

M.Sc. Computer Science

Postgraduate Thesis

Automated test generation and marking using Local LLMs

Ioannis Papachristou

Student ID: 2022202302015

Supervisor: Grigorios Dimitroulakos, Laboratory – Teaching Staff.

Supervisor: Konstantinos Vasilakis, Teaching – Research Staff.

TRIPOLI

 February 2025

Automated test generation and marking using local LLMs

2

Automated test generation and marking using local LLMs

3

Copyright Ioannis Papachristou, 2025.

All rights reserved.

The copying, storage, and distribution of this work, in whole or in part, for commercial

purposes is prohibited. Reprinting, storage, and distribution for non-commercial, educational,

or research purposes are permitted, provided the source is cited and this message is retained.

Questions regarding the use of this work for commercial purposes should be directed to the

author.

The views and conclusions contained in this document represent the author and should not

be interpreted as reflecting the official position of the University of the Peloponnese.

Automated test generation and marking using local LLMs

4

T a b l e o f c o n t e n t s

Table of figures .. 6

Abstract .. 7

Introduction ... 8

1. Related Work ... 9

2. Motivation .. 10

3. System Design .. 11

4. System Implementation ... 13

4.1 Context Input ... 13

4.2 Language detection .. 14

4.3 Translation ... 14

4.4 Question-Answer Generation .. 15

4.5 Grading ... 16

4.6 Scalability ... 18

5. Web application ... 19

5.1 Teacher interface ... 19

5.2 Student interface ... 19

5.3 Printing the results ... 20

6. Experimentation .. 22

6.1 Question – Answer systems ... 22

6.1.1 BERT and T5 .. 22

6.1.2 Open-AI models .. 23

6.1.3 Deepseek-R1 ... 25

6.1.4 Llama ... 27

6.1.5 Retrieval Augmented Generation ... 31

6.1.6 Randomizing the input .. 31

6.1.7 Prompt Engineering .. 32

6.1.8 Testing ... 32

6.2 Translation ... 34

6.2.1 Opus-mt-en-el and Opus-mt-grk-en ... 34

6.2.2 Fine tuning Llama 3.1 .. 35

Automated test generation and marking using local LLMs

5

6.3 Answer validation .. 36

7. Future Work ... 37

8. Conclusion .. 38

9. References ... 39

Automated test generation and marking using local LLMs

6

T a b l e o f f i g u r e s

Figure 1: System Structure Chart ... 11

Figure 2: QA API request JSON format .. 15

Figure 3:QA API response JSON format ... 16

Figure 4: Grading API response .. 17

Figure 5: Exam generation ... 19

Figure 6: Exam Paper ... 20

Figure 7: Exam results .. 21

Figure 8: Pricing costs of individual OpenAI models .. 24

Figure 9: DeepSeek-R1 model performance comparison .. 25

Figure 10: DeepSeek-R1-Distill-Llama-8B model performance comparison 26

Figure 11: Llama 3.1 8B system specification and requirements .. 30

Automated test generation and marking using local LLMs

7

A b s t r a c t

This case study presents an innovative exam creation and grading system powered by

advanced Natural Language Processing (NLP) and Llama 3.1. The system generates clear,

grammatically accurate questions in English and Greek from both short text and long

documents. It supports diverse question formats across various difficulty levels, ensuring

semantically distinct content while minimizing redundancy. Grading utilizes a semantic

similarity model to accurately evaluate essay and open-ended responses, offering partial

credit and reducing bias from phrasing or syntax based on Named Entity Recognition (NER).

A key advantage is its ability to run locally on ordinary personal computers without requiring

specialized AI systems. The system also provides feedback on graded responses. Evaluations

using metrics such as ROUGE, BLEU, diversity scores, and cosine similarity demonstrate its

effectiveness, outperforming state-of-the-art models like BERT and T5 for educational

assessment tasks.

Keywords: Exam Creation System, Natural Language Processing (NLP),

Automated Grading, Llama 3.1, Question-Answer Generation, Retrieval

Augmented Generation

Automated test generation and marking using local LLMs

8

I n t r o d u c t i o n

The rapid evolution of Artificial Intelligence (AI), particularly of large language models (LLMs),

has demonstrated significant potential in automating tasks and offering a wide range of

capabilities that enhance both teaching and learning experiences. LLMs are now enabling

teacher assisted learning, where AI complements human instruction by alleviating routine

tasks, allowing educators to concentrate more on the interactive and creative elements of

their work [1]. For students, these models provide access to better content, minimizing

human error and ensuring fairer assessments while additionally, they have the potential to

bridge the language gaps between teachers and students, delivering higher-quality

educational content and improving the overall learning process.[2]

One area where this can be fully appreciated is the examination process. Until now, teachers

and evaluators have had to rely on creating questions and providing answers based on

materials they have studied extensively, often from large documents (e.g., entire books). The

conventional approach to creating examination papers in academic settings is often a manual

process, which is not only time consuming but also repetitive. This method increases the

likelihood of inefficiencies, such as potential bias or manipulation, often compromising the

integrity and fairness of the process. [3] Furthermore designing effective assessments is a

longstanding challenge in higher education, highlighted by numerous quality assurance

reviews and often suffering from limited diversity of assessment types [4].

In this thesis, we present a novel Natural Language Processing (NLP) system designed to

analyze extensive contexts, generate a diverse array of question types with corresponding

correct answers, deliver accurate translations across multiple languages, and provide a

grading mechanism based on sentence similarity. The system integrates advanced contextual

analysis with translation and automated evaluation, offering a comprehensive solution for

generating and grading educational content.

Section 1 covers related work, laying the foundation for the study. Section 2 outlines the

motivation, followed by system design in Section 3. Section 4 details system implementation,

including context input (4.1), language detection (4.2), translation (4.3), question-answer

generation (4.4), grading (4.5), and scalability (4.6).

Section 5 discusses the web application, focusing on the framework (5.1) and user interface

(5.2). Section 6 covers experimentation, including BERT and T5 (6.1.1), OpenAI models (6.1.2),

Deepseek-R1 (6.1.3), and Llama models (6.1.4). It also explores performance improvements

such as quantization, retrieval-augmented generation (6.1.5), input randomization (6.1.6),

and prompt engineering (6.1.7), followed by testing (6.1.8).

Translation methods are covered in Section 6.2, including Opus-mt models (6.2.1) and fine-

tuning Llama 3.1 (6.2.2), followed by answer validation (6.3). Sections 7–9 discuss future work,

conclusions, and references.

Automated test generation and marking using local LLMs

9

1 . R e l a t e d W o r k

Many researchers have focused on the distinct tasks required for generating exam content

using Natural Language Processing (NLP) techniques individually. To better understand this

process, the problem can be categorized into three key areas.

The first crucial point in creating an exam paper is question-answer generation. A major area

of study in question generation is the application of deep learning neural networks. Significant

contributions have been made in this area and while some approaches focus on generating

questions by extracting information from text documents [5, 6], others emphasize

paraphrasing existing content into question formats [7], demonstrating different techniques

for automatic question generation based on source material. These contributions have laid

the groundwork for automating the question creation process in educational assessments

with the emergence of large language models (LLMs) in recent years leading to significant

advancements in question answering tasks. NLP systems like BERT, T5 and GPT have played a

crucial role in achieving impressive performance by generating questions and retrieving

correct answers from large contexts. [8, 9, 10, 11].

To create a comprehensive examination system, the next critical task involves student answer

assessment and the subsequent grading based on their responses. This process, simpler

compared to question generation, has also gathered significant attention. The primary

methods explored for this task include grammar analysis and semantic evaluation, both aimed

at assigning a similarity score between the student's response and the correct answer given

by the system. By leveraging these techniques, the system can effectively measure how well

a student's answer aligns with the expected solution, enabling accurate and consistent

grading across different question types. [12]

A critical challenge encountered was the development of an adequate translation system for

the Greek language. Unfortunately, many mainstream model implementations lack robust

support for Greek and other underrepresented languages, which can result in inaccurate

outputs during both question generation and answer evaluation [13, 14]. After consultation

with experts in the field, the most effective solution identified was to translate the provided

context from Greek to English before feeding it into the large language model (LLM).

There are also papers published supporting research on building comprehensive exam

generation systems, though they often rely on different NLP frameworks and lack the

integration of the latest Llama, OpenAI or DeepSeek models [30].

In this work, we integrate and extend existing methodologies into a comprehensive system

that leverages diverse techniques for QA generation, student grading, assessment

explanation, and translation. This unified pipeline delivers a robust, accurate, scalable, and

flexible solution for exam creation and automated evaluation. Building on prior research, our

end-to-end approach effectively addresses a wide range of educational needs.

