NANEMIZTHMIO
NMEAONMONNHIOY

University of the Peloponnese

YXXOAH OIKONOMIAX KAI TEXNOAOTITAX
TMHMA ITAHPO®OPIKHX KAI THAEHIKOINQNIQN
IL.M.X. XTHN EINIXTHMH YIIOAOTI'TXTQN

Awthopatikn Epyocia

A SOLID Grasp of C# Design: Principles,
Refactoring, and a Case-Driven Approach

Angeliki Freskou
Reg. no.: 2022201802032

Supervisor: Costas Vasilakis

Tripolis, October 2025

Copyright
Copyright © Angeliki Freskou, 2025. All rights reserved.

No part of this thesis may be reproduced, stored, or transmitted in any form or by
any means, electronic, mechanical, photocopying, or otherwise, without prior
written permission of the author.

Optional University permission clause:

Permission is granted to the University of the Peloponnese to reproduce and
distribute this thesis, in whole or in part, for non-commercial, research and
educational purposes, provided that the author and source are acknowledged.

-1-3-

Acknowledgements

This work could not have been completed without the guidance and support of many people.
Sincere thanks are extended to Professor Vassilakis for his confidence in this endeavor and for
the clear direction and constructive criticism that shaped the research into its final form. His trust

in the project and steady mentorship were invaluable at every stage.

Appreciation is also expressed to the staff of the Department of Informatics and
Telecommunications at the University of the Peloponnese for the knowledge, resources, and

academic environment that enabled steady growth as an engineer and researcher.

Finally, heartfelt thanks go to family and friends for their patience, motivation, and
encouragement throughout this journey. In particular, deepest gratitude is owed to my husband,
Grigoris Dimitroulakos, whose unwavering support and understanding sustained me during the
most demanding periods. His belief in me provided constant strength and renewed determination

to reach this goal.

Abstract

The thesis investigates how the combined application of the SOLID principles and the GRASP
patterns can be used to produce robust C# software designs that remain maintainable, testable, and
extensible as systems evolve. A unified, principle-to-practice framework is presented in which
SOLID secures class- and component-level integrity while GRASP structures responsibilities and
collaborations at the architectural level. The approach is operationalized in the .NET ecosystem
through idiomatic refactorings—interface extraction, role-focused interface segregation, strategy-
based composition, and dependency inversion realized via dependency injection—so that variation
can be absorbed at stable seams owned by high-level policy. To move beyond stylistic guidance,
the work employs metric-guided evaluation and a cohesive C# case study representative of an e-
commerce workflow. Changes are validated using static and change-based indicators
(coupling/cohesion proxies, instability indices, files-touched per feature), along with test metrics
(coverage and mutation score). The results indicate that dependency boundaries defined and
verified at the policy layer localize change, reduce “shotgun surgery,” and enable faster, more
reliable testing through mocks and contract tests; extension by addition is favored over risky edits,
and architectural refactoring becomes safer. Contributions include: (i) a mapped correspondence
between SOLID and GRASP that clarifies when and how to apply each; (ii) a refactoring playbook
tied to expected metric movement; (iii) case studies demonstrating end-to-end impact in C#; and
(iv) pedagogical scaffolding suitable for studio-style instruction. Limitations are noted regarding
external validity across real-time or resource-constrained domains and the use of proxy metrics for
maintainability. Future work is outlined for principle-aware analyzers, boundary verification in
continuous integration, broader multi-team replication, and curriculum-ready case libraries, with

the aim of turning design principles into repeatable, measurable engineering practice.

[TepiAnyn

H mapodca duthopotiky epyacio diepevvd TS 0 cuvovaoHos Tov apy®v SOLID kot tov
npotuntwv GRASP propel va ypnoiponomOei yio tnv mopaymyr avOekTikdv oyedimv AOYIGUIKOD
oe C#, ta omoia mapopévouv cuvinpnoilpa, eAEYEL0 Kol ETEKTAGILO KOOMG TO. GLCTHUOTO
eEelocovtat. [Tapovoidleton éva evomompévo mhaictlo amd 1 Bewpio oty Tpa&n, 6to omoio ot
apyés SOLID drac@arilovy v akepodTNTO GE EMIMESO KAAGNG KOl GUVIGTAOGOS, EVA TO TPOTLTN

GRASP opyavdvovy Tig e00HVES Kot TIG GUVEPYUGIEG GE OPYITEKTOVIKO EMITEDO.

H npocéyyion vionoteitar oto owkoovotnuo .NET péom drotvmikdv avadounocewmv (refactorings),
omwg efaywyn OlEmoQOV, OloympPcpds demapmv Pdoet poAwv, ohvleon pECH TPOTHI®V
oTPATNYIKNG Kot avtiotpoen e&dptnong péow dependency injection, étol @ote 1 ToOKIAO VoL

amoppoPdtol o 6Tafepd onpeior EAEYYOV TOL OVIIKOLV GTNV OVATEPT] TOALTIKT] TOV GLGTHUATOG.

[No va vtepPel to emimedo ™ omANG 6TLAICTIKNG KaBod1ynong, 1 epyacia epapuoletl a&loAdynon
pe Baon petpucés Kot Tapovctdlet o cuvoyn nekét nepintwong oe C#, avTimpooOmEVTIKY £VOG
NAexTpovikoy gumopkod oevopiov (e-commerce workflow). Ot adhayég emcvpdvovtar pEcm
OTOTIKOV KOl QUVAUIKAOV OEIKTOV (TANpeEoVTieg HETPIKES GVLEVENG/GLVOYNG, OEIKTEG aoTAOEL0C,
aplOuog apyeiov Tov TPOTOTOOVVTAL OVA AEITOVPYi), KOOMS Kol UETPIKAOV SOKIU®V (KAAvy™

KOO kot fodpog petdAhaéng).

To amotedéopata deiyvouv Oti ta Op1a eEAPTNONG, OTMS opilovTal Ko emaAnBevovTol 6To eninedo
TOMTIKNG, TOTIKOTOLOVV TIG OAAQYEG, LELOVOVY TO POIVOUEVO TNG “YELPOVPYIKNG UE KapouTiva”
(shotgun surgery) kot emitpémovv TobTEPO Kot o 0E0mIcoTo EAeyyo HES® MOCKS Kot SOKImV
ovpPoiaiov (contract tests): m eméktaon HEC® TPOGHNKNG TPOTIHATAL EVOVTL EMKIVOLVOV

TPOTOTOCEMV, KO 1] OPYITEKTOVIKT] aVAOOUN oY KOBIoTOTOL AGQOAAESTEPT.
O1 ovvelopopéc mepthappdvovv:

Q) évav avtiotorgopévo yapt peta&d SOLID kot GRASP mov amocoaenvilel mote kot
TG epappdletar kdbe apyn:
(i) éva eyyepidlo avodoOpUNGEDY GUVIESEUEVO LE TNV OVOUEVOUEVT] LETAPOAN LETPIKOV

(iii) peléreg mepintwong TOL ATOSEIKVHOVV TOV OAMGTIKO ovTikTumo og CH# kot

(iv) daktikd VAMKO KOTOAANAO Yo Swdookorio TOTOL gpyactnpiov (Studio-style
instruction).

