\manos> heroku run villa-agapi
Warning: heroku update available from to

Running which node on ® villa-agapi... up, run.id286
/app/ .heroku/node/bin/node

Figure 208 - Which Node

2. clear-logs: This is the second scheduled job that has been created
and it is responsible for clearing data from the app.attack table. This
table is typically used to monitor suspicious activity from potential
attackers. However, due to the limited database size associated with
the mini plan, it was essential to implement an automated method
for clearing logs periodically. Consequently, a job was created to clear
these logs once a week, specifically every Sunday. Although the job
can be set to run every 10 minutes, every hour or every day, it has

[197]

been configured to run daily. Each time it runs, the job checks the
current day of the week. If it is Sunday, all records from the table
are deleted and the job prints the number of records that were

affected:
1 | #!/app/.heroku/node/bin/node
2
3 | async function clearDB() {
4 const date = new Date();
5 let rows = 0;
6 //Every Sunday clear logs
7 if (date.getDay() === 0) {
8 try {
9 let result = await deletelogs();
10 rows = result.rowCount;
11 } catch (err) {
12 console.log(error deleting logs: ${err});
13 }
14| 3
15
16 console.log(Process clear-logs has been completed. ${rows} ${rows
17 | === 1 ? "row has" : "rows have"} been affected)
18
19 process.exit();
20 | }

Heroku Scheduler provisioned for @ villa-agapi
Add Job

Job Dyno Size Frequency Last Run Next Due
$ status Basic Daily at 12:00 AM UTC November 1, 2024 12:00 AM UTC MNowvember 2, 2024 12:00 AM UTC
$ clear-logs Basic Daily at 12:00 AM UTC November 1, 2024 12:00 AM UTC November 2, 2024 12:00 AM UTC

Figure 209 - Heroku Scheduler

10.7 CI/CD

Heroku offers continuous integration (CI) support through its Pipelines and
Heroku CI [34]. With these features, developers can automate the testing
process by configuring Heroku to run application tests automatically
whenever changes are pushed to the GitHub repository associated with the
app. To set up Heroku CI, the first step is to create a new pipeline, which
serves as an organized workflow for managing and deploying different
versions of the application across development, staging and production
stages:

[198]

Q Personal ¢ > ‘ villa-agapi T

GitHub) MKkarapiperakis/villa-agapi

Overview Resources Deploy Metrics Activity Access Settings
Add this app to a pipeline Add this app to a stage in a pipeline to enable additional features
Cstel ucw p'lpe“”E er Ehoose‘an‘ existing Pipelines let you connect multiple apps] o® Pipelines connected to GitHub can enable review
Che SRt S Sopil0S S1a=0 Ik v together and promote code between them apps, and create apps for new pull requests.
® Learn more. [] ® Learn more.

+ Create new pipeline

Name the pipeline m

villa-agapi-pipeline (]

Choose a stage to add this app to

production

This app will be added to preduction in fig villa-agapi-pipeline
Create pipeline

Figure 210 - Heroku Create Pipeline

For the existing Node.js application, a new Heroku pipeline was created to
facilitate a streamlined deployment process. The application was moved to
the production stage within this pipeline and associated with the "prod"
branch of the GitHub repository, ensuring that changes pushed to this
branch are ready for live deployment. Additionally, a separate app named
"villa-agapi-uat" was created as a staging environment. This staging app
was added to the pipeline just before the production stage, allowing for pre-
production testing and is connected with the “uat” branch respectively.

O Personal ¢ > rr.\/ril\a-agapi-pipelima w @

Pipeline Tests Access Settings

5 Enable Heroku CI for this pipeline to run your tests automatically after every push. Learn more. m

REVIEW APPS + STAGING + Add app + PRODUCTION + Add app

Before enabling review apps, the pipeline must first be

connected to GitHub . villa-agapi-uat . villa-agapi
€9 MKarapiperakis/villa-agapi €9 MKarapiperakis/villa-agapi

Connect to GitHub...

Auto deploys uat Auto deploys prod
Sec189b5 Deployed just now 3364ce3C Deployed Feb 19 at 11:28 AM
Promote to production Open app < Open app &

Figure 211 - Create Staging App

The new staging app, "villa-agapi-uat”, has its own environment variables,
so it can function independently from production. It uses the same dynos
as the production app, so there are no extra costs for running it.

[199]

To save on database fees though, the staging app is connected to the same
PostgreSQL database as production. This allows testing with live data
without needing a second database instance.

After that, this application should be configured, enabling automatic deploys:

STAGING + Add app

. villa-agapi-uat

©) MKarapiperakis/villa-agapi
Auto deploys uat
5ec189bs Deployed just now

-~

Promote to production l Open app @ v

o] Configure automatic deploys...
(#) Deploy a branch...

