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A b s t r a c t  

This case study presents an innovative exam creation and grading system powered by 

advanced Natural Language Processing (NLP) and Llama 3.1. The system generates clear, 

grammatically accurate questions in English and Greek from both short text and long 

documents. It supports diverse question formats across various difficulty levels, ensuring 

semantically distinct content while minimizing redundancy. Grading utilizes a semantic 

similarity model to accurately evaluate essay and open-ended responses, offering partial 

credit and reducing bias from phrasing or syntax based on Named Entity Recognition (NER). 

A key advantage is its ability to run locally on ordinary personal computers without requiring 

specialized AI systems. The system also provides feedback on graded responses. Evaluations 

using metrics such as ROUGE, BLEU, diversity scores, and cosine similarity demonstrate its 

effectiveness, outperforming state-of-the-art models like BERT and T5 for educational 

assessment tasks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: Exam Creation System, Natural Language Processing (NLP), 

Automated Grading, Llama 3.1, Question-Answer Generation, Retrieval 

Augmented Generation 



Automated test generation and marking using local LLMs 

8 
 

I n t r o d u c t i o n  

The rapid evolution of Artificial Intelligence (AI), particularly of large language models (LLMs), 

has demonstrated significant potential in automating tasks and offering a wide range of 

capabilities that enhance both teaching and learning experiences. LLMs are now enabling 

teacher assisted learning, where AI complements human instruction by alleviating routine 

tasks, allowing educators to concentrate more on the interactive and creative elements of 

their work [1]. For students, these models provide access to better content, minimizing 

human error and ensuring fairer assessments while additionally, they have the potential to 

bridge the language gaps between teachers and students, delivering higher-quality 

educational content and improving the overall learning process.[2] 

One area where this can be fully appreciated is the examination process. Until now, teachers 

and evaluators have had to rely on creating questions and providing answers based on 

materials they have studied extensively, often from large documents (e.g., entire books). The 

conventional approach to creating examination papers in academic settings is often a manual 

process, which is not only time consuming but also repetitive. This method increases the 

likelihood of inefficiencies, such as potential bias or manipulation, often compromising the 

integrity and fairness of the process. [3] Furthermore designing effective assessments is a 

longstanding challenge in higher education, highlighted by numerous quality assurance 

reviews and often suffering from limited diversity of assessment types [4]. 

In this thesis, we present a novel Natural Language Processing (NLP) system designed to 

analyze extensive contexts, generate a diverse array of question types with corresponding 

correct answers, deliver accurate translations across multiple languages, and provide a 

grading mechanism based on sentence similarity. The system integrates advanced contextual 

analysis with translation and automated evaluation, offering a comprehensive solution for 

generating and grading educational content. 

Section 1 covers related work, laying the foundation for the study. Section 2 outlines the 

motivation, followed by system design in Section 3. Section 4 details system implementation, 

including context input (4.1), language detection (4.2), translation (4.3), question-answer 

generation (4.4), grading (4.5), and scalability (4.6). 

Section 5 discusses the web application, focusing on the framework (5.1) and user interface 

(5.2). Section 6 covers experimentation, including BERT and T5 (6.1.1), OpenAI models (6.1.2), 

Deepseek-R1 (6.1.3), and Llama models (6.1.4). It also explores performance improvements 

such as quantization, retrieval-augmented generation (6.1.5), input randomization (6.1.6), 

and prompt engineering (6.1.7), followed by testing (6.1.8). 

Translation methods are covered in Section 6.2, including Opus-mt models (6.2.1) and fine-

tuning Llama 3.1 (6.2.2), followed by answer validation (6.3). Sections 7–9 discuss future work, 

conclusions, and references. 
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1 .  R e l a t e d  W o r k  

Many researchers have focused on the distinct tasks required for generating exam content 

using Natural Language Processing (NLP) techniques individually. To better understand this 

process, the problem can be categorized into three key areas.  

The first crucial point in creating an exam paper is question-answer generation. A major area 

of study in question generation is the application of deep learning neural networks. Significant 

contributions have been made in this area and while some approaches focus on generating 

questions by extracting information from text documents [5, 6], others emphasize 

paraphrasing existing content into question formats [7], demonstrating different techniques 

for automatic question generation based on source material. These contributions have laid 

the groundwork for automating the question creation process in educational assessments 

with the emergence of large language models (LLMs) in recent years leading to significant 

advancements in question answering tasks. NLP systems like BERT, T5 and GPT have played a 

crucial role in achieving impressive performance by generating questions and retrieving 

correct answers from large contexts. [8, 9, 10, 11]. 

To create a comprehensive examination system, the next critical task involves student answer 

assessment and the subsequent grading based on their responses. This process, simpler 

compared to question generation, has also gathered significant attention. The primary 

methods explored for this task include grammar analysis and semantic evaluation, both aimed 

at assigning a similarity score between the student's response and the correct answer given 

by the system. By leveraging these techniques, the system can effectively measure how well 

a student's answer aligns with the expected solution, enabling accurate and consistent 

grading across different question types. [12] 

A critical challenge encountered was the development of an adequate translation system for 

the Greek language. Unfortunately, many mainstream model implementations lack robust 

support for Greek and other underrepresented languages, which can result in inaccurate 

outputs during both question generation and answer evaluation [13, 14]. After consultation 

with experts in the field, the most effective solution identified was to translate the provided 

context from Greek to English before feeding it into the large language model (LLM).  

There are also papers published supporting research on building comprehensive exam 

generation systems, though they often rely on different NLP frameworks and lack the 

integration of the latest Llama, OpenAI or DeepSeek models [30]. 

In this work, we integrate and extend existing methodologies into a comprehensive system 

that leverages diverse techniques for QA generation, student grading, assessment 

explanation, and translation. This unified pipeline delivers a robust, accurate, scalable, and 

flexible solution for exam creation and automated evaluation. Building on prior research, our 

end-to-end approach effectively addresses a wide range of educational needs. 
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2 .  M o t i v a t i o n  

Prior experience in student assessment, signifies that it is evident the process of exam 

generation can be time consuming and complex, often requiring a balance between 

subjective interpretation and objective evaluation. Traditional exam creation and grading 

processes demand considerable time and expertise, often placing an undue burden on 

teachers and staff, especially when large student populations are involved. Moreover, the 

creation of diverse, contextually appropriate questions that accurately assess a range of 

competencies is an inherently complex task, requiring both subject matter expertise and 

pedagogical experience. 

These challenges can be effectively addressed by implementing advanced systems that 

harness the power of Artificial Intelligence (AI) and Natural Language Processing (NLP), 

offering a transformative solution by automating the generation of high-quality exam 

questions and enabling streamlined grading processes. Through AI and NLP technologies, we 

can develop tools that not only generate diverse and contextually relevant questions but also 

provide automated, scalable assessment methods, reducing the necessity for direct human 

intervention in both the creation and evaluation phases. 

In recent years, particularly following the COVID-19 pandemic [22], the emergence of remote 

examinations has significantly altered the methods of student assessment. This shift presents 

a new challenge for examiners, who are now tasked with developing questions that are both 

diverse and dynamic in nature. The objective is to reduce the risk of academic dishonesty 

among students and therefore, exam question design must adapt, incorporating mechanisms 

to maintain academic integrity while offering a robust and fair assessment of student 

knowledge; something that can be greatly achieved by using contexts that are large and are 

analyzed thoroughly.  

