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Abstract

The thesis investigates how the combined application of the SOLID principles and the GRASP
patterns can be used to produce robust C# software designs that remain maintainable, testable, and
extensible as systems evolve. A unified, principle-to-practice framework is presented in which
SOLID secures class- and component-level integrity while GRASP structures responsibilities and
collaborations at the architectural level. The approach is operationalized in the .NET ecosystem
through idiomatic refactorings—interface extraction, role-focused interface segregation, strategy-
based composition, and dependency inversion realized via dependency injection—so that variation
can be absorbed at stable seams owned by high-level policy. To move beyond stylistic guidance,
the work employs metric-guided evaluation and a cohesive C# case study representative of an e-
commerce workflow. Changes are validated using static and change-based indicators
(coupling/cohesion proxies, instability indices, files-touched per feature), along with test metrics
(coverage and mutation score). The results indicate that dependency boundaries defined and
verified at the policy layer localize change, reduce “shotgun surgery,” and enable faster, more
reliable testing through mocks and contract tests; extension by addition is favored over risky edits,
and architectural refactoring becomes safer. Contributions include: (i) a mapped correspondence
between SOLID and GRASP that clarifies when and how to apply each; (ii) a refactoring playbook
tied to expected metric movement; (iii) case studies demonstrating end-to-end impact in C#; and
(iv) pedagogical scaffolding suitable for studio-style instruction. Limitations are noted regarding
external validity across real-time or resource-constrained domains and the use of proxy metrics for
maintainability. Future work is outlined for principle-aware analyzers, boundary verification in
continuous integration, broader multi-team replication, and curriculum-ready case libraries, with

the aim of turning design principles into repeatable, measurable engineering practice.



[TepiAnyn

H mapodca duthopotiky epyacio diepevvd TS 0 cuvovaoHos Tov apy®v SOLID kot tov
npotuntwv GRASP propel va ypnoiponomOei yio tnv mopaymyr avOekTikdv oyedimv AOYIGUIKOD
oe C#, ta omoia mapopévouv cuvinpnoilpa, eAEYEL0 Kol ETEKTAGILO KOOMG TO. GLCTHUOTO
eEelocovtat. [Tapovoidleton éva evomompévo mhaictlo amd 1 Bewpio oty Tpa&n, 6to omoio ot
apyés SOLID drac@arilovy v akepodTNTO GE EMIMESO KAAGNG KOl GUVIGTAOGOS, EVA TO TPOTLTN

GRASP opyavdvovy Tig e00HVES Kot TIG GUVEPYUGIEG GE OPYITEKTOVIKO EMITEDO.

H npocéyyion vionoteitar oto owkoovotnuo .NET péom drotvmikdv avadounocewmv (refactorings),
omwg efaywyn OlEmoQOV, OloympPcpds demapmv Pdoet poAwv, ohvleon pECH TPOTHI®V
oTPATNYIKNG Kot avtiotpoen e&dptnong péow dependency injection, étol @ote 1 ToOKIAO VoL

amoppoPdtol o 6Tafepd onpeior EAEYYOV TOL OVIIKOLV GTNV OVATEPT] TOALTIKT] TOV GLGTHUATOG.

[No va vtepPel to emimedo ™ omANG 6TLAICTIKNG KaBod1ynong, 1 epyacia epapuoletl a&loAdynon
pe Baon petpucés Kot Tapovctdlet o cuvoyn nekét nepintwong oe C#, avTimpooOmEVTIKY £VOG
NAexTpovikoy gumopkod oevopiov (e-commerce workflow). Ot adhayég emcvpdvovtar pEcm
OTOTIKOV KOl QUVAUIKAOV OEIKTOV (TANpeEoVTieg HETPIKES GVLEVENG/GLVOYNG, OEIKTEG aoTAOEL0C,
aplOuog apyeiov Tov TPOTOTOOVVTAL OVA AEITOVPYi), KOOMS Kol UETPIKAOV SOKIU®V (KAAvy™

KOO kot fodpog petdAhaéng).