/2 View latest build...

Move app to | development

Move app to | production

¥ Remove from pipeline

Figure 212 - Configure Automatic Deploys

From there the the desired branch (uat) should be selected, the "Wait for
CI to pass before deploy" checkbox should be checked and the "Enable

Automatic Deploys" button should be clicked:

Configure automatic deployment for @ villa-agapi-uat

Enable automatic deploys from GitHub
Every push to the branch you specify here will deploy a new version of this app.
Deploys happen automatically: be sure that this branch is always in a deployable
state and any tests have passed before you push. Learn more.

Enter the name of the branch to deploy

P ouat

Wait for CI to pass before deploy
Only enable this option if you have a Continuous Integration service
configured on your repo.

Cancel Enable Automatic Deploys

Figure 213 - Enable Automatic Deploys

After that the tests should be enabled by navigating to the tab “Tests” in
the pipeline and connecting with GitHub:

[200]

0 Personal ¢ > (r‘vi\la—agapirpipeh'ne

Pipeline Tests Access Settings

L

Tests run on Heroku when your
pipeline is connected to GitHub
and code is pushed to a branch

Configure Heroku CI for (’. villa-agapi-pipeline

Connect to GitHub to enable test runs on Heroku.

O Connect to GitHub

To run tests on Heroku your pipeline must first be cennected to a GitHub repository.
Connect to GitHub to enable automatic tests and additional pipeline features. Learn

more.

Connect to GitHub

Figure 214 - Configure Pipeline Tests

As a final configuration step, the “Review Apps” option should be enabled
from the Settings tab along with Heroku CI, if it is not already activated:

Pipeline Tests Access Settings

Info

Pipeline connected to GitHub

Connect for automatic deploys, test runs and
review apps on this pipeline

Review apps

Review apps can be created for pull requests
opened on GitHub

Heroku CI

Configure tests using Heroku CI

For the Review Apps, the following configuration is important:

Pipeline Name

villa-agapi-pipeline

Connected to [MKarapiperakis/villa-agapi by @) MKarapiperakis

@ Review apps can be enabled for this pipeline
-0~ Releases in app activity feeds link to GitHub to view commit diffs
@ Automatic deploys are available to apps in this pipeline

% You can run tests on this pipeline with Heroku CI

Enable Review Apps

Enable Heroku CI test runs

Disconnect...

Enable Heroku CI to run your tests automatically after every push to the GitHub repository connected to this pipeline. A configured

app.json is required. Learn more .

Charges for dyno and add-on usage from test runs are prorated to the second. All charges are billed to the selected pipeline

owner.

Enable Heroku CI

Figure 215 - Enable Review Apps

e C(reate new review apps for new pull requests automatically
e Wait for GitHub checks to pass
e Destroy state review apps automatically after 1 day without any

deploys

[201]

Enable Review Apps X

I | Create Review Apps for open pull requests

Pull requests opened on can be deployed to new Review
Apps, manually or automatically.

[¥ Dev Center: Review Apps

Configure Review Apps

Create new review apps for new pull requests automatically
When enabled, every new pull request opened will create a Review
app automatically and pull requests that are closed will be deleted.

Wait for GitHub checks to pass
When enabled, new review apps deploy after all GitHub checks pass.

Destroy stale review apps automatically
After 1 day -

without any deploys

Choose a region

All review apps will be created in this region

& Europe .

Review apps may incur dyno and add-on charges. These are
invoiced to the app owner. Learn More

Figure 216 - Review Apps Configuration

Now that the pipelines are set up, a new review app will be created for
every new pull request targeting the UAT branch and the Playwright tests
available for the server will be executed.

[202]

Add environment logs #

11 Open

Y Conversation 0

MKarapiperakis c

MKarapiperakis

= MKarapiperakis

villa-agapi-main-zgqweki7inhxp 12

This branch was successfully deployed

+~ All checks have passed

+ This branch has no conflicts with the base branch

Squash and merge

- You can also

or view

Figure 217 - Raise PR

View deployment

Once the checks pass, a new slug will be created for the “villa-agapi-uat”
app, which can then be promoted to production by clicking the respective

button:

Q) Personal ¢

> i@ villa-agapi-pipeline

ineline acts Access
Pipeline ests Access

REVIEW APPS {3} Configure + New app >

i @ #18 Add environment logs

| Create review app

.

STAGING + Add app >

villa-agapi-uat
Auto deploys uat «
5:05 PM

b78s823a Deployed today at

Promote to production Open app @

Figure 218 - Pipeline Overview

) vkarapiperakis/villa-agapi

PRODUCTION + Add app

‘ villa-agapi

Auto deploys | prod «

76367417 Dep!

oyed today at

5:05 PM

Open app (F

Promoting the app to production does not affect the “prod” repository, only
the slug is deployed to this stage from UAT. However, it is good practice

[203]

a4

@

to remain aligned with UAT after the build is completed and the tests have
passed.