The implications of these advancements are profound. In fast-paced educational 

environments, the need for efficient, scalable, and high-quality assessment tools has never 

been more evident. As student numbers rise and remote learning becomes the norm, 

educators must balance academic rigor with practical constraints. AI-driven systems ease this 

drawback by automating repetitive tasks, allowing teachers to focus on meaningful 

interactions. 

Furthermore, in today’s increasingly globalized and diverse classrooms, there are additional 

complexities to consider. The modern educational landscape, especially in university and 

academic institutions, often involves multilingual and multicultural settings, where language 

barriers can impede both teaching and learning. By integrating NLP models that support 

multilingual capabilities, AI-driven systems can help bridge these communication gaps, 

ensuring that exam questions and assessments are clear, fair, and accessible to all students, 

regardless of their native language or cultural background. 
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3 .  S y s t e m  D e s i g n  

 

 

 

Figure 1: System Structure Chart 
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The system processes inputs to generate questions, allocate scores, and provide 

corresponding answers, handling a wide range of contexs from short texts spanning a few 

hundred characters to full-length documents. For extensive contexts, Retrieval Augmented 

Generation (RAG) is employed to condense the input into a manageable size, enabling 

efficient processing and memory management. 

To ensure compatibility, it identifies the input language and checks its support within Llama 

3.1. Officially supported languages include English, German, French, Italian, Portuguese, 

Hindi, Spanish, and Thai [16], allowing the system to proceed directly to question generation 

when these languages are detected. For Greek, which is not officially supported but essential 

for the Greek educational system, the input is translated into English using two fine-tuned 

Llama 3.1 model adding further compatibility. After processing, the system translates the 

output back into Greek, ensuring the end users receive results in their preferred language. 

This bidirectional translation process maintains both accuracy and compatibility with the 

model's language support capabilities. 

Once the text is processed or translated, it is passed to Llama 3.1 along with well-engineered 

prompt instructions. The model generates a set of questions and corresponding answers, 

formatted in a predefined JSON structure for standardization and ease of use and after each 

question generation a similarity checking step takes place to avoid duplicates or overly similar 

semantically questions. 

When student answers are submitted, the system identifies the response language and if the 

response is in a supported language, the grading process proceeds directly. For Greek 

responses, the answers are first translated into a supported language, typically English, before 

grading begins. The grading process involves several steps: cosine similarity calculation, which 

computes the similarity between the student's answers and the correct answers generated 

by the Llama-based QA system; Named Entity Recognition (NER), which identifies critical 

entities in the student’s response and compares them with the expected answers to avoid 

terminology biases; and explanation generation, where Llama 3.1 provides a detailed 

justification for the assessment by incorporating the context, the question, the student’s 

response, and the correct answer. 

Based on the similarity score and detail score computed by the corresponding NER results, 

the system then assigns a grade based on an algebraic formula. For Greek users, the final 

grade and explanation are translated back into Greek before being returned, ensuring a 

seamless experience for end users while maintaining the accuracy of the assessment process. 
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4 .  S y s t e m  I m p l e m e n t a t i o n  

To harness the full potential of natural language processing, it is important to assemble a 

comprehensive and meticulously configured software environment on the local machine. 

Such an environment enables the execution of complex computational tasks integral to 

artificial intelligence applications, particularly those involving large-scale language models. 

A critical component of this configuration is the hardware setup. Modern NVIDIA GPUs that 

support CUDA (Compute Unified Device Architecture) are essential. CUDA provides a parallel 

computing platform and programming model that significantly accelerates the performance 

of deep learning tasks by leveraging the massively parallel processing capabilities of GPUs. In 

contrast, relying solely on CPU processing can result in unacceptably slow execution times, 

especially when handling the computationally intensive operations characteristic of state-of-

the-art NLP models. 

Equally important is the software stack. The PyTorch library is a foundational element in this 

ecosystem, offering dynamic computational graphs and a user-friendly interface that has 

made it a preferred choice for both researchers and developers. It is crucial to ensure that the 

installed version of PyTorch is fully compatible with the CUDA version present on the system. 

This compatibility is vital for maximizing the performance gains provided by GPU acceleration 

and for preventing potential runtime conflicts that can arise from certain version mismatches. 

Python is the programming language of choice due to its simplicity, readability, and the vast 

ecosystem of libraries that support data science and machine learning workflows. The 

language's flexibility and the availability of numerous specialized packages make it ideal for 

development and experimentation in AI research. Among these packages, the Transformers 

library from Hugging Face stands out for its robust collection of pre-trained NLP models and 

tools that simplify the deployment of complex language processing pipelines. 

Integrating the Transformers library into an environment requires obtaining an account with 

Hugging Face and securing an access token. This process ensures that access to each model is 

controlled and that users comply with licensing agreements and usage policies, serving as a 

credential that authorizes the retrieval of models from the Hugging Face Hub, streamlining 

the integration process and enabling quick updates and model management. 

 

 

4.1 Context Input 

In the exam question-answer generation system, the main input provided is text, which can 

range from a few tens or hundreds of characters of plain text to entire documents. When the 

input consists of shorter contexts, the system automatically inserts the text into a predefined 

prompt, which is then passed to the Llama-3.1-8B model for question generation. While the 
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Llama 3.1 model is designed to process up to 128,000 tokens, performance declines 

significantly when large contexts are provided. 

Empirical testing revealed that when the system received a substantial amount of text, the 

processing time increased drastically, often resulting in memory outages, while for smaller 

contexts, the system typically generated responses within five minutes. To address this, a 

solution was implemented that splits the input context based on its size, along with a better 

quantization configuration setting of 8 bits more suitable to a high-end personal computer. 

When the input exceeded a certain threshold of characters, the system required the insertion 

of a text file (such as a book) and a Retrieval Augmented Generation (RAG) technique was 

applied. This approach enabled users to provide specific keywords, which were semantically 

searched within the inserted document to further specify the context from which the 

questions should be generated. RAG would extract relevant, smaller paragraphs that matched 

these terms and merge them into a single context that is then fed into Llama 3.1, significantly 

reducing the context size and allowing the system to operate efficiently. By implementing 

RAG, the performance issues were resolved, ensuring timely responses and preventing CUDA 

memory errors. 

 

4.2 Language detection 

The Llama model, like most widely used large language models, tends to struggle with 

underrepresented unsupported languages, a limitation that has been widely observed in 

literature [18]. By default, the model offers robust support for languages such as English, 

German, French, Italian, Portuguese, Hindi, Spanish, and Thai. However, to ensure effective 

operation with input data, it is crucial to first identify the language of the provided text and 

as result this step helps determine whether the language is supported by the model. 

To achieve this, Natural Language Processing (NLP) models specialized in language detection 

are employed to accurately identify the language in which a given passage is written, allowing 

for an informed decision on whether the language falls within the model’s supported set. In 

this system, the "xlm-roberta-base-language-detection" model [15] was used for this 

purpose, ensuring precise language identification and improving overall system performance. 