Avayvopilovtar mepropiopol 66ov apopd v eEOTEPIKN £YKLPOTNTA GE TOUEIG TPOUYUATIKOV
YPOVOL 1M HE TEPLOPIGUEVOLG TOPOVG, KABMS Kol oTn ¥pNomn EUUECHOV UETPIKAOV Yo, TN
ocvvinpnootnta. Télog, mpoteivetar HEALOVTIKY €pyacia Yo OVOAVTEG gvaoONTOTOUEVOLG
otic apyéc oyediaonc, emoAnbevon opiwv oe ocuvveyny oAokAnpwon (continuous integration),
evpliTEPN EMAVOANYILOTNTA GE TOALOUAOIKA TEPPAALOVTO Kol EKTOOEVTIKEG PrAo01Keg
LEAETAOV TTEPIMTOONG, LUE GTOYO TN LETOTPOTN TOV APYDOV GYEIOONG OE EXAVOAYILY, LETPACIUN

UNOVIKT] TPOKTIKTY).

Table of contents

Acknowledgements 1-4
Abstract 1-5
Hepiinyn 1-6
Table of contents 1-8
Table of Figures 1-14
Index of Tables 1-22
Chapter 1 Introduction 1-23
11 Background and Motivation 1-23
1.2 Research Problem and Rationale 1-25
13 Research Obijectives 1-26
1.3.1 Theoretical Objectives 1-26

1.3.2 Analytical Objectives 1-26

1.3.3 Practical Objectives 1-26

14 Contribution of the Thesis 1-27
15 Thesis Structure 1-27
1.6 Significance of the Work 1-29
Chapter 2 Literature Review 2-30
2.1 SOLID Principles 2-30
2.2 GRASP Patterns 2-31
2.3 Synergy of SOLID Principles and GRASP Principles 2-32
2.3.1 Academic Research 2-33

2.3.2 Educational Practices 2-34

2.3.3 Industrial Applications 2-34

2.3.4 Tooling and Case Studies 2-35
Chapter 3 Foundational Mechanisms Behind Dependencies 3-38
3.1 Type of Dependency, 3-38

3.11
3.1.2
3.1.3
3.14
3.15
3.1.6
3.1.7

3.2
3.2.1
3.2.2
3.2.3
3.24
3.25
3.2.6

3.3
33.1
3.3.2
3.3.3
3.34
3.3.5
3.3.6
3.3.7

3.4
341
3.4.2
3.43

3.5

Chapter 4

4.1

4.2

4.3
431
4.3.2
4.3.3

Abstractness of the Dependency Reference

Creation Timing and Instantiation Mechanisms

Span and Depth of Dependency Chains

Unifying the Four Axes for SOLID/GRASP Design

SRP Violation Example
SRP to GRASP Mapping

The Objective vs. Subjective Nature of SRP

Inheritance (Is-a Relationship)

3-39

Association (Has-a Relationship)

3-41

Composition (Whole-Part Ownership)

3-43

Delegation (Object-to-Object Indirection)

3-46

Dependency Through Parameters (Transient Association)

Dynamic and Reflective Dependencies

3-48

3-49

Summary of Dependency Types

3-52

3-53

Dependency on a Concrete Class

3-53

Dependency on an Abstract Class

3-55

Dependency on an Interface

3-57

Dependency via Delegates (Function Pointers/Callbacks)

Dynamic Typing / Reflection as Abstraction

3-60

3-62

Summary of dependencies’ Abstraction Levels

3-64

3-66

Direct Instantiation with new

3-66

Constructor Injection

3-68

Factory Pattern (and Static Factory Methods)

3-70

Service Locator

3-72

Configuration and Container-Based Binding

3-74

Reflection-Based Activation (Activator, etc.)

3-77

Summary of creation mechanisms

3-78

3-79

Horizontal Dependency Paths

3-79

Vertical Dependency Chains

3-82

Impact on Modularity, Cohesion, and SRP

3-86

3-88

Single Responsibility Principle

4-94

4-95

The LCOM metric

4-102

4-104
4-106

The TCC/LCC metric

4-108

Tackling the problem of false positive cohesion

4-111

-1-9 -

434
435
4.3.6
4.3.7
438
439

4.4

5.1

5.2

53

5.4
54.1
54.2
543
5.4.4
5.4.5

5.5
5.5.1
5.5.2
5.5.3
5.5.4
5.5.5
5.5.6

5.6
5.6.1
5.6.2
5.6.3
5.6.4
5.6.5

The RFC metric 4-112
\ersion-control change-frequency analytics 4-116
Semantic judgement: what counts as a “responsibility” 4-117
Domain-specific trade-offs 4-117
Best-practice trio: combine metrics, build consensus, honour context 4-118

A Real-World Workflow for Cohesion and Hotspot Metrics 4-119
Bringing It All Together: Operationalising SOLID and GRASP through SRP 4-120
Chapter 5 Open Closed Principle 5-122
Relationship Single Responsibility Principle 5-122
Why OCP still matters 5-123
OCP Violation Example 5-124
Open/Closed Principle < GRASP Mapping 5-130
Protected Variations Pattern 5-131
Polymorphism Pattern 5-132
Indirection Pattern 5-134
Pure Fabrication 5-137
Synthesis 5-140
The Objective vs Subjective Nature of the Open/Closed Principle 5-141
Change-Proneness & Rigidity Metrics 5-141
Afferent/Efferent Coupling & Instability 5-146
Abstractness (A) and the Stable-Abstractions Principle (SAP) Zone 5-147
Static Analysis Rules & Code-Smell Heuristics 5-148
Domain-Driven Trade-offs 5-148
Synthesis—Objective and Subjective in Dialogue 5-149
Refactoring Playbook — From Rigid to Open 5-150
Extract Superclass / Interface 5-152
Introduce Strategy / Policy Injection. 5-153
Factory & Registration (GRASP Creator) 5-153
Template Method versus Hooks 5-154
Packaging & DI Container Setup 5-155

5.6.6
158

5.7

Bringing It All Together — Operationalising SOLID + GRASP through the Open/Closed Principle 5-

Synthesis

5-164

- 1-10 -

Chapter 6 Liskov Substitution Principle (LSP)

6.1 Definition and Theoretical Foundations of LSP

6-166

6-166

6.2 LSP as a Pillar of Polymorphism and Protected Variations

6-169

6.3 Recognizing LSP Violations: Common Examples and Anti-Patterns

6-171

6.3.1 Strengthening Preconditions

6-172

6.3.2 Weakening Postconditions

6-174

6.3.3 Violating Invariants

6-176

6.3.4 Changing Expected Behavior

6-177

6.3.5 Throwing Unexpected Exceptions

6-179

6.3.6 Narrowing Acceptable Input or Output Types

6-181

6.3.7 Ignoring or Misusing the Base Contract

6-194

6.3.8 Conflating Capabilities in a Single Type — Forced Downcasts at Call Sites

6-196

6.3.9 Synthesis

6-198

6.4 The Objective vs. Subjective Nature of LSP Compliance

6-203

6.4.1 Obijective Criteria: Design By Contract

6-203

6.4.2 Subjective Judgment: Design Intent and Domain Constraints

6-224

6.5 Refactoring Playbook — From LSP Violations to Safe Design

6-226

6.5.1 Why another taxonomy?

6-226

6.5.2 Examples, Explanations, and Justifications

6-226

Chapter 7 Interface Segregation Principle

7.1 Interface Surface Area and ISP: What Clients Really Depend On

7-266

7-267

7.2 ISP Violation Example

7-271

7.3 Integrating ISP, LSP, and SRP: Clear, Practical Guidance

7-275

7.3.1 Orthogonality of ISP and LSP: Client-Specific Interfaces vs Substitutability Contracts
7.3.2 From Reason-to-Change to Reason-to-Depend: The Alignment of SRP and ISP
7.3.3 From Ideas to Practice: A Simple, Repeatable Method