Promote

FROM

3 villa-agapi-uat
Auto deploys uat
b7ese23a « Deployed today at 5:05 PM

TO PRODUCTION

. villa-agapi

Auto deploys | prod
TE3ET41T Deployed today at 5:05 PM

Show commits-<0- Compare on GitHub

A promotion to production will occur without rebuilding the source slug.
Release phase will still be run. Learn more

Figure 219 - Application Promotion

10.8 Release Process

As a result of the previously described CI process, the release procedure
consists of the following steps:

1.

For each new feature to be added, a feature branch is created from
the “main” branch, following the naming convention: “feat/<feature-
short-description>”

This feature branch is then merged into the “main” branch.

A new Pull Request (PR) is raised from the “main” branch targeting
the “uat” branch.

This action initiates a new review app process in Heroku, which runs
all the tests before deploying to the “uat” branch.

After all tests pass, the changes are merged into the “uat” branch on
GitHub.

The tests defined for the UAT are executed again, if they pass
successfully, the build for the UAT pipeline begins.

Upon completion of the build, it can be promoted to production,
where the respective tests are run once more. If these tests pass, the
build process is initiated.

[204]

villa-agapi-uat

H

7

Promotion to

Production pipeline

villa-agapi

H

HEROKU

Run tests

7 Run tests
h 4 Review App HEROKU Runtests
HEROKU
5 Merge to uat
Deploy for uat
GitHub Pipetine
uat ¥ -
3 Raise PR to uat
GitHub
main [g
2 Merge to main
1
Feature
branch

OO

Commit 1 Commit 2

Figure 220 - Release Process

[205]

11 Deployment for Mobile Application
11.1 Metadata Configuration

Before deploying the mobile application online, the first step is to configure
essential metadata required for building the app. During project setup, a
file named app.json was generated. This file includes crucial metadata, such
as the app logo, splash screen image (displayed while the app content loads),
API keys (e.g. Google Maps API key), app version and more:

{2 appJson

"version™:
"orientatio

"supportsTablet™:
"bundleIdentifier™: "
"adaptivelcon™: {
"foregroundImage™: “./
bs
"config®: {
googleMapsApiKey™: ”
1
"buildNumber™: "15"

"android™:
"versionCode": 14,
"adaptivelcon”: {
"foregroundImage™: “./

Figure 221 - App.json

11.2 Build Application

Since the application is built with Expo, the build process will take place
on Expo's servers, supporting both iOS and Android. This allows a common
build phase for both operating systems, with only the final distribution
differing for each app store. As a first step, the command “npm install -g

[206]

eas-cli” should be run to globally install the Expo Application Services
(EAS) CLI:

PS C:\Users\manos\Desktop\react_native\http> npm install eas—cli

npm (/L osenv@@.1.5: This package is no longer supported.

npm [} inflight@1.8.6: This module is not supported, and leaks memory. Do not use it. Check out lru-cache i
f you want a good and tested way to coalesce async requests by a key value, which is much more comprehensive and powerfu
1.

npm E rimraf@2.4.5: Rimraf versions prior to vl are no longer supported

npm
or more info.
npm (/L glob@6.0.4: Glob versions prior to v9 are no longer supported
npm [} glob@7.1.6: Glob versions prior to v9 are no longer supported

@oclif/screen@3.0.8: Package no longer supported. Contact Support at https://www.npmjs.com/support f

added UlH packages in 29s
Figure 222 - Install eas-cli

After that the command “eas login” should be given in a terminal and login
credentials for the expo should be given:

Ps C:\Users\manos\Desktop\react_native\firebase-testl> eas login
* eas—cli@l2.6.2 is now available.

(node:12010) [DEPEOUO] DeprecationWarning: The ‘punycode’ module is deprecated. Please use a userland alternative instead.
(Use ‘node —trace-deprecation ..." to show where the warning was created)
Y | in as ekarapiperakis.
Do you want to continue? yes
Log in to EAS with email or username (exit and run eas login —-help to see other login options)
Email or username mkarapiperakis21@gmail.com
Password ek ok koo ko
Logged in

Figure 223 - Eas login

After logging in, the application can be built for the first time by running
the command eas build in the terminal and the user should select the
desired Platform:

PS C:\Users\manos\Desktop\react_native\http> eas build
* eas—cli@l2.6.2 is now available.