 

4.3 Translation 

The translation model enhances the existing capabilities of Llama-3.1-8B by extending 

support to the Greek language, a functionality previously unavailable in its default 

configuration. By enabling the translation of Greek text to English, the system ensures 

compatibility with contexts presented in languages that were not natively supported, 

broadening its applicability to a wider range of educational systems. 

To achieve this, two distinct fine-tuned models were employed: Johnnypjp/Llama-3.1-8b-

english-greek-translation-task [23] and Johnnypjp/Llama-3.1-8b-greek-translation-task [24]. 

These models are specifically designed for bidirectional translation between English and 
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Greek. The former facilitates translations from English to Greek, while the latter handles 

translations from Greek to English, an approach that ensures high-quality translations in both 

directions, by utilizing the needed specialized datasets needed for fine tuning each model. 

The translation process is activated only when the language detection model confirms with 

high confidence that the input text is in Greek. It is applied at two distinct stages: initially, 

when the input context is provided (Greek to English), and subsequently, after the response 

generated by the QA model is processed (English to Greek). This two-step process ensures 

that the system accurately interprets the original context while delivering responses in the 

intended language. 

The same translation framework is integrated into the assessment system. Students' answers 

are processed in the language used for the exam, ensuring consistency in evaluation and 

enabling the system to support linguistically diverse educational scenarios effectively. 

 

4.4 Question-Answer Generation 

In recent years, large language models (LLMs) have excelled in generating question-answer 

(QA) pairs (25), offering precise and relevant questions along with accurate answers based on 

provided text. Llama 3.1 supports a context length up to 128,000 tokens, enabling the 

processing of even extensive texts, such as short books. 

In the system, the exam question generation functionality is exposed via a Python Flask API 

that receives input in the form of a structured JSON, which allows it to interpret the context, 

generate exam questions and respond with a suitable output. The JSON structure is a critical 

aspect of this process, as it ensures that the model can accurately receive the necessary input 

data and generate relevant questions in response. 

The required JSON format is carefully designed to accommodate various parameters that 

dictate the nature of the questions to be generated. The request incorporates configurable 

fields for defining the input context and it further allows specifying the desired number of 

questions. When a file is provided, it enables a Retrieval Augmented Generation (RAG) 

keyword query to focus the question generation process on specific topics while additionally, 

offering detailed question settings, including type, difficulty level, and assigned individual 

score, provided for generating diverse and tailored exam questions, ensuring adaptability to 

various educational needs while maintaining precision and diversity in the generated 

questions. 

 

Figure 2: QA API request JSON format 
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For accurate processing of the given context, specific guidelines play a crucial role, allowing 

the system to return responses that meet particular requirements. In this instance, the design 

focuses on ensuring that responses are delivered in a predefined format, maximizing precision 

so that the output is structured as a valid JSON object containing the fields (as depicted in 

figure 3) for the generated question, its type, and the corresponding correct answer.  

Additionally, the system is designed to handle a variety of question types (essay, multiple 

choice, short answer, gap completion, true/false) and difficulties (easy, medium, hard), 

providing the freedom to assign separate marks to each question while maintaining a formal 

and structured format.  

Through extensive analysis of the input and carefully designed instructions, the system 

generates question-answer (QA) pairs while minimizing repetitive topics by computing a 

similarity score for each question, which is then compared against a list of previously 

generated questions to identify and eliminate potential duplicates, thereby ensuring the 

creation of unique and diverse question sets. 

To accurately calculate the cumulative relative mark, depending on the number of questions 

i given, the following formula was used: 

𝑔𝑖 =
𝐺

𝑁
 

Where: 

• N = Total number of questions 

• G = Maximum total grade  

• 𝑔𝑖 = Grade for each question i 

 

 

4.5 Grading 

The grading system employs semantic similarity models, “sentence-transformers/all-mpnet-

base-v2” [17] and “FacebookAI/xlm-roberta-large-finetuned-conll03-english” [33] to evaluate 

student responses. It compares each student’s answer to the correct answer (generated by 

the Llama model) using a cosine similarity measure that ranges from –1 to 1, with higher 

values indicating greater semantic resemblance. 

To determine a grade, the system first calculates a base grade by mapping the similarity score 

onto predefined thresholds. For instance, a similarity score above 0.8 results in full credit (i.e., 

Figure 3:QA API response JSON format 
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the maximum grade), while lower scores receive proportionally reduced credit. In addition to 

this base grade, the system incorporates a detail matching score that reflects how well 

specific details in the student response align with the correct answer. This detail score is 

blended with the base grade using a configurable weight (defaulting to 0.3), ensuring that 

both overall semantic similarity and attention to detail contribute to the final grade. The 

resulting value is then capped at the maximum possible grade. 

 

𝐺(𝑠,𝑀, 𝑑, 𝑤) =  

{
 
 

 
 

𝑀 × [(1 − 𝑤) + (𝑤 × 𝑑)], 𝑖𝑓 𝑠 > 0.8

𝑀 × [(0.8 + 0.2 × (𝑠 − 0.7)) × ((1 − 𝑤) + (𝑤 × 𝑑))], 𝑖𝑓 0.7 < 𝑠 ≤ 0.8

𝑀 × [(0.5 + 0.3 × (𝑠 − 0.5)) × ((1 − 𝑤) + (𝑤 × 𝑑))], 𝑖𝑓 0.5 < 𝑠 ≤ 0.7

𝑀 × [(0.2 + 0.3 × (𝑠 − 0.5)) × ((1 − 𝑤) + (𝑤 × 𝑑))], 𝑖𝑓 0.3 < 𝑠 ≤ 0.5

𝑀 × 𝑠 ×  [(1 − 𝑤) + (𝑤 × 𝑑)], 𝑖𝑓 𝑠 ≤ 0.3

 

Where: 

• G is the grade 

• s is the similarity score (between 0 and 1), 

• M is the maximum grade. 

• d is the detail score 

• w is the detail weight 

 

The API once again returns the grading parameters in a predefined JSON format. All the 

needed information for assessment are included in this JSON and are available for printing 

directly in any application later on. 

 

 

 

 

 

 

 

 

 

Figure 4: Grading API response 
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4.6 Scalability 

To address scalability requirements and accommodate the rapid evolution of artificial 

intelligence models, the system has been architected with a modular design. This architecture 

not only facilitates the easy modification of each processing step but also allows for the 

seamless integration of additional steps as needed. Such flexibility is critical for modern AI 

systems, where the optimal model selected today may be superseded by a more effective 

alternative tomorrow. 

To achieve this design, the system is decomposed into discrete functions that execute 

sequentially, ensuring that each function initiates synchronously only after the successful 

completion of its predecessor. This structure enhances both maintainability and adaptability, 

allowing for efficient updates or replacements of individual components without 

necessitating a complete system overhaul. 

A key factor in achieving scalability was the integration of the Hugging Face Hub Transformers 

libraries. These libraries offer direct download and plug-and-play capabilities, permitting 

model changes by simply updating the model identifier. This functionality was rigorously 

tested during the experimentation phase, enabling the identification of the most capable 

model for each processing stage and facilitating rapid and seamless transitions between 

different models. 
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5 .  W e b  a p p l i c a t i o n  

To facilitate and further test the system, a web application was developed using the latest 

.NET Core 8 MVC framework. This application serves as the User Interface (UI) for managing 

interactions between the user and the Flask API, handling both requests and responses. The 

system's architecture utilizes models, controllers, and services to process data and assist 

communication between the front and back end components. 