7-276

7-281
7-284

7.4 Mapping ISP to GRASP Principles

7-287

75 The Objective vs. Subjective Nature of ISP

7-289

7.5.1 Objective Symptoms of ISP Violations

7-289

7.5.2 Subjective Design Considerations

7-312

7.6 Refactoring Playbook — From Fat Interfaces to Focused Interfaces

7-314

7.6.1 Step 1: Scoping the Analysis to Implementers

7-314

-1-11 -

7.6.2 Step 2: Create New Client-Specific Interfaces 7-319

7.6.3 Step 3: Refactor Implementing Classes 7-323
7.6.4 Step 4: Update interface references in clients. 7-328
7.6.5 Step 5: Deprecate or Remove the Fat Interface 7-334
7.6.6 Step 6: Validate behavior and performance 7-339
7.6.7 Step 7: Communicate and document 7-344
7.6.8 Synthesis 7-350
Chapter 8 Dependency Inversion 8-355
8.1 Importance of DIP in Modern C# and .NET Design 8-356
8.2 Dependency Injection: A Mechanism to Achieve DIP 8-357
8.3 DIP Violation Example and Refactoring 8-359
8.4 DIP and GRASP: Indirection and Protected Variations 8-363
8.5 Objective and Subjective Impacts of DIP (Metrics and Design Reasoning) 8-365
8.5.1 Obijective Criteria 8-367
8.5.2 Subjective Criteria 8-374
8.6 Refactoring Playbook: Implementing DIP Step-by-Step 8-391
8.6.1 Step-by-Step DIP Refactoring Process 8-391
8.6.2 Example: Decoupling an Email Notification Service 8-393
8.6.3 Example: Refactoring an Order Processing Workflow 8-395
8.6.4 Synthesis: DIP’s Role in Maintainability, Testability, and SOLID Synergy 8-399
Chapter 9 Conclusions, Limitations, and Future Work 9-404
9.1 Conclusions 9-404
9.1.1 Contributions 9-405
9.1.2 Practical Implications 9-406
9.2 Limitations 9-406
9.2.1 Scope and External Validity 9-407
9.2.2 Measurement and Construct Validity 9-407
9.2.3 Threats to Internal Validity 9-408
9.2.4 Performance and Operational Considerations 9-408
9.3 Future Work 9-408
9.3.1 Automated Guidance and Tooling 9-409
9.3.2 Expanded Empirical Studies 9-409

-1-12 -

9-410

9.3.3 Design Playbooks and Education
9.3.4 Integrations with Testing and Operations

9-411

9.3.5 Research on Trade-off Modeling

9-411

94 Practical Guidelines (A Consolidated Checklist)

95 Closing Reflection

9-411

9-412

Appendix A

References

- 1-13 -

9-414

9-416

Table of Figures

Figure 1. A simple inheritance eXample iN CH.........oi bbb e 3-39
Figure 2. An association where Student uses (has a reference to) Teacher, 3-41
Figure 3. Composition example — Car COMPOSES aN ENGINEcvcveierieriereieeeeeeieseeste e sre s esee e sre e enens 3-44
Figure 4. Classes ReportGenerator and InvoiceGenerator delegate printing to Printer class...........cccccevevvennenne. 3-46
Figure 5. EmailSender Transient dependency on SMEPCHIENL...........ccoiiiiiiiiiiiiee e 3-49
Figure 6. Reflective Dependence on IPaymentProcessor Complaint Classccccoereriieninenieieiese e 3-50
Figure 7. Plugin dependence is reSoIVed at FUNTIME.co.iieiiiiiieie e e 3-51
Figure 8. Hard-coded dependency of DataExporter on FileLogger Class.........ccooveerereiieninsesieee e 3-54
Figure 9. Abstraction-based dependency of DataExporter2 on LoggerBase abstract classcccocoevvvevvivrivinenns 3-55
Figure 10. Abstraction-based dependency of DataExporter3 on ILogger interface..........ccocvevvvvevererieniesinsinsnennns 3-58
Figure 11. Abstraction-based dependency of DataProcessor on Func<int, bool> filter delegate...........c.cccoene.... 3-60
Figure 12. Dynamic Dependence EXAMPIE..........cci ittt ettt e bt bbb eneas 3-62
Figure 13. Hardcoded instantiation at the source site of dEPENUENCE..........coeiiiiiiieiieic s 3-66
Figure 14. Dependences of ReportService2 class are provided through constructor injectioncccccoovevenene. 3-68
Figure 15. Sample code segment in constructor root supplying dependencies to application object classes 3-70
Figure 16. Delegating dependences instantiation to ConfigRepOSItOryFaCtOry........cccvviivvvrvieeierene e seseenens 3-71
Figure 17. Instantiate dependence target using ServiCeLOCAtOr CIASS.........ccivrviveriereiriesiesr s ee e sre e eneas 3-73
Figure 18. Instantiate dependences at startup in constructor root using configuration files............cccccoevvivvivinenns 3-75
Figure 19. Instantiate dependence target using REFIECION..........cvcveieiiiiiie i 3-77

Figure 20. A coordinator (WorkflowManager) invokes two sibling components (ComponentA, ComponentB) at the
same abstraction level—DoTaskA() then DoTaskB()—forming a side-by-side (non-nested) call sequence where
each call is an independent sub-operation of the WOrkflow ..o, 3-80

Figure 21. A client invokes two sibling operations on the SAMe SEIVICE..........ccviieieiiiiie e 3-80

Figure 22. A 3-level deep inter-object sequence—UIHandler.ButtonClick() — OrderService.ProcessOrder() —
OrderRepository.StoreOrder()—illustrating a top-down, nested flow typical of Ul — Service — Repository
AFCNTEECIUNES ...ttt s Rt b Rt e bR Rt r et r bt r et n e r s 3-82

Figure 23. A depth-3 intra-object call chain—Grandparent() — Parent() — Child()—showing vertical depth created

by methods delegating to lower-level helpers inside the same Class..........ccoooi i 3-82
Figure 24. Example of code violating SRP PrinCIPIe..........ooiiiiiie e 4-97
Figure 25. Refactored Code of the TradeProCesSOr Class.........ciiiiiiiiiiieie e 4-101
Figure 26. Trivial example for illustrating LCOM evaluation.............cccovvviviisienieire e seseeie e 4-106
Figure 27 Method Field Matrix for INVOICE Class ENQINEccveieieeierc st 4-107
Figure 28 Unordered pair of methods for evaluating LCOMIL MELIIC........ccvvveverierieriinere s eeseeee e 4-107
Figure 29. Method -Field Matrix rendered to a graph with 2 strongly connected componentscc.cceevevenene. 4-108
Figure 30. DeductionCalculator class before refactoring ..o 4-110

- 1-14 -

Figure 31 Method-Field matrix for DeductionCalculator Class...........ccoeiiriiiiiiiiceee s 4-111