(node:1u528) [DEP@EU@] DeprecationWarning: The ‘punycode' module is deprecated. Please use a userland alternative instea
d.
(Use ‘node --trace-deprecation ...‘ to show where the warning was created)

Select platform

Android
i0s

Figure 224 - Fas build

As a result of this process, a new file named eas.json will be generated in
the project’s root directory. This file contains important metadata for the
build configuration:

Generated eas.json.
Loaded "env" configuration for the "preview" profile: no environment variables specified.

Figure 225 - Fas.json

[207]

This file was configured as shown in the following image:

L) easyson X

“cli”: {
"version”: "»= 5.2.8"

"promptToConfigurePushNotifications™:

lopmentClient”
"distribution™: "inte

"preview”:
"android”: {
"buildType”: "apk"
1
I

"distribution™: "internal”
"production”:
"autoIncrement™:

Is
"submit™: {

"appleId™: "mkar
"ascAppld”:
"appleTeamId™:

Figure 226 - Fas.json Configuration

The eas.json file includes three configured build profiles:

Development: This profile generates a single executable file compatible
with both iOS and Android devices. Users can install this version
locally and start the development server by running “npm start” in
the terminal while both the mobile device and local machine are
connected to the same network. This setup allows for real-time
debugging, with logs and errors displayed in the terminal. It is very
useful for early testing and internal distribution among other
developers. If the development server is not running (i.e. if npm start
hasn’t been executed), the app will not open.

Preview: This profile also creates a single executable for both
platforms, but it does not require the development server to be
running. This version can be distributed to testers for functionality
testing. It serves as a pre-production release to validate the app’s
business requirements rather than testing the code itself.

Production: This is the final production build, intended for
distribution to end users through app stores. For this version, an
autoincrement attribute is enabled to automatically increase the app
version with each build, ensuring version control for each release.

[208]

Finally, additional configuration is included in the production profile for iOS
to support deployment, such as the required iOS app identifiers. Now the
desired profile can be specified in the build command:

PS C:\Users\manos\Desktop\react_native\http> eas build preview

(node:14576) [DEP@EU®] DeprecationWarning: The ‘punycode‘ module is deprecated. Please use a userland alternative instea
d.

(Use ‘node --trace-deprecation ...' to show where the warning was created)

Select platform
ALl
Android

Figure 227 - Profile Build

When selecting iOS as the preferred platform, logging into an Apple account
is required, as a subscription to the Apple Developer Program is necessary
to develop and distribute iOS applications. This program costs 100€ per
year and provides a unique identifier linked to the Apple ID, enabling app
development and deployment for iOS devices.

Using remote i0S credentials

Do you want to log in to your Apple account? yes

Log in to your Apple Developer account to continue
Apple ID: mkarapiperakis2l@gmail.com

Restoring session

Team EMMANOUIL KARAPIPERAKIS

Provider EMMANOUIL KARAPIPERAKIS

Logged in

Bundle identifier registered

Synced capabilities:

Synced capability identifiers:

Fetched Apple distribution certificates

Fetched Apple provisioning profiles

All your registered devices are present in the Provisioning Profile. Would you like to reuse the profile? » Yes

Figure 228 - Build for iOS

Building for Android is simpler, as there are no restrictions during the build
process itself. However, for final distribution to the Google Play Store, a
Google Play Console account is required, which involves a one-time
registration fee of 15€.

After that, the application will be uploaded to the Expo server. This process
is free under the basic package, but it does come with a limit of 30 builds
per month and usually waiting in a queue for the build to begin is required.

Compressing project files and uploading to EAS Build.
Compressed project files
Uploaded to EAS

Build details:

Waiting for build to complete. You can press Ctrl+C to exit.
Build queued...

Start builds sooner in the priority queue.
Sign up for EAS Production or Enterprise at

Waiting in Free tier queue
| — 1] | starting soon...

Figure 229 - Start Build

[209]

Once the build is complete, a message will appear in the terminal,
accompanied by a QR code that can be used to install the built application:

Waiting in Free tier queue
| NSNS

Build finished

W Open this link on your i0S devices (or scan the QR code) to install the app:

Figure 230 - Install the App

The user can also navigate to expo, to check more details about the build:

) Builds > ba8707f6

@ i0S internal distribution build _)
@ Show Details

397c81f - test commit

Profile SDK version Version Build number Commit Created by

preview 49.0.0 1.04 2 397c81f* 5] E ekarapiperakis

(& Build artifact 1pa #& Open with Orbit

Status Start time Wait time Queue time Build time Total time Availability

@ Finished Jun 29, 2024 6:23 PM 58 7m 30z 8m 29s 13 days

Figure 231 - Build Details

11.3 Deployment for iOS

After a succesfull build through the expo, the application can be submited
to the app store [35] by running the command “eas submit -p ios --latest”.
This command will submit the most recent iOS build from expo:

[210]

anos\Desktop\react native\http> eas submit
* eas-cli@e.2.2 is now available.
To upgrade, run npm install -g eas-cli.
Proceeding with outdated version.