 

5.1 Teacher interface  

The UI includes a form that acts as a teacher's interface, providing the input exam context, 

either as plain text or by uploading a document, the ability to select the question types and 

specify the number of questions to be generated as well as the individual settings for each 

question (type, difficulty, grade).  

 

5.2 Student interface 

Upon submitting this information by clicking the "Generate" button, the system creates exam 

questions which are then displayed within the UI, and depending on their type (e.g., essay, 

multiple-choice), appropriate HTML elements such as text boxes or radio buttons are 

dynamically rendered to create the exam paper. There are also basic instructions on how to 

answer, the grade of each individual questions and an error system, which is used to display 

appropriate messages in cases where failures might happen. The form is also validated via 

.NetCore. 

 

 

Figure 5: Exam generation 
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5.3 Printing the results 

Students complete the exam by submitting their answers. After submission, the system 

automatically processes the responses, evaluates them, and calculates a final grade based on 

Figure 6: Exam Paper 
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individual scores. It also provides an explanation for each answer and its corresponding grade 

within the given context. 

 

 

 

Figure 7: Exam results 
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6 .  E x p e r i m e n t a t i o n  

To achieve the optimal solution, each component of the system underwent extensive and 

rigorous testing with a variety of techniques and models to identify the most effective 

approach. Furthermore, metrics were systematically calculated for each part, to justify the 

selection of the best solution combining mathematical data with empirical analysis, ensuring 

that both theoretical evidence and practical performance were considered in determining the 

optimal method. Areas of experimentation followed the pattern of the system structure and 

were separated into QA generation, language detection and translation, as well as student 

assessment and grading techniques. 

 

6.1 Question – Answer systems 

To explore and determine the optimal solution for the question-answer generation 

subsystem, various NLP models were tested, each offering distinct strengths and limitations. 

The primary focus of the experimentation was centered on evaluating performance, cost-

efficiency, capacity for handling large contexts, language support and adaptability. These axes 

were critical in assessing how each model contributed to the goal of generating high quality 

exam questions while balancing computational efficiency and scalability.  

 

6.1.1 BERT and T5 

In testing, BERT [39] demonstrated strong performance in providing accurate answers to 

specific tasks, with its transformer-based architecture excelling at capturing intricate linguistic 

patterns, making it well-suited for question-answering tasks. However, a notable limitation of 

BERT was its restricted context length, capped at 512 tokens, significantly limiting its 

practicality in applications requiring extensive input processing, such as analyzing large texts 

or generating questions from broader contexts. 

The T5 (Text-to-Text Transfer Transformer) [19] model exhibited similar impressive 

capabilities in language understanding and generation, with its unified text-to-text framework 

enabling seamless handling of various NLP tasks and marking a significant advancement in 

transfer learning. Pre-trained on vast datasets and fine-tuned for downstream tasks, T5 

delivers robust performance across diverse applications, including question-answer 

generation, where the fine-tuned model variant "mrm8488/t5-base-finetuned-question-

generation-ap" [20], trained on the SQUAD v1.1 dataset [21], effectively produced high-

quality questions and answers. Despite these strengths, T5, much like BERT, was hindered by 

a token limit of 512, which significantly restricted its ability to process large bodies of text. 

The shared limitation between BERT and T5 had significant implications for the system's 

requirements, as both models struggled to handle extensive contexts—a critical necessity for 

generating exam questions from large datasets. Even with enhancements like Retrieval 

Augmented Generation (RAG), the token limit of these models remained a bottleneck and 
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while they excelled in their respective strengths, their inability to effectively manage large 

inputs ultimately undermined their viability for this application. 

 

Context splitting 

A potential solution to address the limited context length offered by the T5 and BERT models 

was to segment the context into smaller token batches and sequentially input them into the 

model. While this approach theoretically mitigated the context length constraint, it proved 

ineffective for larger contexts, as the model tended to become overloaded. Additionally, not 

all segments contained semantically rich or informative content sufficient for generating 

meaningful questions, resulting in an inefficient distribution of the input context. 

 

6.1.2 Open-AI models  

Open-AI offers a great variety of models suited to different needs, while providing a high level 

of accuracy, excellent language support and ease of use. Unfortunately, the lack of local 

system support and the expensive costs associated with their APIs, make them unaffordable 

for researchers and institutions that are not willing to pay for a dedicated exam generation 

system. 

 

GPT 4 

GPT- 4 has a context length of 32,000 tokens, while the turbo version offers a significant 

increase in context length making the model capable of processing context lengths up to 

128,000 tokens [36, 37]. The model also excels in performance across a wide range of general 

tasks and is well suited for tasks where high level of inference or creativity is required.  

Even though the turbo version is more than capable of being used instead of Llama for this 

part of the system, the primary limitation with OpenAI's GPT models stems from their 

substantial size, which exceeds the capacity of ordinary personal computers. Consequently, 

these models are not open source and only accessible through OpenAI’s API, a paid service 

that presents challenges for applications involving substantial amounts of contextual text or 

numerous requests. Retrieval Augmented Generation (RAG) can help by reducing the 

required context length and potentially enabling the inclusion of extensive material, but this 

approach remains costly and demands careful risk assessment to determine its viability for 

large scale systems. Furthermore, GPT-4 models have limited flexibility in fine-tuning, as they 

are provided in a fully pre-trained state and are not readily adaptable by third-party 

developers for custom tuning.  

The results from the ROUGE metric calculations reveal the following insights about the 

generated questions. For ROUGE-1, the average precision was calculated to be 4.43%, 

reflecting the degree of overlap in unigrams between the generated and reference text. The 

average recall was substantially higher at 66.73%, indicating a strong ability to capture 

relevant unigrams from the reference text. The F-measure for ROUGE-1, which balances 
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precision and recall, was relatively low at 8.4%, suggesting room for improvement in both 

precision and recall achieving a better balance. 

For ROUGE-L, which considers the longest common subsequences, the precision averaged 

3.82%, while the recall stood at 57.12%. This signifies a moderate ability to maintain the 

sequence of reference text. The F-measure was 7.16%, highlighting similar trends as in 

ROUGE-1. Finally, the semantic similarity between the generated and reference text averaged 

79.95%, indicating a reasonably high conceptual alignment, despite the low ROUGE scores. 

 

O1  

GPT O1 distinguishes itself through an optimized architecture that emphasizes enhanced 

contextual understanding and an extended memory capacity, allowing it to manage longer 

and more complex interactions effectively. Its design prioritizes efficient multi-step reasoning 

and precise content generation, ensuring that even intricate queries are addressed with 

clarity and depth.  

Just like its predecessor, O1 is constrained by prohibitively high operational costs that make 

it unsuitable for low-cost, small-scale applications such as exam creation systems. The testing 

and implementation of its pipeline alone requires a comprehensive cost analysis to ensure 

budget compatibility, while the model’s demand for advanced, specialized hardware and 

significant maintenance expenses further complicate its deployment in resource-limited 

environments. Additionally, the architectural complexity of O1 necessitates specialized 

expertise and results in prolonged development cycles, and when scaling the system, 

additional computational and infrastructural investments become necessary. The reliance on 

high-quality, extensive datasets introduces further financial and logistical challenges, 

compounding the overall cost and complexity of the system for small local applications. 