Figure 32 Transitive closure of distinct methods that ProcessTrades can trigger.........c.ccovvvreeieieneienenee, 4-113
Figure 33 RFC metric value per class after refactoring the TradeProcessor Class..........cccoovvririneiieienc e, 4-115
Figure 34. ReportGenerator class violating OCP PrinCIPle..........ooiiiiiiiiiee e 5-125
Figure 35. ReportGenerator class after augmenting it with the Profit-And-Loss report..........ccccocvvveniiinncnen 5-126
Figure 36. Refactored version of ReportGenerator class complaint to OCPccccocviiiiiniinieis e 5-128
Figure 37. CurrencyService class hardcodes access to exchange range provider violating OCPc..c.......... 5-132
Figure 38 Refactored version of CurrencyService satiSfying OCP.........ccccooiviiiiiieie s 5-132
Figure 39. DOCUMENTEXPOITET CIASSc.veviiiirieieretieteie st e et et re st e e s e e e sae st e snesreeseenee e e seneesnenreeneens 5-133
Figure 40. Refactored DOCUMENTEXPOITEE CIASS.........civeiuireieieeeeieee sttt sneereene e 5-133
Figure 41 CheckoutService class processes orders through interaction with a hardcoded URLcccce... 5-136

Figure 42 Refactor CheckoutService class directs payment processing to the injected IPaymentGateway compatible

(0]] 1=To! TSSOSO S SRRSO 5-137
Figure 43. Customer domain class burdened with persistence 10giC..........ocuviiiiiiiiiiiiiee e 5-138
Figure 44. Refactored Customer class disconnected from persistence 10giC........cevvvvriviivivsiisieere e, 5-139
Figure 45. Command to provide a list of files that have been committed ordered by the number of commits....... 5-142
Figure 46. Resulted report from git 109 iN FIQUIE 25........ooiiiii et 5-142
Figure 47. Time windowed report of most frequently modified fileS.........ccocvvvviiiieie i, 5-143
Figure 48. Powershell script to identify ““co-change” neighbours for one target file ... 5-143
Figure 49. Generated Report after executing the script of Figure 28..........cooiiiiiiiiiiiiiiee e 5-145
Figure 50. Generated Report findings from Figitidy.pSL........oiiiiiiiieiiie e e 5-146
Figure 51. ReportGenerator class generates reports in three different formats..........ccoccoovvivviiieic v, 5-151
Figure 52. EXract IREPOI INTEITACEcveiuiiiieiie ettt re e teer e e e e e e e stesneereeneens 5-152
Figure 53. Introduce Strategy / POLCY INJECTION.........ciiiiiiie it sne e 5-153
Figure 54. Increase of complexity in the generation of proper Report 0bjectccocvvvviviivcieicic v, 5-154
Figure 55. Factory & Registration (GRASP Creator)couiiiiiiiie ettt et 5-154
Figure 56. Apply Template Method PALIEIN.......c..oiiiie ettt 5-155
Figure 57. ASP .NET Core DI registrations of the application Classesccccuuririerieiienininee e 5-157
Figure 58. Reports CONIOIEE CIASSoiuiiiiiii it bbbttt bbb bt 5-157
Figure 59. Container code to create the object of classes corresponding to the Keysccocvevvervevevervvvseninennn, 5-158
Figure 60. Creating MOCK ODJECESc.viiveiiiise sttt sa et sreereeseenee e e neeneesneereeneens 5-158
Figure 61 how the refactor transformed the COUEDASEc..cvvreiiieii e e 5-159
Figure 62. LSP strengthening preconditions violation example using a customer manager...........ccccecvreveeeeenan. 6-174
Figure 63. LSP weakening postconditions violation example using a book lending managerc.ccoccveveuenee. 6-175
Figure 64. The classic example of the Rectangle—Square problem ... 6-176
Figure 65. Tax CalCulator EXAMPIE..........coiiiiiii ettt se et be et et e e e e b et b sbeene e 6-178
FIQUIE 66. LOGUET EXAMPIEoeiiiiitieeie ettt e bbbt ekt s e b bt bbbt e s e ene e b e nbe st sbeebeene e 6-179

- 1-15 -

Figure 67. OpPOSITE LOGYET SCENAKIIOcviiviriiitiaiieieie ittt sttt sttt sttt e e s e e e sbesbeabe et e e seeneeseesbesbesaesbeene e 6-180
Figure 68. Overridden Print method Narrowing the intended by the base class input type.........ccccocerviiiinenneee 6-181
Figure 69. Fix A of LSP violation of StringPrinter Class..........ccivvieieiinise e 6-182
Figure 70. Fix B of LSP violation of StringPriNter Class..........cciviiiieiiiiieie e 6-183
Figure 71. Example of covariance using the covariant IEnumerable<T> interface.........cc.ccoccevevvrenivninnnsnnnnn, 6-184
Figure 72. Example of contravariance using the contravariant Action<T=> delegate..........c..ccocevvrvrivriviernnnnn, 6-184
Figure 73. Example of Invariance using the ILiSt<T> interface...........ccoccooeiiiiiiiiiiin e 6-184
Figure 74. Contravariant input flexibility in C# without changing method-parameter types on an override...... 6-189
Figure 75. How variance was handled before introduction of variance in C#............ccocooiiiiniiis s, 6-191
Figure 76. Example of a game character builder with covariant return types..........coccocevoerinienieis s 6-193
Figure 77. Graph Node Hierarchy with LSP VIOIAtioNncccccviiiiiiisc e 6-195
Figure 78. Conflating capabilities iN SUDLYPESvoiiie i 6-197
Figure 79. Identifying LSP violations PSEUdOAIGOtNMcviveieice e 6-202
Figure 80. RUNtIME-ENTOICEM DASE........cveiiieiie ettt re st s e e ne e e e e e nbesneereeneens 6-206
Figure 81. Sample Main for illustrating Runtime LSP compliance validation.............c.ccocoviiiniiiniinciencneee, 6-208
FIQUIE 82. EXBCULION RESUITSetiitieiiie ittt bbbttt b bbbt et e e s e e ne e e e ebesbesbe et e ene e 6-209
FIgUIE 83. WEAPONS.CS TIlB ...ttt et bbbttt e et e b bt et e bt b e e e e e e b e e 6-211
Figure 84. xUnit Test Suite for Weapon.cs file that objectively verifies LSP compliance...........ccccccoeviiiiinnnnnne 6-214
Figure 85. Test EXplore SCreenShot SNOWING.........cveiiieiisise sttt see et snenreeneens 6-215
Figure 86. WOIKSPACE SELUDveveivrereereesieiiesiestestesteeseestestestestesseeseeseesseseessestessesseaseesseaessessesseaseeseeneeseesentesnensensens 6-216
Figure 87. Minimal Graph Model IMmpIeMeNtation...........cccviiviiiiiiieie s e 6-218
Figure 88. GraphModel LSP compliance verification XUNit TESt SUILEccereiiiiieieneieiisieeee e 6-220
Figure 89. Stryker configuration file GraphDomain.Tests/stryker-config.jSonccocooeiiiiinis e, 6-221
Figure 90. StrYKEr EXECULION FEPOIT......c..iiuiiti ittt bbbttt e s e e e be st e sbe et e e s e enee b e nbesbesbeebeene e 6-222
Figure 91. Stryker html generated FEPOITottt st sb e bbb 6-223
Figure 92. Relax the subtype t0 the Dase CONIrACE...........ccocvviviiciiice e 6-228
Figure 93. Refactor by sealing the contract in the DASEcccvcveiiii i 6-229
Figure 94. Additional measures applied to prohibit accidental strengthening of preconditionscccceevenne. 6-232
Figure 95. XUNIE VAIIAALION ..ottt ettt et aesraeseenee e e e e sbesneereeneens 6-233
Figure 96. Visual Studio Project additional SETINGScoviiiiiiiiie e 6-233
Figure 97. RUNNING XUNIE tESES FESUIS. ..ottt bbbt b 6-234
Figure 98. Subtype is refactored to satisfy Dase PromisSe.........ccoviiiiiiiiiii e 6-236
Figure 99. Refactoring the base class to determine the admissible state changes and verification of postconditions 6-
239
Figure 100. Tests that verify postconditions for various SUBCIASSEScccviveveriererene e 6-240
Figure 101. Separate Square and Rectangle NIerarchyccocvcoveeieiec s 6-242
Figure 102. Keep Square, Rectangle in the same hierarchy but enforce invariants using factories/builders 6-244