Automated test generation and marking using local LLMs

10

2 . M o t i v a t i o n

Prior experience in student assessment, signifies that it is evident the process of exam

generation can be time consuming and complex, often requiring a balance between

subjective interpretation and objective evaluation. Traditional exam creation and grading

processes demand considerable time and expertise, often placing an undue burden on

teachers and staff, especially when large student populations are involved. Moreover, the

creation of diverse, contextually appropriate questions that accurately assess a range of

competencies is an inherently complex task, requiring both subject matter expertise and

pedagogical experience.

These challenges can be effectively addressed by implementing advanced systems that

harness the power of Artificial Intelligence (AI) and Natural Language Processing (NLP),

offering a transformative solution by automating the generation of high-quality exam

questions and enabling streamlined grading processes. Through AI and NLP technologies, we

can develop tools that not only generate diverse and contextually relevant questions but also

provide automated, scalable assessment methods, reducing the necessity for direct human

intervention in both the creation and evaluation phases.

In recent years, particularly following the COVID-19 pandemic [22], the emergence of remote

examinations has significantly altered the methods of student assessment. This shift presents

a new challenge for examiners, who are now tasked with developing questions that are both

diverse and dynamic in nature. The objective is to reduce the risk of academic dishonesty

among students and therefore, exam question design must adapt, incorporating mechanisms

to maintain academic integrity while offering a robust and fair assessment of student

knowledge; something that can be greatly achieved by using contexts that are large and are

analyzed thoroughly.

The implications of these advancements are profound. In fast-paced educational

environments, the need for efficient, scalable, and high-quality assessment tools has never

been more evident. As student numbers rise and remote learning becomes the norm,

educators must balance academic rigor with practical constraints. AI-driven systems ease this

drawback by automating repetitive tasks, allowing teachers to focus on meaningful

interactions.

Furthermore, in today’s increasingly globalized and diverse classrooms, there are additional

complexities to consider. The modern educational landscape, especially in university and

academic institutions, often involves multilingual and multicultural settings, where language

barriers can impede both teaching and learning. By integrating NLP models that support

multilingual capabilities, AI-driven systems can help bridge these communication gaps,

ensuring that exam questions and assessments are clear, fair, and accessible to all students,

regardless of their native language or cultural background.

Automated test generation and marking using local LLMs

11

3 . S y s t e m D e s i g n

Figure 1: System Structure Chart

Automated test generation and marking using local LLMs

12

The system processes inputs to generate questions, allocate scores, and provide

corresponding answers, handling a wide range of contexs from short texts spanning a few

hundred characters to full-length documents. For extensive contexts, Retrieval Augmented

Generation (RAG) is employed to condense the input into a manageable size, enabling

efficient processing and memory management.

To ensure compatibility, it identifies the input language and checks its support within Llama

3.1. Officially supported languages include English, German, French, Italian, Portuguese,

Hindi, Spanish, and Thai [16], allowing the system to proceed directly to question generation

when these languages are detected. For Greek, which is not officially supported but essential

for the Greek educational system, the input is translated into English using two fine-tuned

Llama 3.1 model adding further compatibility. After processing, the system translates the

output back into Greek, ensuring the end users receive results in their preferred language.

This bidirectional translation process maintains both accuracy and compatibility with the

model's language support capabilities.

Once the text is processed or translated, it is passed to Llama 3.1 along with well-engineered

prompt instructions. The model generates a set of questions and corresponding answers,

formatted in a predefined JSON structure for standardization and ease of use and after each

question generation a similarity checking step takes place to avoid duplicates or overly similar

semantically questions.

When student answers are submitted, the system identifies the response language and if the

response is in a supported language, the grading process proceeds directly. For Greek

responses, the answers are first translated into a supported language, typically English, before

grading begins. The grading process involves several steps: cosine similarity calculation, which

computes the similarity between the student's answers and the correct answers generated

by the Llama-based QA system; Named Entity Recognition (NER), which identifies critical

entities in the student’s response and compares them with the expected answers to avoid

terminology biases; and explanation generation, where Llama 3.1 provides a detailed

justification for the assessment by incorporating the context, the question, the student’s

response, and the correct answer.

Based on the similarity score and detail score computed by the corresponding NER results,

the system then assigns a grade based on an algebraic formula. For Greek users, the final

grade and explanation are translated back into Greek before being returned, ensuring a

seamless experience for end users while maintaining the accuracy of the assessment process.

Automated test generation and marking using local LLMs

13

4 . S y s t e m I m p l e m e n t a t i o n

To harness the full potential of natural language processing, it is important to assemble a

comprehensive and meticulously configured software environment on the local machine.

Such an environment enables the execution of complex computational tasks integral to

artificial intelligence applications, particularly those involving large-scale language models.

A critical component of this configuration is the hardware setup. Modern NVIDIA GPUs that

support CUDA (Compute Unified Device Architecture) are essential. CUDA provides a parallel

computing platform and programming model that significantly accelerates the performance

of deep learning tasks by leveraging the massively parallel processing capabilities of GPUs. In

contrast, relying solely on CPU processing can result in unacceptably slow execution times,

especially when handling the computationally intensive operations characteristic of state-of-

the-art NLP models.

Equally important is the software stack. The PyTorch library is a foundational element in this

ecosystem, offering dynamic computational graphs and a user-friendly interface that has

made it a preferred choice for both researchers and developers. It is crucial to ensure that the

installed version of PyTorch is fully compatible with the CUDA version present on the system.

This compatibility is vital for maximizing the performance gains provided by GPU acceleration

and for preventing potential runtime conflicts that can arise from certain version mismatches.

Python is the programming language of choice due to its simplicity, readability, and the vast

ecosystem of libraries that support data science and machine learning workflows. The

language's flexibility and the availability of numerous specialized packages make it ideal for

development and experimentation in AI research. Among these packages, the Transformers

library from Hugging Face stands out for its robust collection of pre-trained NLP models and

tools that simplify the deployment of complex language processing pipelines.

Integrating the Transformers library into an environment requires obtaining an account with

Hugging Face and securing an access token. This process ensures that access to each model is

controlled and that users comply with licensing agreements and usage policies, serving as a

credential that authorizes the retrieval of models from the Hugging Face Hub, streamlining

the integration process and enabling quick updates and model management.

4.1 Context Input

In the exam question-answer generation system, the main input provided is text, which can

range from a few tens or hundreds of characters of plain text to entire documents. When the

input consists of shorter contexts, the system automatically inserts the text into a predefined

prompt, which is then passed to the Llama-3.1-8B model for question generation. While the

Automated test generation and marking using local LLMs

14

Llama 3.1 model is designed to process up to 128,000 tokens, performance declines

significantly when large contexts are provided.

Empirical testing revealed that when the system received a substantial amount of text, the

processing time increased drastically, often resulting in memory outages, while for smaller

contexts, the system typically generated responses within five minutes. To address this, a

solution was implemented that splits the input context based on its size, along with a better

quantization configuration setting of 8 bits more suitable to a high-end personal computer.

When the input exceeded a certain threshold of characters, the system required the insertion

of a text file (such as a book) and a Retrieval Augmented Generation (RAG) technique was

applied. This approach enabled users to provide specific keywords, which were semantically

searched within the inserted document to further specify the context from which the

questions should be generated. RAG would extract relevant, smaller paragraphs that matched

these terms and merge them into a single context that is then fed into Llama 3.1, significantly

reducing the context size and allowing the system to operate efficiently. By implementing

RAG, the performance issues were resolved, ensuring timely responses and preventing CUDA

memory errors.

4.2 Language detection

The Llama model, like most widely used large language models, tends to struggle with

underrepresented unsupported languages, a limitation that has been widely observed in

literature [18]. By default, the model offers robust support for languages such as English,

German, French, Italian, Portuguese, Hindi, Spanish, and Thai. However, to ensure effective

operation with input data, it is crucial to first identify the language of the provided text and

as result this step helps determine whether the language is supported by the model.

To achieve this, Natural Language Processing (NLP) models specialized in language detection

are employed to accurately identify the language in which a given passage is written, allowing

for an informed decision on whether the language falls within the model’s supported set. In

this system, the "xlm-roberta-base-language-detection" model [15] was used for this

purpose, ensuring precise language identification and improving overall system performance.

4.3 Translation

The translation model enhances the existing capabilities of Llama-3.1-8B by extending

support to the Greek language, a functionality previously unavailable in its default

configuration. By enabling the translation of Greek text to English, the system ensures

compatibility with contexts presented in languages that were not natively supported,

broadening its applicability to a wider range of educational systems.

To achieve this, two distinct fine-tuned models were employed: Johnnypjp/Llama-3.1-8b-

english-greek-translation-task [23] and Johnnypjp/Llama-3.1-8b-greek-translation-task [24].

These models are specifically designed for bidirectional translation between English and

Automated test generation and marking using local LLMs

15

Greek. The former facilitates translations from English to Greek, while the latter handles

translations from Greek to English, an approach that ensures high-quality translations in both

directions, by utilizing the needed specialized datasets needed for fine tuning each model.