(node) [DEP@e48] DeprecationWarning: The ~punycode™ module is deprecated. Please use a userland alternative instead.
(Use “node --trace-deprecation ...” to show where the warning was created)

Locking up
App Store Connect APT Key
Using Api Key ID:

Name

D

Sour

Build:
Build ID
Build Date
App Version :
Build number:

Scheduled i0S submission
Submission details: hitp!

Waiting for submission to complete. You can press Ctrl4C to exit.
Submitting your app to Apple App Store Connect: submission in progress

Figure 232 - Submit iOS Build

If the user returns back to the expo, he can see the execution of this
process with more details available:

o
AExpo w Ao
missions > 072¢d596
Zc i0S App Store submission
E ekarapiperakis -
I Status Created by Created at
[« v ® InProgress (€ ekarapiperakis Aug 1, 2024 546 PM

€ Back to Dashboard

88 Overview

229 insights
®

8 B

& o

1 emnches
£ Updates

@ Submitted build View build >
Profile SDK version Version Build number Commit Created by
production 5100 201 7 397c81F* @ | & ckarapiperakis
Logs
> @ spin up submission worker s7s | @
> & Submitto App Store 465

Figure 233 - Expo Submission

Once the process is complete, the terminal will display an update with the
next steps:

duled i05 submission
Submission details: https Xpo. unts/ekarapip

Waiting for submission to complete. You can press
Submitted your app to Apple App Store Connect!

Your binary has been successfully uploaded to App Store Connect!

- It is now being processed by Apple - you will receive an email when the processing finishes.

- It usually takes about 5-18 minutes depending on how busy Apple servers are.

- When it's done, you can see your build her Ji [testflipht

Figure 234 - Build Upload to App Store Connect

[211]

Afterward, the user can visit the URL provided upon successful completion
of the build upload. In the TestFlight tab, the status of the specific uploaded
build version is available. Additionally, from the sidebar, options for internal
or external testing are available. While optional for submission, enabling
testing is considered a best practice.

A App Store Connect Apps Analytics Trends Reports Business Users and Access

& Villa Again Distribution TestFlight Xcode Cloud

Builds

i0s

Feedback
Crashes

Screenshots

Testers

All

INTERNAL TESTING @
D Testers

EXTERNAL TESTING @

General Information

Test Information

iOS Builds

The following builds are available to test. Learn more about build status and meatrics.

~ Version 2.0.1

Emmanouil Karapiperakis v
EMMANOUIL KARAPIPERAKIS

BUILD ~ STATUS GROUPS INVITES INSTALLS SESSIONS CRASHES FEEDBACK

Ready to Submit

&7

> Version 1.0.2

About TestFlight Data 7

Figure 235 - Build Details

Next, in the "Distribution” tab, users can view past submissions and import

a new iOS app by clicking the

beneath the project name.

& Villa

ios App @

Agapiv Distribution TestFlight Xcode Cloud

App Review

@ 1.0.0 Ready for Distributi...

Add Platform

General
App Information
App Review

History

All items submitted to App Review and your messages with Apple are shown below.

Submissions

You can see the last 10 completed submissions from the past 180 days below.

TYPE SUBMITTED v VERSION

Mar 18, 2024 i0s1.00

Figure 236 - Submissions Details

there, additional details should be provided, including:
Description: A brief overview of the app.

"+" icon located in the top-left corner

STATUS

© Review Completed

What's New in This Version: Details about updates or new features

in this version.

Keywords: Keywords to improve search visibility in the App Store.
Support URL: The URL for user support or privacy information for

the application.

[212]

2= Villa Agapi v Distribution TestFlight Xcode Cloud

i0S App iOS App Version 2.0.0
2.0.0 Prepare for Submis...

© 1.0.0 Ready for Distributi
The assets and metadata below appear on your app’s product page, when users install your app, and will be used for web engine search resufts ance you English (UK) v 7

Add Platform release your app

General
“
App Information
App Review
History
Description 7

This application is meticulously crafted te furnish you with comprehensive details about the property and its surreunding locality through integration with dynamic Maps. Moreover, it
App Store offers you the convenience of submitting booking requests seamlessly. Catering to our esteemed guests, we provide 24/7 live support and deliver detailed insights into the indoor
amenities of the property.
TRUST & SAFETY
App Privacy

Ratings and Reviews
What's New in This Version ?

GROWTH & MARKETING - Improved Ul
- Added Apple Maps support
In-App Events
Custom Product Pages P
Product Page Optimization

Promo Codes Keywords ?