- 1-16 -

Figure 103. Separating logging sinks from logging policies uSing Strategy.........cccooererererenienieeie e 6-246

Figure 104. Extract a strategy; make the base a stable fagadeocooeiiiiiiiii e, 6-250
Figure 105. Make behavior data-driven in a single sealed tyPe.......cccovvvvieiicieeieee e 6-252
Figure 106. Broaden behavior within the existing hierarchycccocvoiiviiiinicie e 6-255
Figure 107. Type the capability correctly with generics and VarianCe...........ccccevvevereniesiesnsiesseee e 6-257
Figure 108. Split functionality iNt0 tWO INTEITACES.........ciiviieii e 6-259
Figure 109. DemMOte “lEaf"” 10 STALEcc.eiuiiei ittt bbb b r e 6-261
Figure 110. Make failure part of the CONTIACL...........c.oiiiiiii e e e 6-263

Figure 111. An oversized interface (IAllInOnePrinter) forcing a class to throw NotSupportedException, thus
violating ISP. The BudgetPrinter1000 does not need Fax() but must implement it.............ccccooiieriiinnnnnnn. 7-272
Figure 112. The printer interfaces are segregated. The multi-purpose interface is split into IPrinter, 1Scanner,

and IFax. Classes implement combinations as required: BudgetPrinter1000 exposes no fax method,

whereas ProPrinter3000 implements all three interfaces.ccvvveiveieie s 7-273
Figure 113. Minimal temperature-probe CONTIACTcooiiiiiiiieie e et 7-278
Figure 114. Compliant CelSius therMOMELETcveiei st sreere e ens 7-278
Figure 115. Non-compliant Kelvin therMOMELENcceiiiiiiiieeieiece et sneere e e 7-279
Figure 116. Client calibrated to Celsius reveals the VIolation...........cccccovviviiiiiiicic s 7-279
Figure 117. Broad “all-in-one” interface with a fully correct implementer...........cccvvviviieiiniinicce v, 7-280
Figure 118. Thin client forced to depend on a fat INtErfaCe.........uivviiiiiiic e 7-280
Figure 119. Role interface restores a minimal dependency SUIaCeociiiiiiiiiinc i 7-281

Figure 120. Regular expression to identify NotImplemented and NotSupported exception generation in Visual
SEUAION ENVIFONMENT ...ttt sttt bt et bbb et et e b e sttt e sttt e sttt e b e st e ene et 7-290

Figure 121. Regular expression to identify Notimplemented and NotSupported exception generation in Powershell 7-
290

Figure 122. One-pass ISP screening pipeline. Shortlist “large” interfaces by member count............cccccvvevvennnne. 7-296
Figure 123. Per-member breadth pseudocode for ISP detection............ocooiiiiiiiiii i 7-300
Figure 124. Applying per-member breadth to the “All-in-One” examplecccoeiiiiniiiniiee e 7-301

Figure 125. Post-refactor roles and wiring. The former “fat™ interface is split into IPrinter, IScanner, and IFax.. 7-
304
Figure 126. Implementer-cohesion diagnosis fOr ISP............cccvciiiireie s s 7-306
Figure 127. Stepwise pseudo-algorithm that operationalises interface-centric hotspot detection........................ 7-309
Figure 128. An example of a "fat" interface, IAllInOnePrinter, which aggregates multiple capabilities. The
BudgetPrinter1000 class is forced to implement the Fax method, which it does not support, resulting in a
N[0 U o] oJo] g o oot o1 o OSSO 7-315
Figure 129. An additional class, FaxOnlyKiosk, which only supports faxing, is forced to implement the unsupported

Print and Scan methods from the IAIlIINOnePrinter interface by throwing exceptions...........c.ccooeveieiennne 7-316

-1-17 -

Figure 130 A matrix illustrating which implementing classes provide meaningful support for each member of the
IAHINnOnePrinter interface. A checkmark (v/) indicates support, while a cross (X) indicates a non-functional
implementation that throws an EXCEPLION.oii it 7-317

Figure 131. Introduction of interfaces to codify usage clusters and implementation asymmetries........................ 7-320

Figure 132. A composite interface, IMultiFunctionPrinter, is created by inheriting from smaller role interfaces
(IPrinter, IScanner). An Adapter class is then implemented to provide a unified view for clients that require
both capabilities, while delegating calls to the underlying role implementations............ccccccooevivvieiivsvineninn 7-322

Figure 133. The BudgetPrinter1000 class is shown before refactoring, where it implements the large
IAIlINOnePrinter interface and is forced to provide an implementation for the Fax method, which it does not
Support, by throwing @n EXCEPLION.iiiiiiie ettt bbbt see e et resneens 7-324

Figure 134. The three new, segregated interfaces (IPrinter, IScanner, IFax) created by splitting the original fat
interface based on diStinCt CAPADTILIES.oiiiiii e e 7-325

Figure 135. The BudgetPrinter1000 and ProPrinter3000 classes are shown after refactoring. Each now implements
only the specific role interfaces corresponding to its actual capabilities, eliminating the need for exception-

LT 01T T TS V] oL 7-325

Figure 136. An example of a defensive guard within a method implementation. This check for _faxEnabled is a
symptom of the class being forced to implement a method for a capability it may not support. 7-326

Figure 137. A comparison of unit tests before and after refactoring. The "before™ test uses the fat I1AllInOnePrinter
interface, while the "after" test uses the new, focused IPrinter and 1Scanner role interfaces to verify the same
ODSENVADIE DENAVION. ... bbbttt bttt 7-326

Figure 138. A before-and-after comparison showing a client (FaxJobService) being refactored. Initially dependent
on the large 1AIlInOnePrinter interface, it is updated to depend only on the minimal IFax role interface that it
ACTUAIIY USES. ..ottt ettt e s et e e be st e s be e ReeR e e s e en b e e e st e R e eReeReeReene e e e tentearenrenneenes 7-329

Figure 139. The CopyWorkflow class demonstrates handling multiple capabilities by explicitly depending on two