 

 

Figure 8: Pricing costs of individual OpenAI models 
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6.1.3 Deepseek-R1 

DeepSeek has introduced its first-generation reasoning models, DeepSeek-R1-Zero and 

DeepSeek-R1, utilizing reinforcement learning to achieve advanced reasoning capabilities. 

Notably, DeepSeek-R1 integrates cold-start data to enhance performance and address 

inherent limitations, ultimately matching or surpassing state-of-the-art benchmarks in 

reasoning, mathematics, and coding tasks. [40] 

Empirical and mathematical evaluations demonstrate that the model delivers performance 

comparable to OpenAI’s O1 model at merely one-eighth of the cost, albeit with a slightly 

reduced token processing speed. The model features a context length of 128,000 tokens, akin 

to LLaMA 3.1, enabling efficient processing of extensive textual data such as large books. 

However, the base model requires substantial computational resources, rendering it 

impractical for standard personal computers. Consequently, an 8-billion-parameter distilled 

variant derived from LLaMA 3.1 was tested as a more accessible alternative. [41] 

 

 

DeepSeek-R1-Distill-Llama-8B 

DeepSeek R1 distilled from Llama 8B [42] is a great alternative for using the DeepSeek model 

in a smaller scale, able to run on local computers with consumer-grade hardware. Distillation 

involves developing smaller, more efficient models from larger ones, maintaining most of 

their reasoning ability while lowering computational requirements. DeepSeek managed to 

produce a series of distilled, leveraging smaller parameter size Qwen and Llama architecture. 

 

Figure 9: DeepSeek-R1 model performance comparison 
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The primary version, DeepSeek-R1-Distill-Llama-8B, retains a context window of 128,000 

tokens while delivering performance comparable to that of Llama 3.1 8B. Comprehensive 

evaluations of various quantization techniques have demonstrated that the 8-bit integer 

configuration yields optimal performance on high-end personal computer systems. 

Empirical testing further indicates that, with an appropriately structured prompt, DeepSeek 

is capable of accurately interpreting input queries and generating improved responses. The 

model’s ability to provide reasoning and explanatory details during its inference process has 

proven particularly valuable. This feature aids in diagnosing misunderstandings inherent to 

the task, thereby facilitating more effective prompt fine-tuning. 

Additionally, DeepSeek exhibits efficient resource management, notably consuming less 

VRAM when processing shorter context inputs, while maintaining performance on par with 

Llama 3.1 for longer contexts. This efficiency not only benefits the processing of small plain 

text contexts but also contributes to the overall scalability of the system, allowing the use of 

heavier models running parallel with DeepSeek. 

Finally, the system’s capacity to comprehend previously generated content reduces the 

occurrence of duplicate questions, thereby streamlining the generation process and 

enhancing overall performance. 

Despite these benefits, a major drawback that rendered the model impractical is its limited 

language support, with only English and Chinese having sufficient results. This limitation 

greatly reduces its practicality regarding multilingual education environments 

 

Figure 10: DeepSeek-R1-Distill-Llama-8B model performance comparison 
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6.1.4 Llama 

Meta’s Llama models provide a great open-source alternative to proprietary large language 

models such as OpenAI's GPT and DeepSeek series. The Llama family of models, notably 

designed local implementation, offers extensive contextual windows which cater effectively 

to systems that process substantial and complex input.  

The open-source nature of Llama models ensures they are not only freely accessible but also 

highly adaptable for scientific and non-commercial applications, removing licensing 

constraints that often accompany commercial models.  By using Meta’s Llama, this system 

leverages both the flexibility and scalability required for dynamic exam generation on a high-

end personal computer.  

A variety of publicly available Llama model versions offer distinct capabilities, necessitating a 

systematic evaluation to identify the one best suited for optimal exam question generation.  

 

Llama 2-7B 

The Llama 2-7B model was not particularly suitable for this application simply by the fact it 

had a relatively insufficient sequence length of 4096 tokens [34]. Furthermore, empirical 

testing of the model as well as performance metrics showed that it struggled to always 

provide the desired results.  

The Llama-2-7B model required five iterative revisions to sufficiently understand the context 

and generate questions that aligned with the provided material. However, the generated 

questions exhibited relatively low precision, as reflected in a ROUGE-1 precision of 14.97% 

and a ROUGE-L precision of 20.75%, while the recall was considerably higher at 53.57%. This 

suggests that the model extracted large portions of the text verbatim rather than rephrasing 

or generating novel content. Additionally, the cosine similarity score of 50.62% indicates only 

moderate semantic alignment with the original context. These results highlight that while the 

model could identify relevant terms, the lack of specificity and depth in question formulation 

limited its effectiveness for exam generation. 

Llama 3-8B 

Llama 3 [35] comes with a sequence length of 8,192 tokens and even though again limited in 

its length, the performance of the model was evaluated to assess the quality differences with 

the Llama 2-7b version. 

The Llama-3-8B model demonstrated improved question generation capabilities compared to 

Llama-2-7B. Its ROUGE-1 precision of 51.50% and recall of 35.87% indicate that it effectively 

captures a substantial portion of relevant terms while maintaining moderate precision. The 

ROUGE-L precision (25.51%) and recall (16.61%) suggest that while the generated questions 

align structurally with the context, precision decreases for longer sequences. Additionally, the 

cosine similarity score of 68.86% reflects stronger semantic alignment, signifying that the 

model produces more coherent and contextually relevant questions. These results highlight 
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Llama-3-8B’s enhanced ability to generate well-formed and meaningful exam questions 

compared to its predecessor. 

Llama 3.1-8B 

During system development, the release of Llama 3.1 marked a significant advancement over 

the previous Llama 3 model, particularly through its extended context length, now reaching 

128,000 tokens. This increase enables Llama 3.1 to effectively manage extensive texts 

required for exam question generation. Additionally, performance assessments indicate 

notable enhancements in both semantic and contextual understanding over its predecessor. 

There is also the benefit of using 8 billion parameters, which means that with the utilization 

of the correct quantization depending on the system, the model can run on high-end personal 

computers. 

In terms of semantic alignment, Llama-3.1-8B demonstrates a notable improvement, 

achieving a cosine similarity of 78.57%, surpassing Llama-3-8B’s 68.86%. This increase 

suggests that Llama-3.1-8B more effectively captures the underlying meaning within a given 

context. Additionally, ROUGE-1 precision (48.01%) and recall (56.15%) show an increase over 

Llama-3-8B, indicating stronger term retrieval while maintaining contextual accuracy, while 

at the same time, the ROUGE-L precision (30.68%) and recall (35.88%) further reinforce this 

improvement in structural alignment. These results highlight that Llama-3.1-8B not only 

captures nuanced meaning more effectively but also enhances text alignment, making it 

particularly well-suited for exam question generation where semantic validity and accurate 

paraphrasing are crucial. 

Llama 3.2–3B 

Meta introduced a new iteration of its Llama model series, the Llama 3.2, engineered to 

provide a smaller, faster solution while maintaining both high context length capabilities and 

robust performance. Compared to its predecessor, Llama 3.1, the new model achieves a 

notable improvement in size and memory allocation, reflecting its balance between semantic 

accuracy and computational efficiency. 