To amotedéopata deiyvouv Oti ta Op1a eEAPTNONG, OTMS opilovTal Ko emaAnBevovTol 6To eninedo
TOMTIKNG, TOTIKOTOLOVV TIG OAAQYEG, LELOVOVY TO POIVOUEVO TNG “YELPOVPYIKNG UE KapouTiva”
(shotgun surgery) kot emitpémovv TobTEPO Kot o 0E0mIcoTo EAeyyo HES® MOCKS Kot SOKImV
ovpPoiaiov (contract tests): m eméktaon HEC® TPOGHNKNG TPOTIHATAL EVOVTL EMKIVOLVOV

TPOTOTOCEMV, KO 1] OPYITEKTOVIKT] aVAOOUN oY KOBIoTOTOL AGQOAAESTEPT.
O1 ovvelopopéc mepthappdvovv:

Q) évav avtiotorgopévo yapt peta&d SOLID kot GRASP mov amocoaenvilel mote kot
TG epappdletar kdbe apyn:
(i)  éva eyyepidlo avodoOpUNGEDY GUVIESEUEVO LE TNV OVOUEVOUEVT] LETAPOAN LETPIKOV

(iii)  peléreg mepintwong TOL ATOSEIKVHOVV TOV OAMGTIKO ovTikTumo og CH# kot



(iv)  daktikd VAMKO KOTOAANAO Yo Swdookorio TOTOL gpyactnpiov (Studio-style
instruction).

Avayvopilovtar mepropiopol 66ov apopd v eEOTEPIKN £YKLPOTNTA GE TOUEIG TPOUYUATIKOV
YPOVOL 1M HE TEPLOPIGUEVOLG TOPOVG, KABMS Kol oTn ¥pNomn EUUECHOV UETPIKAOV Yo, TN
ocvvinpnootnta. Télog, mpoteivetar HEALOVTIKY €pyacia Yo OVOAVTEG gvaoONTOTOUEVOLG
otic apyéc oyediaonc, emoAnbevon opiwv oe ocuvveyny oAokAnpwon (continuous integration),
evpliTEPN EMAVOANYILOTNTA GE TOALOUAOIKA TEPPAALOVTO Kol EKTOOEVTIKEG PrAo01Keg
LEAETAOV TTEPIMTOONG, LUE GTOYO TN LETOTPOTN TOV APYDOV GYEIOONG OE EXAVOAYILY, LETPACIUN

UNOVIKT] TPOKTIKTY).
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Chapter 1
Introduction

1.1 Background and Motivation

Modern software systems are embedded in nearly every facet of contemporary society. From e-
commerce platforms powering global trade to mobile applications shaping individual daily habits,
and from mission-critical enterprise resource planning (ERP) systems to the cloud-native services
that orchestrate international communication, software today serves as the foundational
infrastructure of economic and social activity. This ubiquity, however, is accompanied by an
inherent complexity: as systems evolve to meet rapidly shifting requirements, developers are
confronted with challenges of scale, maintainability, and long-term adaptability.
The central paradox of software engineering is that software must both change continuously and
remain stable. Customers and organizations demand new features, integrations, and compliance
with shifting legal or security landscapes. Yet at the same time, stakeholders expect that existing
functionality—already validated and deployed—uwill remain dependable. The tension between
changeability and reliability is the enduring challenge of software design. Without clear
architectural guidance, codebases often devolve into brittle collections of patches. Technical debt
accumulates; onboarding of new team members slows; testing costs rise; and, ultimately,
organizations lose confidence in their ability to evolve their systems safely.
To counteract this tendency, the software engineering community has, over decades, distilled
experiential wisdom into design principles. These principles are not recipes or rigid blueprints,
but rather heuristics and guidelines that capture recurring insights about what makes code resilient
to change. Among the most widely recognized families of such principles are SOLID and
GRASP.

e The SOLID principles, popularized by Robert C. Martin in the early 2000s, crystallize

five core guidelines for object-oriented software:
o Single Responsibility Principle (SRP): a class should have only one reason to

change.
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o Open/Closed Principle (OCP): entities should be open for extension but closed
for modification.

o Liskov Substitution Principle (LSP): subtypes must be substitutable for their base
types.

o Interface Segregation Principle (ISP): clients should not be forced to depend on
methods they do not use.

o Dependency Inversion Principle (DIP): high-level modules should depend on
abstractions, not on details.

e The GRASP patterns (General Responsibility Assignment Software Patterns), introduced
by Craig Larman in the late 1990s, complement SOLID by offering heuristics for assigning
responsibilities in a way that balances cohesion and coupling across the system:
Information Expert, Creator, Controller, Low Coupling, High Cohesion, Polymorphism,
Indirection, Pure Fabrication, and Protected Variations.

While SOLID emphasizes class-level design integrity, GRASP emphasizes responsibility
assignment at the system level. Taken together, they provide a complementary methodology:
SOLID ensures that individual modules remain cohesive and safe to evolve, while GRASP ensures
that the interactions between modules remain intelligible, decoupled, and balanced.