The translation process is activated only when the language detection model confirms with

high confidence that the input text is in Greek. It is applied at two distinct stages: initially,

when the input context is provided (Greek to English), and subsequently, after the response

generated by the QA model is processed (English to Greek). This two-step process ensures

that the system accurately interprets the original context while delivering responses in the

intended language.

The same translation framework is integrated into the assessment system. Students' answers

are processed in the language used for the exam, ensuring consistency in evaluation and

enabling the system to support linguistically diverse educational scenarios effectively.

4.4 Question-Answer Generation

In recent years, large language models (LLMs) have excelled in generating question-answer

(QA) pairs (25), offering precise and relevant questions along with accurate answers based on

provided text. Llama 3.1 supports a context length up to 128,000 tokens, enabling the

processing of even extensive texts, such as short books.

In the system, the exam question generation functionality is exposed via a Python Flask API

that receives input in the form of a structured JSON, which allows it to interpret the context,

generate exam questions and respond with a suitable output. The JSON structure is a critical

aspect of this process, as it ensures that the model can accurately receive the necessary input

data and generate relevant questions in response.

The required JSON format is carefully designed to accommodate various parameters that

dictate the nature of the questions to be generated. The request incorporates configurable

fields for defining the input context and it further allows specifying the desired number of

questions. When a file is provided, it enables a Retrieval Augmented Generation (RAG)

keyword query to focus the question generation process on specific topics while additionally,

offering detailed question settings, including type, difficulty level, and assigned individual

score, provided for generating diverse and tailored exam questions, ensuring adaptability to

various educational needs while maintaining precision and diversity in the generated

questions.

Figure 2: QA API request JSON format

Automated test generation and marking using local LLMs

16

For accurate processing of the given context, specific guidelines play a crucial role, allowing

the system to return responses that meet particular requirements. In this instance, the design

focuses on ensuring that responses are delivered in a predefined format, maximizing precision

so that the output is structured as a valid JSON object containing the fields (as depicted in

figure 3) for the generated question, its type, and the corresponding correct answer.

Additionally, the system is designed to handle a variety of question types (essay, multiple

choice, short answer, gap completion, true/false) and difficulties (easy, medium, hard),

providing the freedom to assign separate marks to each question while maintaining a formal

and structured format.

Through extensive analysis of the input and carefully designed instructions, the system

generates question-answer (QA) pairs while minimizing repetitive topics by computing a

similarity score for each question, which is then compared against a list of previously

generated questions to identify and eliminate potential duplicates, thereby ensuring the

creation of unique and diverse question sets.

To accurately calculate the cumulative relative mark, depending on the number of questions

i given, the following formula was used:

𝑔𝑖 =
𝐺

𝑁

Where:

• N = Total number of questions

• G = Maximum total grade

• 𝑔𝑖 = Grade for each question i

4.5 Grading

The grading system employs semantic similarity models, “sentence-transformers/all-mpnet-

base-v2” [17] and “FacebookAI/xlm-roberta-large-finetuned-conll03-english” [33] to evaluate

student responses. It compares each student’s answer to the correct answer (generated by

the Llama model) using a cosine similarity measure that ranges from –1 to 1, with higher

values indicating greater semantic resemblance.

To determine a grade, the system first calculates a base grade by mapping the similarity score

onto predefined thresholds. For instance, a similarity score above 0.8 results in full credit (i.e.,

Figure 3:QA API response JSON format

Automated test generation and marking using local LLMs

17

the maximum grade), while lower scores receive proportionally reduced credit. In addition to

this base grade, the system incorporates a detail matching score that reflects how well

specific details in the student response align with the correct answer. This detail score is

blended with the base grade using a configurable weight (defaulting to 0.3), ensuring that

both overall semantic similarity and attention to detail contribute to the final grade. The

resulting value is then capped at the maximum possible grade.

𝐺(𝑠,𝑀, 𝑑, 𝑤) =

{

𝑀 × [(1 − 𝑤) + (𝑤 × 𝑑)], 𝑖𝑓 𝑠 > 0.8

𝑀 × [(0.8 + 0.2 × (𝑠 − 0.7)) × ((1 − 𝑤) + (𝑤 × 𝑑))], 𝑖𝑓 0.7 < 𝑠 ≤ 0.8

𝑀 × [(0.5 + 0.3 × (𝑠 − 0.5)) × ((1 − 𝑤) + (𝑤 × 𝑑))], 𝑖𝑓 0.5 < 𝑠 ≤ 0.7

𝑀 × [(0.2 + 0.3 × (𝑠 − 0.5)) × ((1 − 𝑤) + (𝑤 × 𝑑))], 𝑖𝑓 0.3 < 𝑠 ≤ 0.5

𝑀 × 𝑠 × [(1 − 𝑤) + (𝑤 × 𝑑)], 𝑖𝑓 𝑠 ≤ 0.3

Where:

• G is the grade

• s is the similarity score (between 0 and 1),

• M is the maximum grade.

• d is the detail score

• w is the detail weight

The API once again returns the grading parameters in a predefined JSON format. All the

needed information for assessment are included in this JSON and are available for printing

directly in any application later on.

Figure 4: Grading API response

Automated test generation and marking using local LLMs

18

4.6 Scalability

To address scalability requirements and accommodate the rapid evolution of artificial

intelligence models, the system has been architected with a modular design. This architecture

not only facilitates the easy modification of each processing step but also allows for the

seamless integration of additional steps as needed. Such flexibility is critical for modern AI

systems, where the optimal model selected today may be superseded by a more effective

alternative tomorrow.

To achieve this design, the system is decomposed into discrete functions that execute

sequentially, ensuring that each function initiates synchronously only after the successful

completion of its predecessor. This structure enhances both maintainability and adaptability,

allowing for efficient updates or replacements of individual components without

necessitating a complete system overhaul.

A key factor in achieving scalability was the integration of the Hugging Face Hub Transformers

libraries. These libraries offer direct download and plug-and-play capabilities, permitting

model changes by simply updating the model identifier. This functionality was rigorously

tested during the experimentation phase, enabling the identification of the most capable

model for each processing stage and facilitating rapid and seamless transitions between

different models.

Automated test generation and marking using local LLMs

19

5 . W e b a p p l i c a t i o n

To facilitate and further test the system, a web application was developed using the latest

.NET Core 8 MVC framework. This application serves as the User Interface (UI) for managing

interactions between the user and the Flask API, handling both requests and responses. The

system's architecture utilizes models, controllers, and services to process data and assist

communication between the front and back end components.

5.1 Teacher interface

The UI includes a form that acts as a teacher's interface, providing the input exam context,

either as plain text or by uploading a document, the ability to select the question types and

specify the number of questions to be generated as well as the individual settings for each

question (type, difficulty, grade).

5.2 Student interface

Upon submitting this information by clicking the "Generate" button, the system creates exam

questions which are then displayed within the UI, and depending on their type (e.g., essay,

multiple-choice), appropriate HTML elements such as text boxes or radio buttons are

dynamically rendered to create the exam paper. There are also basic instructions on how to

answer, the grade of each individual questions and an error system, which is used to display

appropriate messages in cases where failures might happen. The form is also validated via

.NetCore.

Figure 5: Exam generation

Automated test generation and marking using local LLMs

20

5.3 Printing the results

Students complete the exam by submitting their answers. After submission, the system

automatically processes the responses, evaluates them, and calculates a final grade based on

Figure 6: Exam Paper

Automated test generation and marking using local LLMs

21

individual scores. It also provides an explanation for each answer and its corresponding grade

within the given context.

Figure 7: Exam results

Automated test generation and marking using local LLMs

22

6 . E x p e r i m e n t a t i o n

To achieve the optimal solution, each component of the system underwent extensive and

rigorous testing with a variety of techniques and models to identify the most effective

approach. Furthermore, metrics were systematically calculated for each part, to justify the

selection of the best solution combining mathematical data with empirical analysis, ensuring

that both theoretical evidence and practical performance were considered in determining the

optimal method. Areas of experimentation followed the pattern of the system structure and

were separated into QA generation, language detection and translation, as well as student

assessment and grading techniques.

6.1 Question – Answer systems

To explore and determine the optimal solution for the question-answer generation

subsystem, various NLP models were tested, each offering distinct strengths and limitations.

The primary focus of the experimentation was centered on evaluating performance, cost-

efficiency, capacity for handling large contexts, language support and adaptability. These axes

were critical in assessing how each model contributed to the goal of generating high quality

exam questions while balancing computational efficiency and scalability.

6.1.1 BERT and T5

In testing, BERT [39] demonstrated strong performance in providing accurate answers to

specific tasks, with its transformer-based architecture excelling at capturing intricate linguistic

patterns, making it well-suited for question-answering tasks. However, a notable limitation of

BERT was its restricted context length, capped at 512 tokens, significantly limiting its

practicality in applications requiring extensive input processing, such as analyzing large texts

or generating questions from broader contexts.