Performance metrics indicate that Llama-3.2-3B achieved a ROUGE-1 precision of 49.03% and 

recall of 50.17%, demonstrating a balanced ability to retrieve relevant terms while 

maintaining contextual coherence. Compared to Llama-3.1-8B, which had 48.01% precision 

and 51.76% recall, Llama-3.2-3B exhibits a slight precision advantage but a minor recall trade-

off. Additionally, ROUGE-L precision (23.70%) and recall (24.25%) reflect a moderate 

structural alignment, though slightly lower than Llama-3.1-8B’s 30.68% precision and 35.88% 

recall. 

In terms of semantic alignment, Llama-3.2-3B achieves a cosine similarity score of 71.81%, 

lower than Llama-3.1-8B’s 78.57%, suggesting that while Llama-3.2-3B maintains solid 

structural accuracy, it may not capture semantic depth as effectively. This positions Llama-

3.2-3B as a model optimized for generating well-structured questions with a balance between 

precision and recall, while Llama-3.1-8B excels in deeper contextual understanding, making it 

potentially more suitable for exam question generation where nuanced meaning is critical. 
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Given Llama 3.2’s optimization for smaller systems and not providing the best precission, this 

model was not selected as the primary model for the exam question-answer generation 

system, as the main focus was to provide the best quality of generative text. 

 

Final Verdict 

Considering all these factors, Llama 3.1 was selected as the most suitable model and even 

though it may lack in certain areas compared to DeepSeek R1, as proven by the calculated 

metrics and empirical testing, the broader language support offered by the model made it a 

more practical choice for generating the questions and answers. 

 

Table 1: Model performance metrics 

 

 

Performance improvements 

While the system utilizing the Llama-3.1-8B model achieved satisfactory performance in the 

default setting specified by Llama, a significant issue persisted in the extensive time required 

for generating relevant exam questions and answers. For short contexts, the average 

processing time was approximately five minutes, while for longer contexts, the time increased 

exponentially, often resulting in CUDA memory limitations. 

 

Model ROUGE-1 

Precision 

ROUGE-1 

Recall 

ROUGE-1 

F-measure 

ROUGE-L 

Precision 

ROUGE-L 

Recall 

ROUGE-L 

F-measure 

Cosine 

Similarity 

(%) 

Llama 2-7B 14.97% 53.57% 9.09%  

20.75% 
 

10.22%  

15.36% 
 

50.62% 

Llama-3-

8B 

51.50%  

35.87% 
 

40.00%  

25.51% 
 

 

16.61% 
 

 

20.12% 
 

68.86% 

Llama-3.1-

8B 

48.01%  

56.15% 
 

51.76%  

30.68% 
 

35.88% 33.08% 78.57% 

Llama-3.2-

3B 

49.03% 50.17% 49.59%  

23.70% 
 

24.25% 23.97% 71.81% 

GPT-4o 4.4% 66.73% 8.4% 3.82% 57.12% 7.16% 79.95% 

DeepSeek-

R1-Distill-

Llama-8B 

34.29% 79.40% 47.9% 15.93% 36.88% 22.24% 82.26% 
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Quantization 

To further optimize processing efficiency without compromising quality, various quantization 

techniques were assessed. Initial trials with 4-bit quantization (Q4) substantially reduced 

generation time, as this adjustment proved to reduce the processing time for shorter and 

larger contexts with a compromise in output reliability and prompt understanding. To further 

increase generation precision, the 8-bit quantization mode (Q8) was tested with optimal 

results, increasing the quality of exam QA pairs with a minimum increase on processing time. 

Unfortunately, the 16GB of VRAM provided by a single Nvidia RTX 4080 super setup, was not 

sufficient to enough to allow the increase of quantization mode. The processing of tokens per 

second by the system was very slow for Llama-3.1-8B in 16-bit mode (FP16), because the 

model was constantly being offloaded to the CPU to counter the shortage of GPU memory 

and therefore the time required for analyzing the context and generating the QA pairs was 

increased drastically and often causing CUDA memory outages. As result, 8-bit quantization 

was proved to be the optimal solution, considering also the system requirements as 

calculated by Meta. [38] 

 

 

Figure 11: Llama 3.1 8B system specification and requirements 
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Table 2: Quantization performance 

 

 

6.1.5 Retrieval Augmented Generation 

To address the challenges of extensive context and to further optimize memory management, 

Retrieval-Augmented Generation (RAG) was implemented to condense the context by 

selectively prioritizing relevant content, becoming available when input contexts exceed 

2,500 characters and allowing the system to manage larger contexts more effectively by 

focusing the model’s context window on essential information. Minor preprocessing was also 

added to remove whitespaces found on different structures of the book (e.g. paragraphs, 

different chapters etc.). 

 

6.1.6 Randomizing the input 

A significant issue encountered during the development of the QA generation system was the 

repetitive generation of identical questions by Llama 3.1 from the provided context. This 

problem arose due to the system's reliance on a narrow selection of top tokens extracted 

from the context, which limited the diversity of the input data and consequently, set the 

model to generate questions with similar meaning in every iteration. As these repeated 

questions were flagged and rejected by the semantic similarity model, the system entered an 

infinite loop, continuously producing and declining the same questions. This redundancy 

highlighted a critical flaw in the context processing approach, where insufficient variation in 

the input constrained the model’s ability to generate diverse and meaningful outputs.  

To address this issue, additional parameters were introduced during the generation phase to 

enhance Llama 3.1's creativity when producing input. Parameters such as temperature and 

Top-K were fine-tuned to balance diversity and accuracy, as excessively high values led to 

over-generalization by the model. 

Bit 

Configuration 

Tokens 

Generated 

Time Taken 

(seconds) 

Tokens per 

Second 

Notes 

4-bit 84 4.09 20.52 Successful execution 

8-bit 103 20.11 5.12 Successful execution, better 

precision, more time to complete 

16-bit N/A N/A N/A Ran out of GPU VRAM 
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6.1.7 Prompt Engineering 

Prompt engineering serves as the foundational framework for ensuring the efficacy, precision, 

and pedagogical value of the automated question-generation system. Meticulously crafted 

prompts carefully designed through trial and error are essential for producing contextually 

relevant, instructionally sound, and technically robust outputs. 

Firstly, each prompt template explicitly defines task requirements to ensure alignment with 

pedagogical goals. For example, for essay questions the prompt mandates analysis of cause-

effect relationships or theoretical implications, steering the system away from superficial 

inquiries. Multiple-choice templates enforce the creation of plausible distractors rooted in 

common errors, ensuring diagnostic validity, while coding exercises require escaped code 

formatting and success criteria to balance technical rigor with usability. By embedding 

granular directives, such as avoiding duplicates or including context-specific code snippets 

prompts eliminate ambiguity and constrain outputs to the desired scope. 

Parameters such as Cutting Knowledge Date and Today Date ensure temporal relevance, 

critical in domains like programming where outdated practices may mislead learners and 

produce deprecated results. Difficulty levels tailor questions to target audiences, while 

duplication checks guarantee a diverse question bank, enhancing assessment reliability, 

further ensuring the system remains responsive to evolving educational needs and content 

updates. 