Game Center Villa Agapi, holidays, Greece

MONETIZATION

Pricing and Availability Support URL 2 Marketing URL 7

In-App Purchases https: 038b53c-6766-4ebf-9286-579¢70c003de http://example.com (optional)

Figure 237 - New Version Configuration

Finally, by scrolling to the end of this page, the new build should be
imported:

i0S App Version 2.0.0

The assets and metadata below appear on your app's product page, when users install your app, and will be used for web engine search results once you English (UK.) v ?

release your app.

> Apple Watch -

Build @

Upload your builds using one of several tools. See Upload Tools

Figure 238 - Add Build

By clicking the "Add Build" button, a new modal will pop up, allowing the
user to select the appropriate version of the build.

[213]

W @8

m

[«

EP @B

Add Build

BUILD

O i 7

VERSION

Figure 239 - Add Build Modal

11.4 Deployment for Android

Deploying to Android differs significantly from iOS. First, a Google Play
Console account is required. The app must be manually uploaded for the
initial release, after which it can be updated in a similar manner to the
iOS submission process [36]. After creating a new account to the Google

Play Console, in the dashboard

applications:

} Google Play Console

Home

the wuser can see

Installed audience App status Update status

7 Production

o, Manos Kar
Inbox 4 23]
Persanal account - Account ID:

Policy status
Users and permissions
Order management Pinned apps @

Pin apps here to access them quickly, and view key metrics
Download reports
Raviews

1a|
Statistics pp
Financial i

All -
Developer account
Associated developer App
accounts
villa Agapi

Activity log com ekarapiperakis ittp
Settings

Next, a new application
button:

Figure 240 - Google Play Console

[214]

previouslly created

o @ @
Create app
Q Search by app or package name.
Last updated
Aug 3, 2024 1} Viewapp =
Showrows: 10w 1-10f1 ¢ ¢

can be created by simply clicking the “Create app”

Create app

App details

App name villa-agapi

This is how your app will appear on Google Play 11/30

Default language

English (United States) - en-US

App or game You can change this later in Store settings
® ww
QO ocame

Free or paid You can edit this later on the Paid app page

@® Free
Q Paid

(You can editthis until you publish your app. Once you've published, you can't
change a free app to paid

Declarations

nnnnnnnnnnnnnnnnnnnnnnnnn ™2 Cconfirm ann meets the Develoner Proaram Policies

Figure 241 - App Details

In this section, key information is required, including the app name, default
language, type (app or game) and pricing (free or paid). A paid app requires
a purchase to download, whereas a free app can still offer in-app purchases.
Once the application is published, the pricing status (free or paid) cannot
be changed.
After creating the application, the following tasks should be completed before
the final deployment to production:

e Internal Testing

e App Information

e Closed Testing

e Release to Production

11.4.1 Internal Testing

Before finalizing the app setup, a round of quick testing is required. This
involves distributing builds to a small group of trusted testers to identify
issues and gather early feedback. The email addresses of these testers should
be added to a list and the production application executable (in the .aab
format) previously exported from Expo will be uploaded as a new release.
Once this is complete, testers will receive an email with a URL to install
the app and a link to provide feedback after testing the application.

[215]

Internal testing [0 Phones, Tablets, Chrome OS +

Create and manage internal testing releases to make your app available to up to 100 internal testers. Learn more

Set up internal testing track

Inactive
Hide tasks ~

o Select testers >

CREATE AND ROLL OUT A RELEASE

o Createanew release>

@A Preview and confirm the release

Figure 242 - Internal Testing

The next step is to enter essential app information, including the privacy
policy, app access settings (available countries), content rating and target
audience, among other details. For the privacy policy, a website called

"FreePrivacyPolicy" [37] was used to generate a privacy policy document,
which can then be shared as a URL.

Finish setting up your app

Provide app information and create your store listing

Let us know about the content of your app, and manage how it's organized and presented on Google Play

Hide tasks ~

LET US KNOW ABOUT THE CONTENT OF YOUR APP

© Setprivacy policy »

O Appaccess:

o Ads»

[+] Content rating »

o Target audience »

o Newsapps»

o Data safety»

© Government apps »

o Financial features »

o Health>

Figure 243 - App Information

The previous step usually takes up to two weeks, as Google reviews all the
provided information. Feedback may be given if any part of the app violates

their policies, requiring updates before proceeding. Once the review is
complete, the app can move on to the next step which is the closed testing.

11.4.2Closed Testing

Closed testing is a critical step before deploying the application to
production. It is a required phase where a new release of the app is
submitted for review. Google’s developers will examine the application,
ensuring it complies with their guidelines and policies. As part of this

[216]

process, a 3-5 minute demo video of the app must be provided to assist in
testing, along with login credentials for different user types.