The T5 (Text-to-Text Transfer Transformer) [19] model exhibited similar impressive

capabilities in language understanding and generation, with its unified text-to-text framework

enabling seamless handling of various NLP tasks and marking a significant advancement in

transfer learning. Pre-trained on vast datasets and fine-tuned for downstream tasks, T5

delivers robust performance across diverse applications, including question-answer

generation, where the fine-tuned model variant "mrm8488/t5-base-finetuned-question-

generation-ap" [20], trained on the SQUAD v1.1 dataset [21], effectively produced high-

quality questions and answers. Despite these strengths, T5, much like BERT, was hindered by

a token limit of 512, which significantly restricted its ability to process large bodies of text.

The shared limitation between BERT and T5 had significant implications for the system's

requirements, as both models struggled to handle extensive contexts—a critical necessity for

generating exam questions from large datasets. Even with enhancements like Retrieval

Augmented Generation (RAG), the token limit of these models remained a bottleneck and

Automated test generation and marking using local LLMs

23

while they excelled in their respective strengths, their inability to effectively manage large

inputs ultimately undermined their viability for this application.

Context splitting

A potential solution to address the limited context length offered by the T5 and BERT models

was to segment the context into smaller token batches and sequentially input them into the

model. While this approach theoretically mitigated the context length constraint, it proved

ineffective for larger contexts, as the model tended to become overloaded. Additionally, not

all segments contained semantically rich or informative content sufficient for generating

meaningful questions, resulting in an inefficient distribution of the input context.

6.1.2 Open-AI models

Open-AI offers a great variety of models suited to different needs, while providing a high level

of accuracy, excellent language support and ease of use. Unfortunately, the lack of local

system support and the expensive costs associated with their APIs, make them unaffordable

for researchers and institutions that are not willing to pay for a dedicated exam generation

system.

GPT 4

GPT- 4 has a context length of 32,000 tokens, while the turbo version offers a significant

increase in context length making the model capable of processing context lengths up to

128,000 tokens [36, 37]. The model also excels in performance across a wide range of general

tasks and is well suited for tasks where high level of inference or creativity is required.

Even though the turbo version is more than capable of being used instead of Llama for this

part of the system, the primary limitation with OpenAI's GPT models stems from their

substantial size, which exceeds the capacity of ordinary personal computers. Consequently,

these models are not open source and only accessible through OpenAI’s API, a paid service

that presents challenges for applications involving substantial amounts of contextual text or

numerous requests. Retrieval Augmented Generation (RAG) can help by reducing the

required context length and potentially enabling the inclusion of extensive material, but this

approach remains costly and demands careful risk assessment to determine its viability for

large scale systems. Furthermore, GPT-4 models have limited flexibility in fine-tuning, as they

are provided in a fully pre-trained state and are not readily adaptable by third-party

developers for custom tuning.

The results from the ROUGE metric calculations reveal the following insights about the

generated questions. For ROUGE-1, the average precision was calculated to be 4.43%,

reflecting the degree of overlap in unigrams between the generated and reference text. The

average recall was substantially higher at 66.73%, indicating a strong ability to capture

relevant unigrams from the reference text. The F-measure for ROUGE-1, which balances

Automated test generation and marking using local LLMs

24

precision and recall, was relatively low at 8.4%, suggesting room for improvement in both

precision and recall achieving a better balance.

For ROUGE-L, which considers the longest common subsequences, the precision averaged

3.82%, while the recall stood at 57.12%. This signifies a moderate ability to maintain the

sequence of reference text. The F-measure was 7.16%, highlighting similar trends as in

ROUGE-1. Finally, the semantic similarity between the generated and reference text averaged

79.95%, indicating a reasonably high conceptual alignment, despite the low ROUGE scores.

O1

GPT O1 distinguishes itself through an optimized architecture that emphasizes enhanced

contextual understanding and an extended memory capacity, allowing it to manage longer

and more complex interactions effectively. Its design prioritizes efficient multi-step reasoning

and precise content generation, ensuring that even intricate queries are addressed with

clarity and depth.

Just like its predecessor, O1 is constrained by prohibitively high operational costs that make

it unsuitable for low-cost, small-scale applications such as exam creation systems. The testing

and implementation of its pipeline alone requires a comprehensive cost analysis to ensure

budget compatibility, while the model’s demand for advanced, specialized hardware and

significant maintenance expenses further complicate its deployment in resource-limited

environments. Additionally, the architectural complexity of O1 necessitates specialized

expertise and results in prolonged development cycles, and when scaling the system,

additional computational and infrastructural investments become necessary. The reliance on

high-quality, extensive datasets introduces further financial and logistical challenges,

compounding the overall cost and complexity of the system for small local applications.

Figure 8: Pricing costs of individual OpenAI models

Automated test generation and marking using local LLMs

25

6.1.3 Deepseek-R1

DeepSeek has introduced its first-generation reasoning models, DeepSeek-R1-Zero and

DeepSeek-R1, utilizing reinforcement learning to achieve advanced reasoning capabilities.

Notably, DeepSeek-R1 integrates cold-start data to enhance performance and address

inherent limitations, ultimately matching or surpassing state-of-the-art benchmarks in

reasoning, mathematics, and coding tasks. [40]

Empirical and mathematical evaluations demonstrate that the model delivers performance

comparable to OpenAI’s O1 model at merely one-eighth of the cost, albeit with a slightly

reduced token processing speed. The model features a context length of 128,000 tokens, akin

to LLaMA 3.1, enabling efficient processing of extensive textual data such as large books.

However, the base model requires substantial computational resources, rendering it

impractical for standard personal computers. Consequently, an 8-billion-parameter distilled

variant derived from LLaMA 3.1 was tested as a more accessible alternative. [41]

DeepSeek-R1-Distill-Llama-8B

DeepSeek R1 distilled from Llama 8B [42] is a great alternative for using the DeepSeek model

in a smaller scale, able to run on local computers with consumer-grade hardware. Distillation

involves developing smaller, more efficient models from larger ones, maintaining most of

their reasoning ability while lowering computational requirements. DeepSeek managed to

produce a series of distilled, leveraging smaller parameter size Qwen and Llama architecture.

Figure 9: DeepSeek-R1 model performance comparison

Automated test generation and marking using local LLMs

26

The primary version, DeepSeek-R1-Distill-Llama-8B, retains a context window of 128,000

tokens while delivering performance comparable to that of Llama 3.1 8B. Comprehensive

evaluations of various quantization techniques have demonstrated that the 8-bit integer

configuration yields optimal performance on high-end personal computer systems.

Empirical testing further indicates that, with an appropriately structured prompt, DeepSeek

is capable of accurately interpreting input queries and generating improved responses. The

model’s ability to provide reasoning and explanatory details during its inference process has

proven particularly valuable. This feature aids in diagnosing misunderstandings inherent to

the task, thereby facilitating more effective prompt fine-tuning.

Additionally, DeepSeek exhibits efficient resource management, notably consuming less

VRAM when processing shorter context inputs, while maintaining performance on par with

Llama 3.1 for longer contexts. This efficiency not only benefits the processing of small plain

text contexts but also contributes to the overall scalability of the system, allowing the use of

heavier models running parallel with DeepSeek.

Finally, the system’s capacity to comprehend previously generated content reduces the

occurrence of duplicate questions, thereby streamlining the generation process and

enhancing overall performance.

Despite these benefits, a major drawback that rendered the model impractical is its limited

language support, with only English and Chinese having sufficient results. This limitation

greatly reduces its practicality regarding multilingual education environments

Figure 10: DeepSeek-R1-Distill-Llama-8B model performance comparison

Automated test generation and marking using local LLMs

27

6.1.4 Llama

Meta’s Llama models provide a great open-source alternative to proprietary large language

models such as OpenAI's GPT and DeepSeek series. The Llama family of models, notably

designed local implementation, offers extensive contextual windows which cater effectively

to systems that process substantial and complex input.

The open-source nature of Llama models ensures they are not only freely accessible but also

highly adaptable for scientific and non-commercial applications, removing licensing

constraints that often accompany commercial models. By using Meta’s Llama, this system

leverages both the flexibility and scalability required for dynamic exam generation on a high-

end personal computer.

A variety of publicly available Llama model versions offer distinct capabilities, necessitating a

systematic evaluation to identify the one best suited for optimal exam question generation.

Llama 2-7B

The Llama 2-7B model was not particularly suitable for this application simply by the fact it

had a relatively insufficient sequence length of 4096 tokens [34]. Furthermore, empirical

testing of the model as well as performance metrics showed that it struggled to always

provide the desired results.