Figure 140. A composite interface IMultiFunctionPrinter is created by inheriting from smaller IPrinter and
IScanner roles. A class like ProPrinter3000 can then implement this composite along with other roles like
L OSSP PO TR PPRTPTTRRPRRRON 7-330
Figure 141. A before-and-after comparison of dependency injection container registrations. The single registration
for the fat IAllInOnePrinter is replaced by multiple, specific registrations for the new role interfaces (IPrinter,
L0710 1T) T 7-331
Figure 142. An example of role-specific factories. Instead of a single factory for all devices, separate factory
interfaces (IFaxFactory, IScanFactory) are defined to create objects that fulfill specific roles. 7-331
Figure 143. A forward adapter, AllinOneAdapter, which implements the old IAllInOnePrinter interface but internally
delegates its method calls to the new, smaller role interfaces (IPrinter, IScanner, IFax). This allows for a

gradual migration Of CHIENTS.oiiiiiccce et tesrenre e enes 7-332

- 1-18 -

Figure 144. A reverse adapter, FaxOnlyView, which implements the new, narrow IFax interface by wrapping and
delegating to an existing object that still implements the old, fat IAllInOnePrinter interface. 7-332
Figure 145. The use of the [Obsolete] attribute in C# to mark an interface for deprecation. The first example shows
an advisory warning message, while the second example shows how to configure the attribute to produce a
(o0 0] 11 Lo L] 4= =T o (o] S 7-335
Figure 146. A transitional compatibility adapter, AllinOneAdapter, marked as obsolete. It implements the old fat
interface by composing and delegating to the new, focused role interfaces, providing a backward-compatibility
layer dUFING MIGEALION.i ittt ettt ettt et e b e be bt beebeeseese e e e tesaenbesaeeteeneans 7-336
Figure 147. The FaxJobService client before refactoring, showing its dependency on the large, multi-purpose
TAIIINONEPTINIEN INTEITACE. ... ittt b ettt b e be e ene s 7-345
Figure 148. The FaxJobService client after refactoring, now depending on the minimal and specific IFax role
(101 (=] = o= TSSOSO TSP PRSPPI 7-346
Figure 149. The CopyWorkflow class before refactoring, using a single dependency on the monolithic
IAIIINOnePrinter to perform both scanning and Printing.ccccvvoviiieieienie e 7-346
Figure 150. The CopyWorkflow class after refactoring, explicitly composing the IScanner and IPrinter roles by
depending 0N DOth INTEITACES.iiiiiiei ettt besre b ne s 7-346
Figure 151. A dependency injection registration before refactoring, binding the single fat interface 1AllInOnePrinter
t0 @ concrete IMPIEMENTALION.i ittt bttt e e e e b b sresneeneenes 7-347
Figure 152. Dependency injection registrations after refactoring, showing separate bindings for each role interface
(IPrinter, IScanner, IFax) to their respective concrete implementations.ccocveiveveierene e seese s, 7-347
Figure 153. A transitional compatibility shim, AllinOneShim, which implements the deprecated IAIlINOnePrinter
interface by composing and delegating to the new role interfaces, allowing for a phased migration. 7-348
Figure 154. A composite convenience interface, IMultiFunctionPrinter, and its corresponding adapter. This pattern

allows clients that legitimately need multiple roles to depend on a single, unified interface without violating

(RS o {0 o] T ol 1 =T o1 £ PSSR OSPPRPRRN 7-349
Figure 155. A high-level module, OrderService, directly instantiates and depends on a low-level concrete class,
MySQLDatabase,thereby Violating the DIP.........c.cccoiiiiiiiie e 8-360

Figure 156. An abstraction, 10rderRepository, is introduced to define the contract for saving an order,decoupling
high-level logic from specific persistence implementationsScocviiveierere s 8-361
Figure 157. The OrderService class is refactored to depend on the 10rderRepository abstraction, which is provided
via constructor injection, adhering t0 DIP. ..o 8-361
Figure 158. The concrete MySQLDatabase class is modified to implement the 10rderRepository interface, making it
a substitutable TOW-1EVE] AETAILciiee e 8-362
Figure 159. The application's composition root creates a concrete MySQLDatabase instance and injects it into the

OrderService, completing the dependenCy INVEISION.c.coiviieiiieieeesese e 8-362

- 1-19 -

Figure 160. The formula for calculating the DIP Compliance Index (DIP-CI), which quantifies a class's adherence
to the Dependency Inversion Principle by applying weighted penalties for violations and bonuses for best
012 T oSSR 8-369

Figure 161. A well-designed OrderService class that adheres to DIP by depending only on abstractions
(10rderRepository, ILogger) which are supplied via constructor injeCtion.ccccvevvevererieresierese e, 8-370

Figure 162. A ReportService class demonstrating multiple DIP violations, including direct instantiation of concrete
infrastructure (SqlConnection, HttpClient) and use of a service 10Cator.ccocovoeriiiiiiieieeee e, 8-372

Figure 163. A DIP-compliant PriceEngine that uses an injected delegate (Func<Cart, IPricing>) as a factory to
create short-lived collaborators based 0n iNCOMING data.ccoceiiiieiiiiie e 8-372

Figure 164. A CheckoutService that depends on a stable IPaymentGateway abstraction, allowing different payment
providers to be used without modifying the service itself, thus protecting it from variations.c......... 8-376

Figure 165. A FraudEngine that accepts a scoring rule as a Func<> delegate, allowing the fraud detection logic to
be changed without modifying the BNGINE.cocii i e 8-376

Figure 166. An image processing pipeline that uses an IFilter interface for applying transformations, but the virtual
dispatch inside the hot loop (ProcessSlow) can be a performance bottleneck. ..o, 8-378

Figure 167. A refactored, performance-optimized image pipeline where the choice of filter is made outside the hot
loop (ProcessFast), and a direct delegate is passed in to be invoked, avoiding virtual dispatch overhead.. 8-379

Figure 168. A GeometryKernel with static methods for stable, well-known geometric calculations. In this context,
using concrete implementations is preferable to introducing interfaces, as the algorithms are not expected to
o =T SRS 8-380

Figure 169. An example of a performance-sensitive "hot path" where an IAggregator interface is used within a loop,
causing a virtual dispatch 0N eVEry ITEratioN.c.iiiiiee e 8-382

Figure 170. A refactored version of the aggregator where the dependency inversion "seam™ is moved outside the hot
loop. A concrete delegate is passed into the loop, allowing the JIT compiler to potentially inline the call for
DELLEI PEITOIMANCE. ... ettt bttt ettt e b e e bttt ae b e e e en e e neesbesbesbesaeeneaneas 8-382

Figure 171. An example of unintentional closure allocation, where a lambda captures the local variable d, forcing
the compiler to create a new object on the heap to Store itS State.ccccvevererieie v 8-384

Figure 172. A refactored version that avoids heap allocation from closures by using a struct to pass state and
employing a static local function, which cannot capture variables.cccocovvviviiiiiicic e 8-384

Figure 173. An example of boxing, where passing an int (a value type) to a method expecting an object causes an
allocation on the heap for each call inside the 100P.c.cco i 8-385

Figure 174. The refactored version using a generic interface IConsumer<T>, which eliminates boxing by allowing
the method to accept the specific value type int direCtly.cooooiiiiiiiii e 8-385

Figure 175. An inefficient implementation where a dependency (IRateProvider) is resolved from a service locator
inside a loop, incurring lookup overhead on every Iteration.ccccevvverieiisie i 8-386

Figure 176. The optimized version where the IRateProvider dependency is injected once outside the loop, avoiding

repeated Service 10Cation OVEFNEA.cccoiuiiiii ettt et b e be e e e e eneesnens 8-386