The review process will verify that the app aligns with Google’s data policies
and the information provided during the app information setup in the second
step. If the app passes the review, it can then be distributed to testers for
further evaluation. At least 20 testers are required to install the app and
they should remain opted in for a continuous 14-day period of testing. Once
this testing period is complete and no major issues are found, the app is
ready for deployment to production.

Closed testing

E) Identify issues in your app, get feedback, and unlock production access
o With closed testing, you can share your app with a wide group of users that you control. This allows you to identify issues, get feedback, and
ensure that everything is ready with your app before you launch. You must run a closed test before you can apply to publish your app to
Cj everyone in production. Learn more

(3 To start a closed test, finish setting up your app Hide tasks A

SET UP YOUR CLOSED TEST TRACK

& Select countries and regions

& Selecttesters

CREATE AND ROLL OUT A RELEASE

(3} Create a new release
& Preview and confirm the release

& send the release to Google for review

Figure 244 - Closed Testing

11.4.3Production

To apply for production access, all the previously mentioned steps must be
completed. Information about the users who have installed the application
during the closed testing phase will be available. This data helps inform
the user about the progress and success of the closed testing process.

Production
Apply for access to production
@ Production is where you make your app available to billions of users on Google Play. Before you can apply for production access, you need to
run a closed test which meets our criteria. When you apply, you'll also need to answer some questions about your closed test. Preview
guestions

© Publish a closed testing release

o Have at least 20 testers opted-in to your closed test
0 testers currently opted-in

O Runyour closed test with at least 20 testers, for at least 14 days

Learn more

Figure 245 - Apply for Access to Production

[217]

After successfully passing closed testing and following a few hours of
additional review by Google, the application will become available on the
Play Store.

' Google Play Games Apps Movies Books Kids

Villa Agapi

10+ 3]
PEGI3 @

Install on more devices < Sshare
jevices

[0 This app is available for all of your devi

\ - \
Figure 246 - Play Store

[218]

12 Conclusion & Further Development

In conclusion, the analysis of Villa Agapi's needs led to the development of
a hybrid, multilingual application for iOS and Android devices, designed to
accommodate various screen sizes. The primary objective was successfully
achieved: prospective guests can now explore detailed information about the
property and its surrounding area, as well as submit direct booking requests
to express their interest. Furthermore, the application enhances the guest
experience by offering a more personal and welcoming interaction through
additional property details, profile management and a live chat feature,
enabling direct communication with either a virtual assistant or the host.
Finally, the host benefits from a powerful tool to promote the property,
with the ability to update dynamic content within the app and effectively
respond to client needs.

From a technical perspective, React Native proved to be an excellent choice
for implementing the mobile application, enabling a single codebase for both
iOS and Android platforms. Additionally, the decision to use JavaScript
with Node.js and Express on the backend resulted in a high-performance,
scalable and easily maintainable server that effectively supports the mobile
app by sharing property resources with users. Socket.io was crucial in
enabling real-time communication between guests and the host by handling
event-driven messaging for seamless interactions. Finally, Heroku played a
valuable role by hosting the Node.js server, Socket.io application and
PostgreSQL database, which stores Villa Agapi’s resources. Its user-friendly
interface, combined with an easy setup and streamlined release process
through pipelines, provided complete control over the backend, significantly
contributing to the project’s successful outcome.

Although the primary goal outlined earlier has been achieved, additional
features can be implemented to further enhance the application. By analyzing
user statistics, including the countries of origin, the host can determine
whether translations for additional languages are needed to better serve
users. Moreover, the application can benefit from more dynamic content.
For instance, an announcement board could be introduced, allowing the host
to share updates with users. These updates might include information about
local events, file sharing options, or general notices that guests should be
aware of during their stay. Lastly, push notifications could be integrated to
keep users informed about key events. For example, notifications could
remind users about upcoming house cleaning schedules or notify them as
their departure day approaches, including a countdown of the remaining
days.

[219]

13 References

[1] Brajesh De. API Management: An Architect's Guide to Developing and
Managing APIs for Your Organization, 1st Edition. Apress, USA, 2017.

[2] Fernando Doglio. Pro REST API Development with Node.js, 1st
Edition. Apress, USA, 2015.