The Llama-2-7B model required five iterative revisions to sufficiently understand the context

and generate questions that aligned with the provided material. However, the generated

questions exhibited relatively low precision, as reflected in a ROUGE-1 precision of 14.97%

and a ROUGE-L precision of 20.75%, while the recall was considerably higher at 53.57%. This

suggests that the model extracted large portions of the text verbatim rather than rephrasing

or generating novel content. Additionally, the cosine similarity score of 50.62% indicates only

moderate semantic alignment with the original context. These results highlight that while the

model could identify relevant terms, the lack of specificity and depth in question formulation

limited its effectiveness for exam generation.

Llama 3-8B

Llama 3 [35] comes with a sequence length of 8,192 tokens and even though again limited in

its length, the performance of the model was evaluated to assess the quality differences with

the Llama 2-7b version.

The Llama-3-8B model demonstrated improved question generation capabilities compared to

Llama-2-7B. Its ROUGE-1 precision of 51.50% and recall of 35.87% indicate that it effectively

captures a substantial portion of relevant terms while maintaining moderate precision. The

ROUGE-L precision (25.51%) and recall (16.61%) suggest that while the generated questions

align structurally with the context, precision decreases for longer sequences. Additionally, the

cosine similarity score of 68.86% reflects stronger semantic alignment, signifying that the

model produces more coherent and contextually relevant questions. These results highlight

Automated test generation and marking using local LLMs

28

Llama-3-8B’s enhanced ability to generate well-formed and meaningful exam questions

compared to its predecessor.

Llama 3.1-8B

During system development, the release of Llama 3.1 marked a significant advancement over

the previous Llama 3 model, particularly through its extended context length, now reaching

128,000 tokens. This increase enables Llama 3.1 to effectively manage extensive texts

required for exam question generation. Additionally, performance assessments indicate

notable enhancements in both semantic and contextual understanding over its predecessor.

There is also the benefit of using 8 billion parameters, which means that with the utilization

of the correct quantization depending on the system, the model can run on high-end personal

computers.

In terms of semantic alignment, Llama-3.1-8B demonstrates a notable improvement,

achieving a cosine similarity of 78.57%, surpassing Llama-3-8B’s 68.86%. This increase

suggests that Llama-3.1-8B more effectively captures the underlying meaning within a given

context. Additionally, ROUGE-1 precision (48.01%) and recall (56.15%) show an increase over

Llama-3-8B, indicating stronger term retrieval while maintaining contextual accuracy, while

at the same time, the ROUGE-L precision (30.68%) and recall (35.88%) further reinforce this

improvement in structural alignment. These results highlight that Llama-3.1-8B not only

captures nuanced meaning more effectively but also enhances text alignment, making it

particularly well-suited for exam question generation where semantic validity and accurate

paraphrasing are crucial.

Llama 3.2–3B

Meta introduced a new iteration of its Llama model series, the Llama 3.2, engineered to

provide a smaller, faster solution while maintaining both high context length capabilities and

robust performance. Compared to its predecessor, Llama 3.1, the new model achieves a

notable improvement in size and memory allocation, reflecting its balance between semantic

accuracy and computational efficiency.

Performance metrics indicate that Llama-3.2-3B achieved a ROUGE-1 precision of 49.03% and

recall of 50.17%, demonstrating a balanced ability to retrieve relevant terms while

maintaining contextual coherence. Compared to Llama-3.1-8B, which had 48.01% precision

and 51.76% recall, Llama-3.2-3B exhibits a slight precision advantage but a minor recall trade-

off. Additionally, ROUGE-L precision (23.70%) and recall (24.25%) reflect a moderate

structural alignment, though slightly lower than Llama-3.1-8B’s 30.68% precision and 35.88%

recall.

In terms of semantic alignment, Llama-3.2-3B achieves a cosine similarity score of 71.81%,

lower than Llama-3.1-8B’s 78.57%, suggesting that while Llama-3.2-3B maintains solid

structural accuracy, it may not capture semantic depth as effectively. This positions Llama-

3.2-3B as a model optimized for generating well-structured questions with a balance between

precision and recall, while Llama-3.1-8B excels in deeper contextual understanding, making it

potentially more suitable for exam question generation where nuanced meaning is critical.

Automated test generation and marking using local LLMs

29

Given Llama 3.2’s optimization for smaller systems and not providing the best precission, this

model was not selected as the primary model for the exam question-answer generation

system, as the main focus was to provide the best quality of generative text.

Final Verdict

Considering all these factors, Llama 3.1 was selected as the most suitable model and even

though it may lack in certain areas compared to DeepSeek R1, as proven by the calculated

metrics and empirical testing, the broader language support offered by the model made it a

more practical choice for generating the questions and answers.

Table 1: Model performance metrics

Performance improvements

While the system utilizing the Llama-3.1-8B model achieved satisfactory performance in the

default setting specified by Llama, a significant issue persisted in the extensive time required

for generating relevant exam questions and answers. For short contexts, the average

processing time was approximately five minutes, while for longer contexts, the time increased

exponentially, often resulting in CUDA memory limitations.

Model ROUGE-1

Precision

ROUGE-1

Recall

ROUGE-1

F-measure

ROUGE-L

Precision

ROUGE-L

Recall

ROUGE-L

F-measure

Cosine

Similarity

(%)

Llama 2-7B 14.97% 53.57% 9.09%

20.75%

10.22%

15.36%

50.62%

Llama-3-

8B

51.50%

35.87%

40.00%

25.51%

16.61%

20.12%

68.86%

Llama-3.1-

8B

48.01%

56.15%

51.76%

30.68%

35.88% 33.08% 78.57%

Llama-3.2-

3B

49.03% 50.17% 49.59%

23.70%

24.25% 23.97% 71.81%

GPT-4o 4.4% 66.73% 8.4% 3.82% 57.12% 7.16% 79.95%

DeepSeek-

R1-Distill-

Llama-8B

34.29% 79.40% 47.9% 15.93% 36.88% 22.24% 82.26%

Automated test generation and marking using local LLMs

30

Quantization

To further optimize processing efficiency without compromising quality, various quantization

techniques were assessed. Initial trials with 4-bit quantization (Q4) substantially reduced

generation time, as this adjustment proved to reduce the processing time for shorter and

larger contexts with a compromise in output reliability and prompt understanding. To further

increase generation precision, the 8-bit quantization mode (Q8) was tested with optimal

results, increasing the quality of exam QA pairs with a minimum increase on processing time.

Unfortunately, the 16GB of VRAM provided by a single Nvidia RTX 4080 super setup, was not

sufficient to enough to allow the increase of quantization mode. The processing of tokens per

second by the system was very slow for Llama-3.1-8B in 16-bit mode (FP16), because the

model was constantly being offloaded to the CPU to counter the shortage of GPU memory

and therefore the time required for analyzing the context and generating the QA pairs was

increased drastically and often causing CUDA memory outages. As result, 8-bit quantization

was proved to be the optimal solution, considering also the system requirements as

calculated by Meta. [38]

Figure 11: Llama 3.1 8B system specification and requirements

Automated test generation and marking using local LLMs

31

Table 2: Quantization performance

6.1.5 Retrieval Augmented Generation

To address the challenges of extensive context and to further optimize memory management,

Retrieval-Augmented Generation (RAG) was implemented to condense the context by

selectively prioritizing relevant content, becoming available when input contexts exceed

2,500 characters and allowing the system to manage larger contexts more effectively by

focusing the model’s context window on essential information. Minor preprocessing was also

added to remove whitespaces found on different structures of the book (e.g. paragraphs,

different chapters etc.).

6.1.6 Randomizing the input

A significant issue encountered during the development of the QA generation system was the

repetitive generation of identical questions by Llama 3.1 from the provided context. This

problem arose due to the system's reliance on a narrow selection of top tokens extracted

from the context, which limited the diversity of the input data and consequently, set the

model to generate questions with similar meaning in every iteration. As these repeated

questions were flagged and rejected by the semantic similarity model, the system entered an

infinite loop, continuously producing and declining the same questions. This redundancy

highlighted a critical flaw in the context processing approach, where insufficient variation in

the input constrained the model’s ability to generate diverse and meaningful outputs.

To address this issue, additional parameters were introduced during the generation phase to

enhance Llama 3.1's creativity when producing input. Parameters such as temperature and

Top-K were fine-tuned to balance diversity and accuracy, as excessively high values led to

over-generalization by the model.

Bit

Configuration

Tokens

Generated

Time Taken

(seconds)

Tokens per

Second

Notes

4-bit 84 4.09 20.52 Successful execution

8-bit 103 20.11 5.12 Successful execution, better

precision, more time to complete

16-bit N/A N/A N/A Ran out of GPU VRAM

Automated test generation and marking using local LLMs

32

6.1.7 Prompt Engineering

Prompt engineering serves as the foundational framework for ensuring the efficacy, precision,

and pedagogical value of the automated question-generation system. Meticulously crafted

prompts carefully designed through trial and error are essential for producing contextually

relevant, instructionally sound, and technically robust outputs.