-1-20 -

Figure 177. A performance-poor example using reflection (GetMethod and Invoke) inside a loop, resulting in
significant overhead from metadata lookups and argument boxing on each iteration................ccococervenene. 8-387
Figure 178. An optimized approach where reflection is used only once outside the loop to create a strongly-typed
delegate, which is then invoked directly within the loop, eliminating repeated reflection overhead. 8-387
Figure 179. A simple benchmarking harness to measure the execution time of an action, including a warm-up phase
to ensure the JIT compiler has optimized the code before measurement begins.ccccceeveveievenicsesennenn, 8-388
Figure 180. The initial design of an EmailNotification class, demonstrating a violation of the Dependency Inversion
Principle through the direct instantiation and tight coupling to the concrete SmtpClient class. 8-393
Figure 181. The refactored, DIP-compliant design where the high-level EmailNotification module depends on the
IEmailSender abstraction, which is implemented by the low-level SmtpEmailSender detail and supplied via
(o0 a1 £ (0T (o [T £ o] SRS 8-394
Figure 182. An example of a complex DIP violation, where the high-level OrderProcessor module is tightly coupled
to multiple low-level details (SqlOrderRepository, StripePaymentGateway, SmtpEmailService, FileLogger)
through direct instantiation iN itS CONSLIUCTON.ceiveieriere e re s 8-396
Figure 183. The refactored, DIP-compliant OrderProcessor workflow. High-level policy is decoupled from low-level
details by introducing abstractions for each dependency, which are then supplied to the OrderProcessor via

(o001 (o (o] gl [T £ o] PO RS PR 8-397

-1-21 -

Index of Tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.

Summary of dependencies and their CharacteriStiCs....... ..o 3-53
Dependency abstraction levels and their effeCtS..........ccoo i 3-65
Creation and binding mechanisms for dependenCIes...........coviiiiriiiiiiice e 3-78
Intuitive Map of SRP t0 GRASP PALEINScouiiiiiiiiiiiiie et 4-104
GRASP Patterns Mapped to the Open/Closed PriNCIPIEccovivvviveiercce e 5-131
Classic Abstract Factory Vs DI CONTAINETS.c.cviviieiieierisiesesteseseesaeseesie e sre e sneeseeneesseseesressesnesseenes 5-156
Mainstream languages that explicitly support covariant return types in method overrides.................... 6-187
LSP VIiOIationNS SYMPLOIMScuiitiitiiiieiie ittt ettt b ettt s e se e b e b bt bt bt ebe e e et e seesbesbesbesbeene e 6-200

-1-22 -

Chapter 1
Introduction

1.1 Background and Motivation

Modern software systems are embedded in nearly every facet of contemporary society. From e-
commerce platforms powering global trade to mobile applications shaping individual daily habits,
and from mission-critical enterprise resource planning (ERP) systems to the cloud-native services
that orchestrate international communication, software today serves as the foundational
infrastructure of economic and social activity. This ubiquity, however, is accompanied by an
inherent complexity: as systems evolve to meet rapidly shifting requirements, developers are
confronted with challenges of scale, maintainability, and long-term adaptability.
The central paradox of software engineering is that software must both change continuously and
remain stable. Customers and organizations demand new features, integrations, and compliance
with shifting legal or security landscapes. Yet at the same time, stakeholders expect that existing
functionality—already validated and deployed—uwill remain dependable. The tension between
changeability and reliability is the enduring challenge of software design. Without clear
architectural guidance, codebases often devolve into brittle collections of patches. Technical debt
accumulates; onboarding of new team members slows; testing costs rise; and, ultimately,
organizations lose confidence in their ability to evolve their systems safely.
To counteract this tendency, the software engineering community has, over decades, distilled
experiential wisdom into design principles. These principles are not recipes or rigid blueprints,
but rather heuristics and guidelines that capture recurring insights about what makes code resilient
to change. Among the most widely recognized families of such principles are SOLID and
GRASP.

e The SOLID principles, popularized by Robert C. Martin in the early 2000s, crystallize

five core guidelines for object-oriented software:
o Single Responsibility Principle (SRP): a class should have only one reason to

change.

-1-23 -

o Open/Closed Principle (OCP): entities should be open for extension but closed
for modification.

o Liskov Substitution Principle (LSP): subtypes must be substitutable for their base
types.

o Interface Segregation Principle (ISP): clients should not be forced to depend on
methods they do not use.

o Dependency Inversion Principle (DIP): high-level modules should depend on
abstractions, not on details.

e The GRASP patterns (General Responsibility Assignment Software Patterns), introduced
by Craig Larman in the late 1990s, complement SOLID by offering heuristics for assigning
responsibilities in a way that balances cohesion and coupling across the system:
Information Expert, Creator, Controller, Low Coupling, High Cohesion, Polymorphism,
Indirection, Pure Fabrication, and Protected Variations.

While SOLID emphasizes class-level design integrity, GRASP emphasizes responsibility
assignment at the system level. Taken together, they provide a complementary methodology:
SOLID ensures that individual modules remain cohesive and safe to evolve, while GRASP ensures
that the interactions between modules remain intelligible, decoupled, and balanced.

The motivation for combining these two families is twofold. First, software teams in industry
frequently struggle when principles are applied in isolation. A system that is “SOLID-compliant”
in terms of class design may still suffer from poorly distributed responsibilities, while a GRASP-
compliant responsibility assignment may falter if the resulting classes do not respect SRP, OCP,
or LSP. Second, the empirical evidence from both academia and industry suggests that systems
designed with attention to both modularity and responsibility assignment exhibit measurably
better maintainability, testability, and evolvability. This dual perspective therefore offers
practitioners not only theoretical elegance but also pragmatic resilience.

The context of this thesis is the C# and .NET ecosystem, which provides an ideal arena for
exploring these principles. C# offers rich support for object orientation, generics, interfaces,
reflection, and language-integrated query (LINQ), while the .NET ecosystem provides powerful
frameworks for dependency injection, test automation, and architectural layering. Furthermore,

NET is widely used in enterprise settings, where long-lived systems must evolve safely over years

- 1-24 -

or even decades. By grounding the discussion in idiomatic C# examples, this work ensures that
the principles are not abstract slogans but are concretely applicable to modern industrial practice.
Finally, the relevance of this work extends beyond industry. In the academic domain, teaching
design principles is essential for cultivating students’ ability to think critically about architecture
rather than only about coding syntax. Experience shows that graduates who can reason about
maintainability, testability, and extensibility are better prepared for professional practice. By
providing C#-based demonstrations of SOLID and GRASP in action, this thesis aims to contribute

also to pedagogy, offering students concrete bridges between design theory and coding practice.

1.2 Research Problem and Rationale

Although both SOLID and GRASP have been widely taught and cited in literature, their combined
application has rarely been systematized in a way that provides actionable guidance. Instead,
practitioners often encounter fragmented advice: tutorials on SOLID without reference to
responsibility assignment, or GRASP discussions without consideration of how to enforce design

contracts. This fragmentation leads to two problems.

First, teams may implement principles superficially. For example, a developer might create
multiple interfaces to “satisfy” ISP but fail to map those interfaces to actual responsibilities in the
domain, creating artificial fragmentation without genuine decoupling. Similarly, a team may adopt
GRASP’s Information Expert but overlook that the resulting class has accumulated too many
reasons to change, violating SRP. Without integration, principles risk being applied mechanically
rather than thoughtfully.