The motivation for combining these two families is twofold. First, software teams in industry
frequently struggle when principles are applied in isolation. A system that is “SOLID-compliant”
in terms of class design may still suffer from poorly distributed responsibilities, while a GRASP-
compliant responsibility assignment may falter if the resulting classes do not respect SRP, OCP,
or LSP. Second, the empirical evidence from both academia and industry suggests that systems
designed with attention to both modularity and responsibility assignment exhibit measurably
better maintainability, testability, and evolvability. This dual perspective therefore offers
practitioners not only theoretical elegance but also pragmatic resilience.

The context of this thesis is the C# and .NET ecosystem, which provides an ideal arena for
exploring these principles. C# offers rich support for object orientation, generics, interfaces,
reflection, and language-integrated query (LINQ), while the .NET ecosystem provides powerful
frameworks for dependency injection, test automation, and architectural layering. Furthermore,

NET is widely used in enterprise settings, where long-lived systems must evolve safely over years

- 1-24 -



or even decades. By grounding the discussion in idiomatic C# examples, this work ensures that
the principles are not abstract slogans but are concretely applicable to modern industrial practice.
Finally, the relevance of this work extends beyond industry. In the academic domain, teaching
design principles is essential for cultivating students’ ability to think critically about architecture
rather than only about coding syntax. Experience shows that graduates who can reason about
maintainability, testability, and extensibility are better prepared for professional practice. By
providing C#-based demonstrations of SOLID and GRASP in action, this thesis aims to contribute

also to pedagogy, offering students concrete bridges between design theory and coding practice.

1.2 Research Problem and Rationale

Although both SOLID and GRASP have been widely taught and cited in literature, their combined
application has rarely been systematized in a way that provides actionable guidance. Instead,
practitioners often encounter fragmented advice: tutorials on SOLID without reference to
responsibility assignment, or GRASP discussions without consideration of how to enforce design

contracts. This fragmentation leads to two problems.

First, teams may implement principles superficially. For example, a developer might create
multiple interfaces to “satisfy” ISP but fail to map those interfaces to actual responsibilities in the
domain, creating artificial fragmentation without genuine decoupling. Similarly, a team may adopt
GRASP’s Information Expert but overlook that the resulting class has accumulated too many
reasons to change, violating SRP. Without integration, principles risk being applied mechanically
rather than thoughtfully.

Second, tooling support remains asymmetric. Static analysis tools such as SonarQube or NDepend
can flag probable SOLID violations—Iarge classes, deep inheritance hierarchies, unused interface
members—nbut there is little automated support for detecting GRASP misapplications. This gap
can leave responsibility assignment largely in the realm of subjective judgement. A unified
framework that clarifies how SOLID and GRASP interrelate could therefore empower both

better human decision-making and more targeted tool support.

The rationale of this thesis is that by mapping each SOLID principle to relevant GRASP
patterns, a systematic methodology emerges. This methodology provides not only diagnostic
power—helping teams recognize when a design is drifting—but also prescriptive guidance,
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suggesting concrete refactoring strategies grounded in both families of principles. By embedding

these mappings in C# examples, the thesis demonstrates how violations can be recognized, how

refactorings can be conducted incrementally, and how the resulting design can be explained both

in theoretical and practical terms.

1.3 Research Objectives

The objectives of this thesis can be articulated across three complementary dimensions: theoretical,

analytical, and practical.

131

1.

1.3.2

1.3.3

Theoretical Objectives

Synthesize foundations by surveying the origins and rationales of both SOLID and

GRASP, highlighting their conceptual alignments and differences.

Clarify design intent by examining how principles have been historically interpreted in

both academic and industrial contexts.

Extend understanding by arguing for the synergy of the two families, showing that

SOLID refines local correctness while GRASP ensures global balance.

Analytical Objectives

Identify anti-patterns in C# code that correspond to violations of SOLID and GRASP

principles.

Measure violations using static analysis metrics such as LCOM, RFC, coupling indices,

and change frequency analytics.

Evaluate trade-offs by distinguishing between objective indicators (metrics, tool

warnings) and subjective factors (domain semantics, performance constraints).

Practical Objectives

Demonstrate refactorings by providing step-by-step C# examples that transform flawed

code into principle-compliant design.

Map refactorings to GRASP so that each code change can be justified not merely in terms

of syntax but also in terms of responsibility assignment.
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3. Validate through a case study by refactoring a small e-commerce module iteratively,

applying multiple principles in concert.

4. Explore advanced principles—Interface Segregation, Dependency Inversion, and
Dependency Injection—to illustrate how they secure large-scale maintainability and

testability.