Firstly, each prompt template explicitly defines task requirements to ensure alignment with

pedagogical goals. For example, for essay questions the prompt mandates analysis of cause-

effect relationships or theoretical implications, steering the system away from superficial

inquiries. Multiple-choice templates enforce the creation of plausible distractors rooted in

common errors, ensuring diagnostic validity, while coding exercises require escaped code

formatting and success criteria to balance technical rigor with usability. By embedding

granular directives, such as avoiding duplicates or including context-specific code snippets

prompts eliminate ambiguity and constrain outputs to the desired scope.

Parameters such as Cutting Knowledge Date and Today Date ensure temporal relevance,

critical in domains like programming where outdated practices may mislead learners and

produce deprecated results. Difficulty levels tailor questions to target audiences, while

duplication checks guarantee a diverse question bank, enhancing assessment reliability,

further ensuring the system remains responsive to evolving educational needs and content

updates.

Strict JSON response formats are succeeded only by implementing the correct prompt

instructions and standardizing outputs for integration into downstream applications,

achieved by providing the system with examples of structured JSON objects, ensuring

uniformity and interoperability with downstream tasks and reduced post-processing

overhead.

Furthermore, the modular prompt design supports extensibility and is the core of the

system’s ability to handle contexts from different topics. Coding exercise templates, for

example, could be adapted for multiple programming languages by modifying the structure

and comparative analysis essay prompts could be repurposed for humanities or scientific

contexts by updating the context variable, future-proofing the system against emerging

educational demands and enabling multidisciplinary exam generation.

6.1.8 Testing

At the conclusion of the system’s development cycle, an extensive and meticulously planned

testing phase was initiated. During this period, the program was rigorously evaluated by a

diverse group of users drawn from various professional backgrounds. These evaluators, each

representing distinct areas of expertise, were tasked with thoroughly testing the system’s

functionalities and providing comprehensive feedback on its performance, usability, and

Automated test generation and marking using local LLMs

33

overall effectiveness by completing a questionnaire. The overarching goal of this phase was

to ensure that the system met user expectations, both by the teacher and student sides.

The results of this evaluation were overwhelmingly positive, with overall user satisfaction

being reported as very high. A notable strength of the system was its robust ability to generate

contextually relevant questions, demonstrated through the consistent production of

questions that were not only appropriate to the context but also varied across multiple

question types. The system’s design allowed it to seamlessly transition between different

forms of questioning, ensuring that a wide spectrum of assessment scenarios could be

accommodated from standard multiple-choice queries to more intricate open-ended formats.

In addition to its question generation capabilities, the system demonstrated a high degree of

precision in identifying correct answers. Evaluators observed that, in most cases, the system

accurately pinpointed the correct responses, thereby reinforcing its utility as a reliable

assessment tool. Furthermore, the system provided detailed feedback that enabled users to

gain a deeper understanding of their assessments. This feedback mechanism not only clarified

the rationale behind each evaluation but also served as a valuable learning aid for users,

thereby enhancing the overall educational value of the system.

Another noteworthy feature of the system was its method of partial grading. In instances

where responses were partially correct, the system was able to allocate partial credit. This

nuanced approach to grading was particularly beneficial in contexts and open-ended question

types where binary right-or-wrong assessments might have been overly simplistic.

Users also highlighted the practical benefits of the system in terms of time efficiency. Many

reported that the system could significantly reduce the time they spent on routine exam

building tasks, a feature that they found to be especially valuable in their daily professional

activities. Considering these benefits, a substantial number of users expressed their intention

to integrate the system into their regular workflows and were enthusiastic about

recommending it to colleagues across various fields.

Despite these strengths, users identified certain areas where improvements were necessary.

One specific issue that emerged during testing was the occurrence of repetitive content in

the generated question-answer pairs. These instances of redundancy, although infrequent,

were significant enough to warrant attention. Subsequent investigations revealed that the

unexpected repetitions were linked to the functioning of the Llama component within the

system and limitations of context produced by RAG. This discovery prompted a series of

targeted interventions aimed at resolving the issue, ensuring that future iterations would

maintain a higher standard of content diversity and quality.

During the evaluation, an additional limitation was identified: the system initially offered a

limited variety of question types, particularly those focusing on the practical applications of

contextual information. To address this shortfall, a new category of questions specifically

designed to encompass coding exercises was introduced. This new question type was

complemented by enhancements to the existing prompts, which were enriched with detailed

instructions aimed at fostering practical application skills and promoting critical thinking. As

Automated test generation and marking using local LLMs

34

a result of these targeted improvements, the system now possesses the capability to detect

topics related to programming and to generate corresponding coding exercises.

Simultaneously, the traditional question types have been refined to deliver more practical

outcomes, such as computing mathematical or programming problems and results in

multiple-choice formats and thus providing users with a more robust and application-oriented

assessment tool.

6.2 Translation

Translating the provided context into English or Greek posed a unique challenge. Specifically,

certain terms within the context, often domain-specific or technical, were not intended to be

translated and maintaining the integrity of such terms in their original language was crucial

for ensuring both linguistic and semantic accuracy.

6.2.1 Opus-mt-en-el and Opus-mt-grk-en

The initial model assessed for this translation task was Helsinki-NLP/opus-mt-en-el [26].

Empirical evaluations demonstrated that, while the model effectively translated content into

Greek in a manner that was comprehensible to native speakers, its performance revealed a

critical shortcoming. Specifically, although the English translations generated by the model

were sufficiently accurate for subsequent processing by Llama, a persistent issue was

observed: the model frequently translated technical terms and domain-specific terminology

that should have remained in English, thereby altering the original context. This inconsistency

in terminology translation reduced both the accuracy and utility of the translated output for

downstream tasks requiring precise technical language.

Quantitative evaluation using the BLEU metric yielded a score of 64%, reflecting a moderate

alignment with reference translations and while this metric indicates a reasonable degree of

fidelity in translation, the inconsistencies in preserving technical terms underscore the need

for further model fine-tuning or the incorporation of specialized post-processing steps,

further complicating the system structure.

A subsequent evaluation was conducted using opus-mt-grk-en [28], the Greek-to-English

counterpart of the initial model. Although this model exhibited better overall performance

compared to opus-mt-en-el, it still encountered challenges with terminology translation. The

BLEU score for this model was 61%, indicating moderate alignment between its outputs and

reference sentences and while it generally preserved the structure and meaning of the source

text, inconsistencies in translating key technical terms were again evident. Such errors

compromise the precision and clarity required for technical translations, particularly in

specialized domains that exist in higher education.

Automated test generation and marking using local LLMs

35

6.2.2 Fine tuning Llama 3.1

To address this issue, the idea of using Helsinki-NLP/opus-mt-en-el and opus-mt-grk-en was

scraped and the new solution involved fine-tuning Llama 3.1 to enhance its ability to manage

Greek-to-English and English-to-Greek translations while adhering to a specific guideline that

scientific terminology should not be translated. This fine-tuning process required a robust and

well labeled dataset to enable supervised training, ensuring the system could accurately

comprehend and translate the given text. Llama was once again chosen due to its ability to

process large contexts and to limit the number of diverse models used in the system. The sub-

dataset selected for this purpose was Helsinki-NLP/europarl/el-en [27], which comprises 1.29

million conversations from the European Parliament, offering high-quality translations

between Greek and English.

The training process posed a distinct challenge. Training the Llama 3.1-8B model proved

difficult on standard computing systems (AMD Ryzen 5 7600x, Nvidia RTX 4080 super, 32gb

DDR5 RAM) and even on Google Colab's specialized environment (T4 GPU, high RAM

configuration). Both setups frequently encountered CUDA memory limitations, resulting in

repeated interruptions and an inability to complete the training process. To overcome this

obstacle, the Alpaca Unsloth fine-tuning utility was employed [29]. This tool provided a

streamlined and resource efficient approach to training, enabling the process to complete

successfully and consequently, two specialized translation models for Greek-to-English and

English-to-Greek were developed [23, 24].

Empirical evaluations of the fine-tuned models yielded promising results. Both systems

effectively provided accurate translations for both languages while preserving most of the

context-specific terminology in its original form.

In this analysis, two distinct BLEU scores were obtained: 84% for the English to Greek system

and 67% for the Greek to English. The score of 84% indicates a high degree of overlap between

the predicted and reference translations, suggesting that the model closely approximates

human translation for this specific instance. On the other hand, the score of 67%, while lower,

still demonstrates an acceptable level of alignment between the prediction and references.

Table 3: Blue scores of individual models

Model Blue Scores Notes

Helsinki-NLP/opus-mt-en-el 64% Demonstrated moderate

translation accuracy but frequently

mistranslated domain-specific

terminology, reducing its suitability

for technical tasks.