[3] GitHub. Architectural Styles and the Design of Network-based Software
Architectures,https://github.com/ggdaddy/ebooks/blob/master /Architectural
%20Styles%20and%20the%20Design%200f%20Networkbased %20Soft ware%20
Architectures.pdf

[4] mdn web docs. HTTP. https://developer.mozilla.org/en-
US/docs/Web/HTTP

[5] aws.amazon. What’s the Difference Between JSON and XML.
https://aws.amazon.com /compare/the-difference-between-json-xml

[6] stackoverflow. Best practices for REST API design.

https:/ /stackoverflow.blog/2020/03,/02/best-practices-for-rest-api-design

[7] restfulapi. REST API URI Naming Conventions and Best Practices.
https:/ /restfulapi.net /resource-naming

[8] mdn web docs. Cross-Origin Resource Sharing (CORS).
https://developer.mozilla.org/en-US/docs/ Web/HTTP /CORS

[9] npm docs. Downloading and installing Node.js and npm.
https://docs.npmjs.com/downloading-and-installing-node-js-and-npm

[10] Express. Express Fast, unopinionated, minimalist web framework for
Node.js. https://expressjs.com/

[11] Semaphore. Best Practices for Securing Node.js Applications in
Production. https://semaphoreci.com/blog/securing-nodejs

[12] Auth 0. JSON Web Tokens.

https://auth0.com/docs/secure /tokens/json-web-tokens

[13] JWT. JWT Debugger. https://jwt.io/

[14] Specops. How tough is berypt to crack? And can it keep passwords
safe? https://specopssoft.com/blog/hashing-algorithm-cracking-bcrypt-
passwords

[15] Swagger. Why Does API Documentation Matter?
https://swagger.io/blog/api-documentation /what-is-api-documentation-and-
why-it-matters

[16] Cloudbees. YAML Tutorial: Everything You Need to Get Started in
Minutes. https://www.cloudbees.com /blog/yaml-tutorial-everything-you-
need-get-started

[17] Socket.io. Socket.IO https://socket.io

[18] dev. Integrating a chatbot into your Nodejs API using Dialogflow.
https://dev.to/realsteveig/integrating-a-chatbot-into-your-nodejs-api-using-
dialogflow-1dpn

[19] React Native. React Native. https://reactnative.dev/

[20] FreeCodeCamp. React Fundamentals — JSX, Components, and Props
Explained. https://www.freecodecamp.org/news /react-fundamentals/

[21] Medium. Top 7 State Management Libraries for React Native in
2023. https://medium.com/@thomassentre/top-7-state-management-libraries-
for-react-native-in-2023-cd10{461a960

[22] React Native. Networking. https://reactnative.dev/docs/network

[220]

[23] W3schools. PostgreSQL - pgAdmin4.

https:/ /www.w3schools.com /postgresql /postgresql_pgadmin4.php

[24] Geeksforgeeks. Basic Authentication in Node.js using HTTP Header.
https://www.geeksforgeeks.org/basic-authentication-in-node-js-using-http-
header/

[25] LAMBDATEST. What Is Playwright: A Tutorial on How to Use
Playwright. https://www.lambdatest.com /playwright

[26] Medium. How to use il8next, react-il8next in React Native.
https://medium.com/@raazthemystery273 /how-to-use-i18next-react-il8next-
in-react-native-f81lecel84cd2

[27] Expo. @expo/vector-icons@14.0.4. https://icons.expo.fyi/Index

[28] Floorplanner. Space is important Make the most of your space!
https://floorplanner.com/

[29] Heroku Dev Center. Deploying Node.js Apps on Heroku.
https://devcenter.heroku.com/articles/deploying-nodejs

[30] Heroku Dev Center. Guidance for Choosing a Dyno.
https://devcenter.heroku.com/articles/guidance-for-choosing-a-dyno

[31] Liran Tal. Installing Playwright on Heroku for Programmatic Node.js
Browser Automation. https://lirantal.com/blog/installing-playwright-on-
heroku-for-programmatic-nodejs-browser-automation

[32] Stackoverflow. Using Heroku Scheduler with Node.js.

https:/ /stackoverflow.com/questions/13345664 /using-heroku-scheduler-with-
node-js

[33] Stackoverflow. What is the preferred Bash shebang ("#!")?

https:/ /stackoverflow.com/questions/10376206 /what-is-the-preferred-bash-
shebang

[34] Heroku. Continuous Delivery on Heroku. Fundamental concepts, best
practices, and tools. https://www.heroku.com/continuous-delivery

[35] Pagepro. How To Publish Expo React Native App to iOS and
Android. https://pagepro.co/blog/publishing-expo-react-native-app-to-ios-
and-android/

[36] Play Console Help. App testing requirements for new personal
developer accounts. https://support.google.com/googleplay/android-
developer/answer /14151465

[37] Freeprivacypolicy. Privacy Policy for Villa Agapi

https:/ /www.freeprivacypolicy.com/

[221]

https://support.google.com/googleplay/android-developer/answer/14151465
https://support.google.com/googleplay/android-developer/answer/14151465