Strict JSON response formats are succeeded only by implementing the correct prompt 

instructions and standardizing outputs for integration into downstream applications, 

achieved by providing the system with examples of structured JSON objects, ensuring 

uniformity and interoperability with downstream tasks and reduced post-processing 

overhead.  

Furthermore, the modular prompt design supports extensibility and is the core of the 

system’s ability to handle contexts from different topics. Coding exercise templates, for 

example, could be adapted for multiple programming languages by modifying the structure 

and comparative analysis essay prompts could be repurposed for humanities or scientific 

contexts by updating the context variable, future-proofing the system against emerging 

educational demands and enabling multidisciplinary exam generation. 

 

6.1.8 Testing 

At the conclusion of the system’s development cycle, an extensive and meticulously planned 

testing phase was initiated. During this period, the program was rigorously evaluated by a 

diverse group of users drawn from various professional backgrounds. These evaluators, each 

representing distinct areas of expertise, were tasked with thoroughly testing the system’s 

functionalities and providing comprehensive feedback on its performance, usability, and 
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overall effectiveness by completing a questionnaire. The overarching goal of this phase was 

to ensure that the system met user expectations, both by the teacher and student sides. 

The results of this evaluation were overwhelmingly positive, with overall user satisfaction 

being reported as very high. A notable strength of the system was its robust ability to generate 

contextually relevant questions, demonstrated through the consistent production of 

questions that were not only appropriate to the context but also varied across multiple 

question types. The system’s design allowed it to seamlessly transition between different 

forms of questioning, ensuring that a wide spectrum of assessment scenarios could be 

accommodated from standard multiple-choice queries to more intricate open-ended formats. 

In addition to its question generation capabilities, the system demonstrated a high degree of 

precision in identifying correct answers. Evaluators observed that, in most cases, the system 

accurately pinpointed the correct responses, thereby reinforcing its utility as a reliable 

assessment tool. Furthermore, the system provided detailed feedback that enabled users to 

gain a deeper understanding of their assessments. This feedback mechanism not only clarified 

the rationale behind each evaluation but also served as a valuable learning aid for users, 

thereby enhancing the overall educational value of the system. 

Another noteworthy feature of the system was its method of partial grading. In instances 

where responses were partially correct, the system was able to allocate partial credit. This 

nuanced approach to grading was particularly beneficial in contexts and open-ended question 

types where binary right-or-wrong assessments might have been overly simplistic. 

Users also highlighted the practical benefits of the system in terms of time efficiency. Many 

reported that the system could significantly reduce the time they spent on routine exam 

building tasks, a feature that they found to be especially valuable in their daily professional 

activities. Considering these benefits, a substantial number of users expressed their intention 

to integrate the system into their regular workflows and were enthusiastic about 

recommending it to colleagues across various fields. 

Despite these strengths, users identified certain areas where improvements were necessary. 

One specific issue that emerged during testing was the occurrence of repetitive content in 

the generated question-answer pairs. These instances of redundancy, although infrequent, 

were significant enough to warrant attention. Subsequent investigations revealed that the 

unexpected repetitions were linked to the functioning of the Llama component within the 

system and limitations of context produced by RAG. This discovery prompted a series of 

targeted interventions aimed at resolving the issue, ensuring that future iterations would 

maintain a higher standard of content diversity and quality. 

During the evaluation, an additional limitation was identified: the system initially offered a 

limited variety of question types, particularly those focusing on the practical applications of 

contextual information. To address this shortfall, a new category of questions specifically 

designed to encompass coding exercises was introduced. This new question type was 

complemented by enhancements to the existing prompts, which were enriched with detailed 

instructions aimed at fostering practical application skills and promoting critical thinking. As 
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a result of these targeted improvements, the system now possesses the capability to detect 

topics related to programming and to generate corresponding coding exercises. 

Simultaneously, the traditional question types have been refined to deliver more practical 

outcomes, such as computing mathematical or programming problems and results in 

multiple-choice formats and thus providing users with a more robust and application-oriented 

assessment tool. 

 

6.2 Translation 

Translating the provided context into English or Greek posed a unique challenge. Specifically, 

certain terms within the context, often domain-specific or technical, were not intended to be 

translated and maintaining the integrity of such terms in their original language was crucial 

for ensuring both linguistic and semantic accuracy. 

 

6.2.1 Opus-mt-en-el and Opus-mt-grk-en 

The initial model assessed for this translation task was Helsinki-NLP/opus-mt-en-el [26]. 

Empirical evaluations demonstrated that, while the model effectively translated content into 

Greek in a manner that was comprehensible to native speakers, its performance revealed a 

critical shortcoming. Specifically, although the English translations generated by the model 

were sufficiently accurate for subsequent processing by Llama, a persistent issue was 

observed: the model frequently translated technical terms and domain-specific terminology 

that should have remained in English, thereby altering the original context. This inconsistency 

in terminology translation reduced both the accuracy and utility of the translated output for 

downstream tasks requiring precise technical language. 

Quantitative evaluation using the BLEU metric yielded a score of 64%, reflecting a moderate 

alignment with reference translations and while this metric indicates a reasonable degree of 

fidelity in translation, the inconsistencies in preserving technical terms underscore the need 

for further model fine-tuning or the incorporation of specialized post-processing steps, 

further complicating the system structure. 

A subsequent evaluation was conducted using opus-mt-grk-en [28], the Greek-to-English 

counterpart of the initial model. Although this model exhibited better overall performance 

compared to opus-mt-en-el, it still encountered challenges with terminology translation. The 

BLEU score for this model was 61%, indicating moderate alignment between its outputs and 

reference sentences and while it generally preserved the structure and meaning of the source 

text, inconsistencies in translating key technical terms were again evident. Such errors 

compromise the precision and clarity required for technical translations, particularly in 

specialized domains that exist in higher education. 
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6.2.2 Fine tuning Llama 3.1 

To address this issue, the idea of using Helsinki-NLP/opus-mt-en-el and opus-mt-grk-en was 

scraped and the new solution involved fine-tuning Llama 3.1 to enhance its ability to manage 

Greek-to-English and English-to-Greek translations while adhering to a specific guideline that 

scientific terminology should not be translated. This fine-tuning process required a robust and 

well labeled dataset to enable supervised training, ensuring the system could accurately 

comprehend and translate the given text. Llama was once again chosen due to its ability to 

process large contexts and to limit the number of diverse models used in the system. The sub-

dataset selected for this purpose was Helsinki-NLP/europarl/el-en [27], which comprises 1.29 

million conversations from the European Parliament, offering high-quality translations 

between Greek and English. 

The training process posed a distinct challenge. Training the Llama 3.1-8B model proved 

difficult on standard computing systems (AMD Ryzen 5 7600x, Nvidia RTX 4080 super, 32gb 

DDR5 RAM) and even on Google Colab's specialized environment (T4 GPU, high RAM 

configuration). Both setups frequently encountered CUDA memory limitations, resulting in 

repeated interruptions and an inability to complete the training process. To overcome this 

obstacle, the Alpaca Unsloth fine-tuning utility was employed [29]. This tool provided a 

streamlined and resource efficient approach to training, enabling the process to complete 

successfully and consequently, two specialized translation models for Greek-to-English and 

English-to-Greek were developed [23, 24]. 