Automated test generation and marking using local LLMs

36

6.3 Answer validation

In the answer validation subsystem, the primary objective is to measure the semantic

divergence between a model-provided correct answer and the corresponding response given

by a student. This process is essential to accurately evaluate the student's understanding

relative to the expected answer. To achieve this goal, two cosine similarity models from the

sentence transformer family were tested sentence-transformers/all-MiniLM-L6-v2 [31] and

sentence-transformers/all-mpnet-base-v2. By leveraging these models, the system quantifies

semantic alignment, offering an effective means for comparative assessment in student

evaluation and grading.

In overall performance evaluations across diverse tasks, metrics have demonstrated that

sentence-transformers/all-mpnet-base-v2 [32] exhibits superior accuracy and reliability in

delivering cosine similarity measures, compared to other models. Empirical analysis

corroborates this conclusion, with all-mpnet-base-v2 showing a notably refined capacity to

differentiate between responses with ambiguous or nuanced meanings. This model

consistently produced mid-range cosine similarity values for such ambiguous cases,

accurately reflecting the intended grading scale, while maintaining distinct high and low

similarity scores for the most and least appropriate answers. In contrast, while all-MiniLM-L6-

v2 was reliable in assigning clear high or low values, it exhibited limitations in handling

intermediate cases, as it sometimes assigned cosine similarity values that diverged from the

nuanced evaluation a human assessor might provide, resulting in less precise alignment with

human grading standards for responses with subtle semantic distinctions.

To enhance the system's capability to evaluate student responses with greater precision, an

additional processing step was incorporated. This involves utilizing a Named Entity

Recognition (NER) model ‘’FacebookAI/xlm-roberta-large-finetuned-conll03-english’’ [33] to

extract key entities and details from the text. By isolating and analyzing these elements, the

system assigns individual scores to specific details within the response, thereby ensuring that

the grading process remains highly context-aware and tailored to the nuances of the provided

answers.

Helsinki-NLP/ opus-mt-grk-en 61% Exhibited terminology

inconsistencies, compromising

technical precision.

Fine-tuned Llama 3.1 (English-

Greek)

84% Achieved high translation accuracy,

effectively preserving scientific and

domain-specific terminology while

closely approximating human

translation quality.

Fine-tuned Llama 3.1 (Greek –

English)

67% Delivered acceptable translation

accuracy, preserving context and

terminology, with minor mistakes.

Automated test generation and marking using local LLMs

37

7 . F u t u r e W o r k

The future advancements in local Large Language Models (LLMs) hold transformative

potential for the field of education, particularly in the domain of exam generation. A key

challenge identified during this research was the implementation of a model capable of

operating efficiently on standard personal computers while simultaneously offering a large

context window and maintaining high-quality performance in specific natural language

processing tasks.

Recent developments in the field underscore the promise of achieving these goals. For

instance, Meta’s ongoing enhancements to the Llama series, such as the anticipated release

of Llama 3.3 with 70 billion parameters, aim to provide performance comparable to larger

models like Llama 3.1 with 405 billion parameters. These innovations demonstrate how

reducing parameter sizes while maintaining high performance can make LLMs more

accessible to researchers and developers operating with limited computational resources.

Future breakthroughs are likely, as major technology companies continue to focus on

optimizing model sizes without compromising quality.

Moreover, advancements in consumer-grade hardware, such as Nvidia's RTX 5000 series,

particularly the RTX 5090 with 32 GB of VRAM, are poised to significantly enhance the ability

to run larger models or maximize quantization configurations for smaller models, such as

Llama 3.1 with 8 billion parameters while providing an affordable card able to fit in a high-

end personal computer. As hardware evolves, GPUs with greater memory capacities will likely

align with the increasing demands of modern AI technologies, enabling more efficient

processing of computationally intensive tasks. Nvidia has already demonstrated a clear focus

on this trajectory, underscoring its commitment to supporting the next generation of AI

applications.

In addition to hardware improvements, ongoing efforts to develop more effective

optimization techniques for existing models are noteworthy. Innovations such as Floating

Point 8-bit (FP8) quantization are particularly promising, as for instance, the application of

FP8 quantization to Llama 3.1 has shown potential to enhance the model’s performance to a

level comparable to its 16-bit counterpart, effectively balancing efficiency with accuracy.

Lastly, focusing specifically on educational applications, the creation and utilization of

specialized datasets offer another avenue for improving the capabilities of LLMs. By fine-

tuning models with datasets tailored to educational contexts, researchers can achieve

significant enhancements in generating high-quality question-answer pairs, calculating

semantic similarity scores, and performing Named Entity Recognition. Such advancements

could revolutionize automated exam generation and grading, providing scalable and efficient

solutions for educators worldwide.

Automated test generation and marking using local LLMs

38

8 . C o n c l u s i o n

In conclusion, this research introduces an innovative approach to the development of an

exam generation and grading system by leveraging state-of-the-art local Large Language

Models (LLMs). The study emphasizes critical aspects, including context size, the quality and

diversity of Question–Answer pairs generated by different systems, and the computational

burden imposed on hardware resources.

A significant part of this work involved employing advanced prompt engineering techniques

to refine model outputs, ensuring the generation of accurate, diverse, and pedagogically

aligned questions. Additionally, Retrieval-Augmented Generation (RAG) was integrated to

address the challenge of processing large contexts. By semantically searching for relevant

keywords and extracting focused paragraphs from larger datasets, RAG allowed the system

to feed optimized inputs into the LLM, improving both performance and accuracy while

reducing computational overhead.

The research also expanded the language capabilities of local LLMs by fine-tuning the Llama

model to perform English–Greek and Greek–English translation tasks effectively, further

extending its applicability in multilingual educational settings.

To ensure optimal performance, various models were empirically tested and evaluated using

established metrics, allowing for the identification of the most efficient and effective

solutions. Throughout this process, the main challenges were systematically identified,

analyzed, and reported, including issues related to duplicate questions, large context

handling, and computational efficiency.

Furthermore, a novel formula was developed to assess students’ exam performance by

integrating similarity and detail scores, utilizing advanced Natural Language Processing (NLP)

techniques. This contribution enhances the grading process, ensuring a robust and equitable

assessment system while demonstrating the transformative potential of LLMs in educational

applications.

Automated test generation and marking using local LLMs

39

9 . R e f e r e n c e s

[1] Shen Wang, Tianlong Xu, Hang Li, Chaoli Zhang, Joleen Liang, Jiliang Tang, Philip S. Yu, and

Qingsong Wen. 2024. Large Language Models for Education: A Survey and Outlook. arXiv,

March 2024.

https://arxiv.org/abs/2403.18105

[2] Jeon, J., Lee, S. Large language models in education: A focus on the complementary

relationship between human teachers and ChatGPT. Educ Inf Technol 28, 15873–15892

(2023).

https://doi.org/10.1007/s10639-023-11834-1

[3] Kiran, Fenil & Gopal, Hital & Dalvi, Ashwini. (2017). Automatic Question Paper Generator

System. International Journal of Computer Applications. 166. 42-47.

10.5120/ijca2017914138.

https://doi.org/10.5120/ijca2017914138

[4] French, S., Dickerson, A. & Mulder, R.A. A review of the benefits and drawbacks of high-

stakes final examinations in higher education. High Educ 88, 893–918 (2024).

https://doi.org/10.1007/s10734-023-01148-z

[5] Yu Chen, Lingfei Wu, and Mohammed J. Zaki. 2020. Reinforcement Learning Based

Graph-to-Sequence Model for Natural Question Generation. In Proceedings of the

International Conference on Learning Representations (ICLR) 2020.

https://arxiv.org/abs/1908.04942

[6] Liuyin Wang, Zihan Xu, Zibo Lin, Haitao Zheng, and Ying Shen. 2020. Answer-driven Deep

Question Generation based on Reinforcement Learning. In Proceedings of the 28th

International Conference on Computational Linguistics, pages 5159–5170, Barcelona, Spain

(Online). International Committee on Computational Linguistics.

https://aclanthology.org/2020.coling-main.452/

[7] Michael Heilman and Noah A. Smith. 2010. Good Question! Statistical Ranking for

Question Generation. In Human Language Technologies: The 2010 Annual Conference of the

North American Chapter of the Association for Computational Linguistics, pages 609–617,

Los Angeles, California. Association for Computational Linguistics.

https://aclanthology.org/N10-1086/

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-

training of Deep Bidirectional Transformers for Language Understanding. arXiv, May 2019.

https://arxiv.org/abs/1810.04805

[9] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael

Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the limits of transfer learning

https://arxiv.org/abs/2403.18105
https://doi.org/10.1007/s10639-023-11834-1
https://doi.org/10.5120/ijca2017914138
https://doi.org/10.1007/s10734-023-01148-z
https://arxiv.org/abs/1908.04942
https://aclanthology.org/2020.coling-main.452/
https://aclanthology.org/N10-1086/
https://arxiv.org/abs/1810.04805