By fulfilling these objectives, the thesis aims to deliver both scholarly insight and practical

utility.
1.4 Contribution of the Thesis

This work contributes in several ways:

e An integrated framework: a systematic mapping of SOLID principles to GRASP
patterns, showing how class-level correctness and system-level responsibility assignment

reinforce each other.

o Refactoring playbooks: step-wise examples in idiomatic C#, each demonstrating how to

resolve specific violations and how to justify the changes with design principles.

e Metric-guided analysis: demonstrations of how code metrics and version-control
analytics can be used to diagnose violations objectively, while still allowing for subjective

judgement.

o Case study evidence: a realistic e-commerce module that demonstrates the iterative
application of principles, making the benefits concrete in terms of reduced complexity,

improved testability, and enhanced extensibility.

o Pedagogical value: an accessible yet rigorous treatment of design principles tailored for

final-year Informatics students and practitioners alike.

1.5 Thesis Structure

The remainder of the thesis is organized to progress from foundations to principle-specific analyses
and, finally, to synthesis and outlook.
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Chapter 2 presents the literature review, where the SOLID principles and the GRASP patterns are
surveyed and their emerging synergy across academic, educational, and industrial settings is
summarized. Attention is drawn to the differing levels of tool support and to the role of empirical

evidence in motivating an integrated stance.

Chapter 3 establishes the foundational mechanisms behind dependencies, which serve as the
connective tissue of object-oriented systems. Dependencies are examined along four orthogonal
axes so that later principle chapters can refer to a common vocabulary and set of trade-offs. First,
the type of dependency is catalogued (inheritance/generalization, association/aggregation,
composition, delegation, parameter-level/usage-only, and dynamic/reflective links). Second, the
abstractness of the dependency reference is analyzed (concrete classes, abstract classes,
interfaces, delegates/callbacks, and dynamic typing or reflection), emphasizing how higher
abstraction levels alter substitutability and coupling. Third, the creation timing and instantiation
mechanisms are compared (direct new, constructor injection, factory and static factory methods,
service locator, container-based binding/configuration, and reflection-based activation), with
attention to how each choice shifts binding time, flexibility, and operational risk. Fourth, the span
and depth of dependency chains are characterized (horizontal collaborations among peers versus
vertical call chains across layers), together with their implications for modularity, cohesion, and
SRP. A unifying synthesis closes the chapter by relating these axes to GRASP (Low Coupling,
Indirection, Protected Variations) and to SOLID (especially OCP and DIP), so that subsequent
chapters can ground refactorings in dependency mechanics rather than slogans.

Chapter 4 addresses the Single Responsibility Principle (SRP), relating responsibility cohesion
to GRASP’s Information Expert and Pure Fabrication, and balancing objective indicators (e.g.,
cohesion and usage metrics) with necessary semantic judgement; a practical workflow for

evidence-guided cohesion refactoring is provided.

Chapter 5 develops the Open/Closed Principle (OCP), mapping openness to GRASP strategies
(Protected Variations, Polymorphism, Indirection, Pure Fabrication), pairing change-proneness
and instability measures with a refactoring playbook that realizes extension by addition rather than

risky edits.
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Chapter 6 treats the Liskov Substitution Principle (LSP), focusing on behavioral contracts and
substitutability hazards, and shows how precise specifications and tests preserve trust in extension

hierarchies.

Chapter 7 examines the Interface Segregation Principle (ISP), arguing for client-specific
contracts to reduce coupling, aligning with GRASP’s Low Coupling and High Cohesion, and
providing a stepwise method from “fat” to focused interfaces.

Chapter 8 presents the Dependency Inversion Principle (DIP) and its realization via
Dependency Injection, showing how abstractions owned by policy localize change and enable
reliable testing; links to GRASP’s Indirection and Protected Variations are made explicit.

Chapter 9 offers Conclusions, Limitations, and Future Work, synthesizing the contributions,

reflecting on scope and validity, and outlining avenues for tooling, empirical replication, and

pedagogy.
1.6 Significance of the Work

The significance of this thesis lies not only in its theoretical synthesis but also in its pragmatic
orientation. By bridging SOLID and GRASP within a unified framework, it responds to a gap in
both scholarship and practice. By grounding the discussion in C#, it ensures relevance to a major
industrial ecosystem. By coupling analysis with refactoring playbooks, it transforms principles
into actionable routines. Finally, by including metrics and case study validation, it demonstrates

that design principles are not abstract ideals but measurable and beneficial practices.

In an era where software complexity continues to rise and development teams are under relentless
pressure to deliver rapidly while maintaining quality, principles that foster robust, evolvable, and
understandable design are not luxuries—they are necessities. This thesis therefore positions
SOLID and GRASP not as competing alternatives but as complementary facets of a comprehensive
design methodology that can equip students, practitioners, and researchers alike to meet the

challenges of contemporary software engineering.
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