Empirical evaluations of the fine-tuned models yielded promising results. Both systems 

effectively provided accurate translations for both languages while preserving most of the 

context-specific terminology in its original form. 

In this analysis, two distinct BLEU scores were obtained: 84% for the English to Greek system 

and 67% for the Greek to English. The score of 84% indicates a high degree of overlap between 

the predicted and reference translations, suggesting that the model closely approximates 

human translation for this specific instance. On the other hand, the score of 67%, while lower, 

still demonstrates an acceptable level of alignment between the prediction and references. 

 

 

Table 3: Blue scores of individual models 

Model Blue Scores Notes 

Helsinki-NLP/opus-mt-en-el 64% Demonstrated moderate 

translation accuracy but frequently 

mistranslated domain-specific 

terminology, reducing its suitability 

for technical tasks. 
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6.3 Answer validation 

In the answer validation subsystem, the primary objective is to measure the semantic 

divergence between a model-provided correct answer and the corresponding response given 

by a student. This process is essential to accurately evaluate the student's understanding 

relative to the expected answer. To achieve this goal, two cosine similarity models from the 

sentence transformer family were tested sentence-transformers/all-MiniLM-L6-v2 [31] and 

sentence-transformers/all-mpnet-base-v2. By leveraging these models, the system quantifies 

semantic alignment, offering an effective means for comparative assessment in student 

evaluation and grading.  

In overall performance evaluations across diverse tasks, metrics have demonstrated that 

sentence-transformers/all-mpnet-base-v2 [32] exhibits superior accuracy and reliability in 

delivering cosine similarity measures, compared to other models. Empirical analysis 

corroborates this conclusion, with all-mpnet-base-v2 showing a notably refined capacity to 

differentiate between responses with ambiguous or nuanced meanings. This model 

consistently produced mid-range cosine similarity values for such ambiguous cases, 

accurately reflecting the intended grading scale, while maintaining distinct high and low 

similarity scores for the most and least appropriate answers. In contrast, while all-MiniLM-L6-

v2 was reliable in assigning clear high or low values, it exhibited limitations in handling 

intermediate cases, as it sometimes assigned cosine similarity values that diverged from the 

nuanced evaluation a human assessor might provide, resulting in less precise alignment with 

human grading standards for responses with subtle semantic distinctions. 

To enhance the system's capability to evaluate student responses with greater precision, an 

additional processing step was incorporated. This involves utilizing a Named Entity 

Recognition (NER) model ‘’FacebookAI/xlm-roberta-large-finetuned-conll03-english’’ [33] to 

extract key entities and details from the text. By isolating and analyzing these elements, the 

system assigns individual scores to specific details within the response, thereby ensuring that 

the grading process remains highly context-aware and tailored to the nuances of the provided 

answers.  

Helsinki-NLP/ opus-mt-grk-en 61% Exhibited terminology 

inconsistencies, compromising 

technical precision. 

Fine-tuned Llama 3.1 (English- 

Greek) 

84% Achieved high translation accuracy, 

effectively preserving scientific and 

domain-specific terminology while 

closely approximating human 

translation quality. 

Fine-tuned Llama 3.1 (Greek – 

English) 

67% Delivered acceptable translation 

accuracy, preserving context and 

terminology, with minor mistakes. 
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7 .  F u t u r e  W o r k  

The future advancements in local Large Language Models (LLMs) hold transformative 

potential for the field of education, particularly in the domain of exam generation. A key 

challenge identified during this research was the implementation of a model capable of 

operating efficiently on standard personal computers while simultaneously offering a large 

context window and maintaining high-quality performance in specific natural language 

processing tasks. 

Recent developments in the field underscore the promise of achieving these goals. For 

instance, Meta’s ongoing enhancements to the Llama series, such as the anticipated release 

of Llama 3.3 with 70 billion parameters, aim to provide performance comparable to larger 

models like Llama 3.1 with 405 billion parameters. These innovations demonstrate how 

reducing parameter sizes while maintaining high performance can make LLMs more 

accessible to researchers and developers operating with limited computational resources. 

Future breakthroughs are likely, as major technology companies continue to focus on 

optimizing model sizes without compromising quality. 

Moreover, advancements in consumer-grade hardware, such as Nvidia's RTX 5000 series, 

particularly the RTX 5090 with 32 GB of VRAM, are poised to significantly enhance the ability 

to run larger models or maximize quantization configurations for smaller models, such as 

Llama 3.1 with 8 billion parameters while providing an affordable card able to fit in a high-

end personal computer. As hardware evolves, GPUs with greater memory capacities will likely 

align with the increasing demands of modern AI technologies, enabling more efficient 

processing of computationally intensive tasks. Nvidia has already demonstrated a clear focus 

on this trajectory, underscoring its commitment to supporting the next generation of AI 

applications. 

In addition to hardware improvements, ongoing efforts to develop more effective 

optimization techniques for existing models are noteworthy. Innovations such as Floating 

Point 8-bit (FP8) quantization are particularly promising, as for instance, the application of 

FP8 quantization to Llama 3.1 has shown potential to enhance the model’s performance to a 

level comparable to its 16-bit counterpart, effectively balancing efficiency with accuracy. 

Lastly, focusing specifically on educational applications, the creation and utilization of 

specialized datasets offer another avenue for improving the capabilities of LLMs. By fine-

tuning models with datasets tailored to educational contexts, researchers can achieve 

significant enhancements in generating high-quality question-answer pairs, calculating 

semantic similarity scores, and performing Named Entity Recognition. Such advancements 

could revolutionize automated exam generation and grading, providing scalable and efficient 

solutions for educators worldwide. 
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8 .  C o n c l u s i o n  

In conclusion, this research introduces an innovative approach to the development of an 

exam generation and grading system by leveraging state-of-the-art local Large Language 

Models (LLMs). The study emphasizes critical aspects, including context size, the quality and 

diversity of Question–Answer pairs generated by different systems, and the computational 

burden imposed on hardware resources. 

A significant part of this work involved employing advanced prompt engineering techniques 

to refine model outputs, ensuring the generation of accurate, diverse, and pedagogically 

aligned questions. Additionally, Retrieval-Augmented Generation (RAG) was integrated to 

address the challenge of processing large contexts. By semantically searching for relevant 

keywords and extracting focused paragraphs from larger datasets, RAG allowed the system 

to feed optimized inputs into the LLM, improving both performance and accuracy while 

reducing computational overhead. 

The research also expanded the language capabilities of local LLMs by fine-tuning the Llama 

model to perform English–Greek and Greek–English translation tasks effectively, further 

extending its applicability in multilingual educational settings. 

To ensure optimal performance, various models were empirically tested and evaluated using 

established metrics, allowing for the identification of the most efficient and effective 

solutions. Throughout this process, the main challenges were systematically identified, 

analyzed, and reported, including issues related to duplicate questions, large context 

handling, and computational efficiency. 

Furthermore, a novel formula was developed to assess students’ exam performance by 

integrating similarity and detail scores, utilizing advanced Natural Language Processing (NLP) 

techniques. This contribution enhances the grading process, ensuring a robust and equitable 

assessment system while demonstrating the transformative potential of LLMs in educational 

applications. 
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