Automated test generation and marking using local LLMs

40

with a unified text-to-text transformer. J. Mach. Learn. Res. 21, 1, Article 140 (January

2020).

https://arxiv.org/abs/1910.10683

[10] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini

Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya

Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric

Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam

McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language Models are

Few-Shot Learners. arXiv, May 2020.

https://arxiv.org/abs/2005.14165

[11] William Gantt, Lelia Glass, and Aaron Steven White. 2022. Decomposing and

Recomposing Event Structure. Transactions of the Association for Computational Linguistics,

10:17–34.

https://aclanthology.org/2022.tacl-1.2/

[12] V. Suresh, R. Agasthiya, J. Ajay, A. A. Gold and D. Chandru, "AI based Automated Essay

Grading System using NLP," 2023 7th International Conference on Intelligent Computing and

Control Systems (ICICCS), Madurai, India, 2023, pp. 547-552, doi:

10.1109/ICICCS56967.2023.10142822.

https://ieeexplore.ieee.org/document/10142822

[13] Katikapalli Subramanyam Kalyan. 2023. A Survey of GPT-3 Family Large Language Models

Including ChatGPT and GPT-4. arXiv, October 2023.

https://arxiv.org/abs/2310.12321

[14] Telmo Pires, Eva Schlinger, and Dan Garrette. 2019. How Multilingual is Multilingual

BERT?. In Proceedings of the 57th Annual Meeting of the Association for Computational

Linguistics, pages 4996–5001, Florence, Italy. Association for Computational Linguistics.

https://aclanthology.org/P19-1493/

[15] Luca Papariello. 2021. xlm-roberta-base-language-detection. Hugging Face. Retrieved

January 6, 2025 from

https://huggingface.co/papluca/xlm-roberta-base-language-detection.

[16] Meta AI. 2023. Llama-3.1-8B. Hugging Face. Retrieved January 6, 2025 from

https://huggingface.co/meta-llama/Llama-3.1-8B

[17] Sentence-Transformers. 2020. all-mpnet-base-v2. Hugging Face. Retrieved January 6,

2025 from

https://huggingface.co/sentence-transformers/all-mpnet-base-v2

[18] Jun Zhao, Zhihao Zhang, Luhui Gao, Qi Zhang, Tao Gui, and Xuanjing Huang. 2024. LLaMA

Beyond English: An Empirical Study on Language Capability Transfer. arXiv, January 2024.

https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2005.14165
https://aclanthology.org/2022.tacl-1.2/
https://ieeexplore.ieee.org/document/10142822
https://arxiv.org/abs/2310.12321
https://aclanthology.org/P19-1493/
https://huggingface.co/papluca/xlm-roberta-base-language-detection
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/sentence-transformers/all-mpnet-base-v2

Automated test generation and marking using local LLMs

41

 https://arxiv.org/abs/2401.01055

[19] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael

Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the Limits of Transfer Learning

with a Unified Text-to-Text Transformer. Journal of Machine Learning Research 21, 140 (2020),

1–67.

https://arxiv.org/abs/1910.10683

[20] Manuel Romero. 2020. t5-base-finetuned-question-generation-ap. Hugging Face.

Retrieved January 6, 2025 from

https://huggingface.co/mrm8488/t5-base-finetuned-question-generation-ap

[21] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. SQuAD:

100,000+ Questions for Machine Comprehension of Text. In Proceedings of the 2016

Conference on Empirical Methods in Natural Language Processing (EMNLP 2016), 2383–2392.

https://doi.org/10.18653/v1/D16-1264

[22] Sandvik, L. V., Svendsen, B., Strømme, A., Smith, K., Aasmundstad Sommervold, O., &

Aarønes Angvik, S. (2022). Assessment during COVID-19: Students and Teachers in Limbo

When the Classroom Disappeared. Educational Assessment, 28(1), 11–26.

https://doi.org/10.1080/10627197.2022.2122953

[23] Johnnypjp. 2024. Llama-3.1-8b-english-greek-translation-task. Hugging Face. Retrieved

January 6, 2025 from

https://huggingface.co/Johnnypjp/Llama-3.1-8b-english-greek-translation-task

[24] Johnnypjp. 2024. Llama-3.1-8b-greek-translation-task. Hugging Face. Retrieved January

6, 2025 from

https://huggingface.co/Johnnypjp/Llama-3.1-8b-greek-translation-task

[25] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,

Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.

Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz

Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec

Radford, Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. In

Advances in Neural Information Processing Systems 33 (NeurIPS 2020), 1877–1901.

https://arxiv.org/abs/2005.14165

[26] Helsinki-NLP. 2020. opus-mt-en-el. Hugging Face. Retrieved January 6, 2025 from

https://huggingface.co/Helsinki-NLP/opus-mt-en-el

[27] Helsinki-NLP. Europarl Dataset. Retrieved January 7, 2025, from

https://huggingface.co/datasets/Helsinki-NLP/europarl

[28] Helsinki-NLP. 2020. opus-mt-grk-en. Hugging Face. Retrieved January 6, 2025 from

https://huggingface.co/Helsinki-NLP/opus-mt-grk-en

https://arxiv.org/abs/2401.01055
https://arxiv.org/abs/1910.10683
https://huggingface.co/mrm8488/t5-base-finetuned-question-generation-ap
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.1080/10627197.2022.2122953
https://huggingface.co/Johnnypjp/Llama-3.1-8b-english-greek-translation-task
https://huggingface.co/Johnnypjp/Llama-3.1-8b-greek-translation-task
https://arxiv.org/abs/2005.14165
https://huggingface.co/Helsinki-NLP/opus-mt-en-el
https://huggingface.co/datasets/Helsinki-NLP/europarl
https://huggingface.co/Helsinki-NLP/opus-mt-grk-en

Automated test generation and marking using local LLMs

42

[29] unslothai. 2023. unsloth: An open-source library for language understanding. GitHub

repository. Retrieved January 6, 2025 from

https://github.com/unslothai/unsloth

[30] Hadzhikoleva, S.; Rachovski, T.; Ivanov, I.; Hadzhikolev, E.; Dimitrov, G. Automated Test

Creation Using Large Language Models: A Practical Application. Appl. Sci. 2024, 14, 9125.

https://doi.org/10.3390/app14199125

[31] Sentence-Transformers. 2020. all-MiniLM-L6-v2. Hugging Face. Retrieved January 6, 2025

from

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

[32] Sentence-Transformers. 2020. all-mpnet-base-v2. Hugging Face. Retrieved January 6,

2025 from

https://huggingface.co/sentence-transformers/all-mpnet-base-v2

[33] FacebookAI. 2020. xlm-roberta-large-finetuned-conll03-english. Hugging Face. Retrieved

January 6, 2025 from

https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-english

[34] Meta. 2023. Llama-2-7b. Hugging Face. Retrieved January 6, 2025 from

https://huggingface.co/meta-llama/Llama-2-7b

[35] Meta. 2024. Meta-Llama-3-8B. Hugging Face. Retrieved January 6, 2025 from

https://huggingface.co/meta-llama/Meta-Llama-3-8B

[36] OpenAI. 2025. GPT-4.0 and More Tools to ChatGPT Free. OpenAI. Retrieved January 6,

2025 from

https://openai.com/index/gpt-4o-and-more-tools-to-chatgpt-free/

[37] OpenAI. 2025. GPT-4 Turbo and GPT-4. OpenAI Platform Documentation. Retrieved

January 6, 2025 from

https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4

[38] Meta LLaMA AI Model. 2025. Requirements for LLaMA 3.1 8B. Retrieved January 13, 2025

from

https://llamaimodel.com/requirements/#8B

[39] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-

training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of

the 2019 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies (NAACL-HLT 2019), 4171–4186.

https://doi.org/10.18653/v1/N19-1423

[40] DeepSeek-AI et al. 2025. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via

Reinforcement Learning. arXiv, January 2025.

https://arxiv.org/html/2501.12948v1

https://github.com/unslothai/unsloth
https://doi.org/10.3390/app14199125
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-english
https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://openai.com/index/gpt-4o-and-more-tools-to-chatgpt-free/
https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4
https://llamaimodel.com/requirements/#8B
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/html/2501.12948v1

Automated test generation and marking using local LLMs

43

[41] DeepSeek AI. 2025. DeepSeek-R1. Hugging Face. Retrieved February 1, 2025, from

https://huggingface.co/deepseek-ai/DeepSeek-R1

[42] DeepSeek AI. 2025. DeepSeek-R1-Distill-Llama-8B. Hugging Face. Retrieved February 1,

2025, from https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B

https://huggingface.co/deepseek-ai/DeepSeek-R1
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B