Second, tooling support remains asymmetric. Static analysis tools such as SonarQube or NDepend
can flag probable SOLID violations—Iarge classes, deep inheritance hierarchies, unused interface
members—nbut there is little automated support for detecting GRASP misapplications. This gap
can leave responsibility assignment largely in the realm of subjective judgement. A unified
framework that clarifies how SOLID and GRASP interrelate could therefore empower both

better human decision-making and more targeted tool support.

The rationale of this thesis is that by mapping each SOLID principle to relevant GRASP
patterns, a systematic methodology emerges. This methodology provides not only diagnostic
power—helping teams recognize when a design is drifting—but also prescriptive guidance,

-1-25 -

suggesting concrete refactoring strategies grounded in both families of principles. By embedding

these mappings in C# examples, the thesis demonstrates how violations can be recognized, how

refactorings can be conducted incrementally, and how the resulting design can be explained both

in theoretical and practical terms.

1.3 Research Objectives

The objectives of this thesis can be articulated across three complementary dimensions: theoretical,

analytical, and practical.

131

1.

1.3.2

1.3.3

Theoretical Objectives

Synthesize foundations by surveying the origins and rationales of both SOLID and

GRASP, highlighting their conceptual alignments and differences.

Clarify design intent by examining how principles have been historically interpreted in

both academic and industrial contexts.

Extend understanding by arguing for the synergy of the two families, showing that

SOLID refines local correctness while GRASP ensures global balance.

Analytical Objectives

Identify anti-patterns in C# code that correspond to violations of SOLID and GRASP

principles.

Measure violations using static analysis metrics such as LCOM, RFC, coupling indices,

and change frequency analytics.

Evaluate trade-offs by distinguishing between objective indicators (metrics, tool

warnings) and subjective factors (domain semantics, performance constraints).

Practical Objectives

Demonstrate refactorings by providing step-by-step C# examples that transform flawed

code into principle-compliant design.

Map refactorings to GRASP so that each code change can be justified not merely in terms

of syntax but also in terms of responsibility assignment.

-1-26 -

3. Validate through a case study by refactoring a small e-commerce module iteratively,

applying multiple principles in concert.

4. Explore advanced principles—Interface Segregation, Dependency Inversion, and
Dependency Injection—to illustrate how they secure large-scale maintainability and

testability.

By fulfilling these objectives, the thesis aims to deliver both scholarly insight and practical

utility.
1.4 Contribution of the Thesis

This work contributes in several ways:

e An integrated framework: a systematic mapping of SOLID principles to GRASP
patterns, showing how class-level correctness and system-level responsibility assignment

reinforce each other.

o Refactoring playbooks: step-wise examples in idiomatic C#, each demonstrating how to

resolve specific violations and how to justify the changes with design principles.

e Metric-guided analysis: demonstrations of how code metrics and version-control
analytics can be used to diagnose violations objectively, while still allowing for subjective

judgement.

o Case study evidence: a realistic e-commerce module that demonstrates the iterative
application of principles, making the benefits concrete in terms of reduced complexity,

improved testability, and enhanced extensibility.

o Pedagogical value: an accessible yet rigorous treatment of design principles tailored for

final-year Informatics students and practitioners alike.

1.5 Thesis Structure

The remainder of the thesis is organized to progress from foundations to principle-specific analyses
and, finally, to synthesis and outlook.

-1-27 -

Chapter 2 presents the literature review, where the SOLID principles and the GRASP patterns are
surveyed and their emerging synergy across academic, educational, and industrial settings is
summarized. Attention is drawn to the differing levels of tool support and to the role of empirical

evidence in motivating an integrated stance.

Chapter 3 establishes the foundational mechanisms behind dependencies, which serve as the
connective tissue of object-oriented systems. Dependencies are examined along four orthogonal
axes so that later principle chapters can refer to a common vocabulary and set of trade-offs. First,
the type of dependency is catalogued (inheritance/generalization, association/aggregation,
composition, delegation, parameter-level/usage-only, and dynamic/reflective links). Second, the
abstractness of the dependency reference is analyzed (concrete classes, abstract classes,
interfaces, delegates/callbacks, and dynamic typing or reflection), emphasizing how higher
abstraction levels alter substitutability and coupling. Third, the creation timing and instantiation
mechanisms are compared (direct new, constructor injection, factory and static factory methods,
service locator, container-based binding/configuration, and reflection-based activation), with
attention to how each choice shifts binding time, flexibility, and operational risk. Fourth, the span
and depth of dependency chains are characterized (horizontal collaborations among peers versus
vertical call chains across layers), together with their implications for modularity, cohesion, and
SRP. A unifying synthesis closes the chapter by relating these axes to GRASP (Low Coupling,
Indirection, Protected Variations) and to SOLID (especially OCP and DIP), so that subsequent
chapters can ground refactorings in dependency mechanics rather than slogans.

Chapter 4 addresses the Single Responsibility Principle (SRP), relating responsibility cohesion
to GRASP’s Information Expert and Pure Fabrication, and balancing objective indicators (e.g.,
cohesion and usage metrics) with necessary semantic judgement; a practical workflow for

evidence-guided cohesion refactoring is provided.

Chapter 5 develops the Open/Closed Principle (OCP), mapping openness to GRASP strategies
(Protected Variations, Polymorphism, Indirection, Pure Fabrication), pairing change-proneness
and instability measures with a refactoring playbook that realizes extension by addition rather than

risky edits.

-1-28 -

Chapter 6 treats the Liskov Substitution Principle (LSP), focusing on behavioral contracts and
substitutability hazards, and shows how precise specifications and tests preserve trust in extension

hierarchies.

Chapter 7 examines the Interface Segregation Principle (ISP), arguing for client-specific
contracts to reduce coupling, aligning with GRASP’s Low Coupling and High Cohesion, and
providing a stepwise method from “fat” to focused interfaces.

Chapter 8 presents the Dependency Inversion Principle (DIP) and its realization via
Dependency Injection, showing how abstractions owned by policy localize change and enable
reliable testing; links to GRASP’s Indirection and Protected Variations are made explicit.

Chapter 9 offers Conclusions, Limitations, and Future Work, synthesizing the contributions,

reflecting on scope and validity, and outlining avenues for tooling, empirical replication, and

pedagogy.
1.6 Significance of the Work

The significance of this thesis lies not only in its theoretical synthesis but also in its pragmatic
orientation. By bridging SOLID and GRASP within a unified framework, it responds to a gap in
both scholarship and practice. By grounding the discussion in C#, it ensures relevance to a major
industrial ecosystem. By coupling analysis with refactoring playbooks, it transforms principles
into actionable routines. Finally, by including metrics and case study validation, it demonstrates

that design principles are not abstract ideals but measurable and beneficial practices.

In an era where software complexity continues to rise and development teams are under relentless
pressure to deliver rapidly while maintaining quality, principles that foster robust, evolvable, and
understandable design are not luxuries—they are necessities. This thesis therefore positions
SOLID and GRASP not as competing alternatives but as complementary facets of a comprehensive
design methodology that can equip students, practitioners, and researchers alike to meet the

challenges of contemporary software engineering.

-1-29 -

The remainder of the document is not available herein, due to the embarbo period specified
in the thesis release form.

	Blank Page

